Summary of Chapter 15



Panel data from NLS

Short and wide
TABLE 15.1  Representative Observations from NLS Panel Data T=5, N=716

ID YEAR LWAGE EDUC SOUTH  BLACK UNION  EXPER TENURE

1 82 1.8083 12 0 1 1 7.6667 7.6667
1 83 1.8634 12 0 1 1 8.5833 8.5833
1 85 1.7894 12 0 1 1 10.1795 1.8333
1 87 1.8465 12 0 1 1 12.1795 3.7500
1 88 1.8564 12 0 1 1 13.6218 5.2500
2 82 1.2809 17 0 0 0 7.5769 24167
2 83 1.5159 17 0 0 0 8.3846 34167
s 85 1.9302 17 0 0 0 10.3846 5.4167
. 87 1.9190 17 0 0 1 12.0385 0.3333
2 88 2.2010 17 0 0 1 13.2115 1.7500
3 82 1.8148 12 0 0 0 11.4167 11.4167
3 83 1.9199 12 0 0 1 12.4167 12.4167
3 85 1.9584 12 0 0 0 14.4167 14.4167
3 87 2.0071 12 0 0 0 16.4167 l6.4167
3 88 2.0899 12 0 0 0 17.8205 17.7500

A group of cross-sectional units who are observed over time



Example: Wage equation

EXAMPLE 15.1 | Revisited

Forexample. in Table 15.1. the outcome variable of interest is
v, = LWAGE, = ln[:WAGE“} Explanatory variables include

Xy; = EXPER,, x5, = TENURE,. x,, =SOUTH,, and
xs; = UNION,. These explanatory variables vary across
both individual and time. For the indicator variables
SOUTH and UNION, it means that at least some indi-
viduals moved into or out of the SOUTH during the
1982-1988 period, and at least some workers joined or quit
a UNION over those years. The variables w; = EDUC;

and w,; = BLACK, ED not change |for the 716 individuals
in our sample over the ycars 1982-1988. Two unob-
served time-invariant variables are w;; = ABILITY,
and u,; = PERSEVERANCE,. | Unobserved| time-specific
variables might be m; = UNEMPLOYMENT RATE, or
m,, = INFLATION RATE,. Note that it is possible to have
observable variables that change over time but not across
individuals, like an indicator variable D82, = 1 if the year is
1982 and D82, = 0 otherwise.

Yie = By 4 Paxyy + 0wy +‘(”i + ¢, )|= By + Poxay + oWy + v




The panel data regression function

Yie = Br 4 Boxgi + aywy; + (4 + €5 ) = By + Boxgy, + xywy; + v

Because the regression error in the equation has two components, one for the

individual and one for the regression, it is often called an error components

model.

Using panel data we must consider dynamic, time related effects and model

assumptions should take them into account.

The model conditions on the unobservable time-invariant error u;.



The panel data regression function

* When using panel data, it is important to separate out this
component (unobservable time-invariant error u;) of the
random error term from other components if we can argue
that the factors causing the individual differences are
unchanging over time.

* We consider estimation procedures that employ a
transformation to eliminate the individual heterogeneity from
the estimation equation and thus solve the common
endogeneity problem.




Estimation procedures

B The estimators we will consider are

1. The difference estimator
2. The within estimator

3. The fixed effects estimator



The difference estimator: T=2

Each individual in two different time periods, t=1and t = 2 are:
Vi1 = B1 + BaXzi1 + aywy; +u; + €4 (15.7a)
Viz = B1 + Baxzip + aywy; + u; + €55 (15.7b)
Subtracting (15.7a) from (15.7b) creates a new equation

(Viz — Yi1) = Ba(x2i2 — x241) + (€52 — €j1)

> Ay; = BAx;, + Ae;



The difference estimator: T=2

* In basic panel data analysis, the difference estimator is usually not used.
We introduce it to illustrate that we can eliminate the unobserved
heterogeneity through a transformation. In practice, we usually use the
equivalent, but more flexible, fixed effects estimator.

« Example 15.2 (p. 641) Using T = 2 Differenced Observations for a
Production Function

* The difference estimator is consistent when unobserved heterogeneity is
correlated with the explanatory variables, but the OLS estimator is not.
Given the substantial difference in the estimates we might suspect that
the OLS estimates are unreliable.




The within estimator: T=2

B The advantage of the within transformation is that it generalizes
nicely to situations when we have more than T = 2 time
observations on each individual.

® The time-average of the equations, (15.7a) and (15.7b):

T

1

EZ()’it = f1 + Baxzis + aywy; +u; +ejt)
t=1

* Instead of first-differenced variables, we have differences from the
variable means. The time-invariant terms subtract out, including the
unobservable heterogeneity term.



The within estimator: T=2

® The time-averaged model fori=1,...,,Nis

yi. = P1 + PaXy + aywy; +u; + €.

® The within transformation subtracts (15.10) from the original
observations to obtain

Vie — Vi = Ba(X2ie — X2;) + (€5 — €;)

B The within-transformed model is

Vie. = P2Xoir + €jt



The within estimator: T=2

 EXAMPLE 15.4 Using the Within Transformation with T = 2
Observations for a Production Function

* Notice that the within estimates are exactly the same as the
first-difference estimates in Example 15.2.




The within estimator: T>2

Suppose that we have T observations on each individual

Vie = B1 + B2X2ie +aqwy; tu; + e, i=1,..,N, t=1,..,T
Averaging over all time observations:

1

;217;=1(Yit = P1 + Bax2ic + aywy; + U + €j)

> yi. = P+ PaXy +aywy; +u; + €.
Vie — Vi. = P2 (X2 — X3;) + (€5 — €;)

Vie. = P2Xoir + €jt



The least squares dummy variable model

It turns out that the within estimator is numerically equivalent to
another estimator that has long been used in empirical work and
that is logically appealing.

Unobserved heterogeneity is controlled for by including in the
panel data regression

11=1 11=2 11=3
Dli — . D2i — . D3i — .

0 otherwise 0 otherwise 0 otherwise
Vit = B11D1i + B12D3; + -+ + BinDyi + Bax2ie + - + B Xkir + €it

This is called the fixed effects model, or sometimes the least
squares dummy variable model.
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The least squares dummy variable model

m Testing for individual differences in the fixed effects model is

a test of the joint hypothesis
Hy:B11 = P12 = P13 = = = Pi,n—1 = Pin and

H,:the [(1; are not all equal
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Remarks

B To summarize, the within estimator, the fixed effects estimator and the least
squares dummy variable estimator are all names for the same estimators of

B2,..., BKin (15.17). In practice, no choice is required. Use the computer
software option for “fixed effects” estimation.

®m Consider now the fixed effects estimation procedure that employs
the “within” transformation

®  The within transformation removes the unobserved heterogeneity so
that only the idiosyncratic error ¢;; remains

B |t is possible that within the cluster of observations defining each

individual cross-sectional unit there remains serial correlation and/or
heteroscedasticity

m EXAMPLE 15.8 Using Fixed Effects and Cluster-Robust Standard Errors for
a Production Function (p. 651)
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The random effects estimator

® Panel data applications fall into one of two types:

1. The first type of application is when the unobserved heterogeneity term u; is
correlated with one or more of the explanatory variables = fixed effects model
or OLS estimators (need to test the joint significance of fixed effects)

2. The second type of application is when the unobserved heterogeneity term u;
is not correlated with any of the explanatory variables = random effects model
or OLS estimators (need to test the presence of random effects)

® The panel data regression model with unobserved heterogeneity
(included in the error term; and u;are random and called the
random effects) is sometimes called the random effects model.
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The random effects estimator

® There are two random errors in the panel data model we
have been using

® 14; , accounts for time invariant unobserved heterogeneity
across individuals

m e, isthe “usual” regression error that varies across
individuals and time

Combining the two homoskedasticity assumptions and the
statistical independence of u; and e;;, we have: (15.26)

var(v;;) = E(v2) = 62 = 02+ 0}
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The random effects estimator

B The minimum variance, efficient, estimator for the random effects
model is a GLS estimator.

® The FGLS estimator is called the random effects estimator.
» A key feature of the random effects model is that time-invariant

variables are not eliminated (different from the fixed effects model
where time-invariant variables are eliminated).

> EXAMPLE 15.9 Random Effects Estimation of a Production Function

» =» The cluster-robust standard errors for the random effects estimates
are slightly larger than the conventional FGLS standard errors, suggesting
that there may be serial correlation and/or heteroskedasticity in the
overall error component e,.
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The random effects estimator

TABLE 15.5 Example 15.10: Fixed and Random Effects Estimates of a Wage Equation

Fixed Effects Random Effects
Variable Coefficient Std. Error* t-Value Coefficient Std. Error* t-Value
C 1.4500 0.0401 36.12 0.5339 0.0799 6.68
EDUC 0.0733 0.00353 13.74
EXPER 0.0411 0.0066 6.21 0.0436 0.0064 6.86
EXPER? —0.0004 0.0003 —1.50 —0.0006 0.0003 -2.14
TENURE 0.0139 0.0033 4.24 0.0142 0.0032 4.47
TENURE- —0.0009 0.0002 —4.35 —0.0008 0.0002 —3.88
BLACK —0.1167 0.0302 —-3.86
SOUTH —0.0163 0.0361 —0.45 —0.0818 0.0224 —3.65
UNION 0.0637 0.0143 4.47 0.0802 0.0132 6.07

*Conventional standard errors.
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Testing for random effects

®m \We can test for the presence of heterogeneity by testing the null

hypothesis H,: 6%, = 0 against the alternative hypothesis H,: 62, >0

® |f the null hypothesis is rejected we conclude that there are random

individual differences among sample members and that the random

effects model might be appropriate

m if we fail to reject the null hypothesis, then we have no evidence to

conclude that random effects are present
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Testing for random effects

® The Lagrange multiplier (LM) principle for test construction is

very convenient in this case

m |f the null hypothesis is true, then u, = 0 and the random
effects model reduces to the usual linear regression model

B The test statistic is based on the OLS residuals

it = Yit — by — byxpi — agwy;



Testing for random effects

We reject H, at significance level a and accept the alternative H,: 62, > O:

if LM >z, ., where z,,_, is the 100(1-a) percentile of the standard normal

distribution

 This critical value is 1.645 if o = 0.05 and 2.326 if a = 0.01

EXAMPLE 15.11 | Testing for Random Effects in a Production Function

we reject the null hypothesis Hy: o> = 0 and conclude that

Using the N = 1000 Chinese chemical firms data from chemi-
Gi > (: there is evidence of unobserved heterogeneity, or ran-

cal3, the value of the test statistic in (15.35) is LM = 44.0637.
This is far greater than the o = 0.01 critical value 2.326, so  dom effects. in the data.
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A Hausman test for endogeneity in the random
effects model
® The problem of endogenous regressors is common in random

effects models because the individual-specific error component v,
may well be correlated with some of the explanatory variables

®  Such a correlation will cause the random effects estimator to be
inconsistent

® To check for any correlation between the error component u; and
the regressors in a random effects model, we can use a Hausman
test

® The test compares the coefficient estimates from the random
effects model to those from the fixed effects model
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Hausman test

EXAMPLE 15.13 | Testing for Endogenous Random Effects in a Wage Equation

Using the Hausman contrast test to compare the fixed
and random effects estimates of the wage equation in
Table 15.5 is limited to the six common coefficients. Using
the individual coefficient t-tests you will find significant
differences at the 5% level for the coefficients of TENURE?,
SOUTH, and UNION. The joint test for the equality of the

common coefficients yields a y*-statistic value of 20.73 while

x%ﬂ.ﬂiﬁl = 12.592. Thus both approaches lead us to conclu

de

that there is correlation between the individual heterogeneity

term and _onc or more of the explanatory variables g

nd

thereford the random effects estimator should not be used)

24




The Hausman-Taylor estimator

The outcome from our comparison of the fixed and random effects
estimates of the wage equation in Example 15.10 poses a dilemma.
Correlation between the explanatory variables and the random
effects means the random effects estimator will be inconsistent. We
can overcome the inconsistency problem by using the fixed effects
estimator, but doing so means we can no longer estimate the
effects of the time-invariant variables EDUC and BLACK. The wage
return for an extra year of education, and whether or not there is
wage discrimination on the basis of race, might be two important
guestions that we would like to answer.

The Hausman—Taylor estimator is an instrumental variables
estimator applied to the random effects model, to overcome the
problem of inconsistency caused by correlation between the
random effects (the individual-specific error component u;) and
some of the explanatory variables.
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Steps of analysis

* Test for any correlation between the error component u, and
the regressors in the regression model using Hausman test

* Rejecting the null =» choose fixed effects model = test for
joint significance of fixed effects (F test)

* Fail to reject the null = choose random effects model =» test
for the presence of random effects (LM test)



