
Summary of Chapter 15
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Panel data from NLS

A group of cross-sectional units who are observed over time

Short and wide
T=5, N=716
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Example: Wage equation
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The panel data regression function

Because the regression error in the equation has two components, one for the 

individual and one for the regression, it is often called an error components 

model. 

Using panel data we must consider dynamic, time related effects and model 

assumptions should take them into account.

The model conditions on the unobservable time-invariant error 𝑢𝑖.
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The panel data regression function

• When using panel data, it is important to separate out this 
component (unobservable time-invariant error 𝑢𝑖) of the 
random error term from other components if we can argue 
that the factors causing the individual differences are 
unchanging over time.

• We consider estimation procedures that employ a 
transformation to eliminate the individual heterogeneity from 
the estimation equation and thus solve the common 
endogeneity problem.
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Estimation procedures

 The estimators we will consider are

1. The difference estimator

2. The within estimator

3. The fixed effects estimator
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The difference estimator: T=2

 Each individual in two different time periods, t = 1 and t = 2 are: 

 𝑦𝑖1 = 𝛽1 + 𝛽2𝑥2𝑖1 + 𝛼1𝑤1𝑖 + 𝑢𝑖 + 𝑒𝑖1 (15.7a)

 𝑦𝑖2 = 𝛽1 + 𝛽2𝑥2𝑖2 + 𝛼1𝑤1𝑖 + 𝑢𝑖 + 𝑒𝑖2 (15.7b)

 Subtracting (15.7a) from (15.7b) creates a new equation

 (𝑦𝑖2 − 𝑦𝑖1) = 𝛽2(𝑥2𝑖2 − 𝑥2𝑖1) + (𝑒𝑖2 − 𝑒𝑖1)

  𝛥𝑦𝑖 = 𝛽2𝛥𝑥𝑖2 + 𝛥𝑒𝑖
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The difference estimator: T=2

• In basic panel data analysis, the difference estimator is usually not used. 
We introduce it to illustrate that we can eliminate the unobserved 
heterogeneity through a transformation. In practice, we usually use the 
equivalent, but more flexible, fixed effects estimator. 

• Example 15.2 (p. 641) Using T = 2 Differenced Observations for a 
Production Function

• The difference estimator is consistent when unobserved heterogeneity is 
correlated with the explanatory variables, but the OLS estimator is not. 
Given the substantial difference in the estimates we might suspect that 
the OLS estimates are unreliable.

8



The within estimator: T=2

 The advantage of the within transformation is that it generalizes
nicely to situations when we have more than T = 2 time 
observations on each individual.

 The time-average of the equations, (15.7a) and (15.7b):

• Instead of first-differenced variables, we have differences from the 
variable means. The time-invariant terms subtract out, including the 
unobservable heterogeneity term.

1

2
෍

𝑡=1

𝑇

𝑦𝑖𝑡 = 𝛽1 + 𝛽2𝑥2𝑖𝑡 + 𝛼1𝑤1𝑖 + 𝑢𝑖 + 𝑒𝑖𝑡
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The within estimator: T=2

 The time-averaged model for i = 1,…,N is

 The within transformation subtracts (15.10) from the original 
observations to obtain

 The within-transformed model is

ത𝑦𝑖. = 𝛽1 + 𝛽2 ҧ𝑥2𝑖. + 𝛼1𝑤1𝑖 + 𝑢𝑖 + ҧ𝑒𝑖.

)𝑦𝑖𝑡 − ത𝑦𝑖. = 𝛽2(𝑥2𝑖𝑡 − ҧ𝑥2𝑖.) + (𝑒𝑖𝑡 − ҧ𝑒𝑖.

෤𝑦𝑖𝑡. = 𝛽2 ෤𝑥2𝑖𝑡 + ǁ𝑒𝑖𝑡
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The within estimator: T=2

• EXAMPLE 15.4 Using the Within Transformation with T = 2 
Observations for a Production Function

• Notice that the within estimates are exactly the same as the 
first-difference estimates in Example 15.2.
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The within estimator: T>2

 Suppose that we have T observations on each individual

 𝑦𝑖𝑡 = 𝛽1 + 𝛽2𝑥2𝑖𝑡 + 𝛼1𝑤1𝑖 + 𝑢𝑖 + 𝑒𝑖𝑡 , 𝑖 = 1,… ,𝑁, 𝑡 = 1, … , 𝑇

 Averaging over all time observations:


1

𝑇
σ𝑡=1
𝑇 𝑦𝑖𝑡 = 𝛽1 + 𝛽2𝑥2𝑖𝑡 + 𝛼1𝑤1𝑖 + 𝑢𝑖 + 𝑒𝑖𝑡

  ത𝑦𝑖. = 𝛽1 + 𝛽2 ҧ𝑥2𝑖. + 𝛼1𝑤1𝑖 + 𝑢𝑖 + ҧ𝑒𝑖.

)𝑦𝑖𝑡 − ത𝑦𝑖. = 𝛽2(𝑥2𝑖𝑡 − ҧ𝑥2𝑖.) + (𝑒𝑖𝑡 − ҧ𝑒𝑖.

෤𝑦𝑖𝑡. = 𝛽2 ෤𝑥2𝑖𝑡 + ǁ𝑒𝑖𝑡

12



The least squares dummy variable model

• It turns out that the within estimator is numerically equivalent to 
another estimator that has long been used in empirical work and 
that is logically appealing.

• Unobserved heterogeneity is controlled for by including in the 
panel data regression

• 𝑦𝑖𝑡 = 𝛽11𝐷1𝑖 + 𝛽12𝐷2𝑖 +⋯+ 𝛽1𝑁𝐷𝑁𝑖 + 𝛽2𝑥2𝑖𝑡 +⋯+ 𝛽𝐾𝑥𝐾𝑖𝑡 + 𝑒𝑖𝑡

• This is called the fixed effects model, or sometimes the least 
squares dummy variable model.

1 2 3

1 1 1 2 1 3
      

0 otherwise 0 otherwise 0 otherwise
i i i

i i i
D D D

    
    
  
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The least squares dummy variable model

 Testing for individual differences in the fixed effects model is 

a test of the joint hypothesis

𝐻0: 𝛽11 = 𝛽12 = 𝛽13 = ⋯ = 𝛽1,𝑁−1 = 𝛽1𝑁 and  

𝐻1: the 𝛽1𝑖 are not all equal

14



Remarks

 To summarize, the within estimator, the fixed effects estimator and the least 
squares dummy variable estimator are all names for the same estimators of 
β2,…, βK in (15.17). In practice, no choice is required. Use the computer 
software option for “fixed effects” estimation.

 Consider now the fixed effects estimation procedure that employs 
the “within” transformation 

 The within transformation removes the unobserved heterogeneity so 
that only the idiosyncratic error 𝑒𝑖𝑡 remains

 It is possible that within the cluster of observations defining each 
individual cross-sectional unit there remains serial correlation and/or 
heteroscedasticity

 EXAMPLE 15.8 Using Fixed Effects and Cluster-Robust Standard Errors for 
a Production Function (p. 651)
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The random effects estimator

 Panel data applications fall into one of two types:

1. The first type of application is when the unobserved heterogeneity term 𝑢𝑖 is 
correlated with one or more of the explanatory variables fixed effects model
or OLS estimators (need to test the joint significance of fixed effects)

2. The second type of application is when the unobserved heterogeneity term 𝑢𝑖
is not correlated with any of the explanatory variables random effects model 
or OLS estimators (need to test the presence of random effects)

 The panel data regression model with unobserved heterogeneity
(included in the error term; and ui are random and called the 
random effects) is sometimes called the random effects model.
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The random effects estimator

 There are two random errors in the panel data model we 
have been using

 𝑢𝑖 , accounts for time invariant unobserved heterogeneity

across individuals

 𝑒𝑖𝑡, is the “usual” regression error that varies across 

individuals and time

• Combining the two homoskedasticity assumptions and the 
statistical independence of 𝑢𝑖 and 𝑒𝑖𝑡, we have: (15.26)

var 𝑣𝑖𝑡 = E 𝑣𝑖𝑡
2 = 𝜎𝑣

2 = 𝜎𝑢
2+ 𝜎𝑒

2
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The random effects estimator

 The minimum variance, efficient, estimator for the random effects 
model is a GLS estimator.

 The FGLS estimator is called the random effects estimator.

 A key feature of the random effects model is that time-invariant 
variables are not eliminated (different from the fixed effects model 
where time-invariant variables are eliminated).

 EXAMPLE 15.9 Random Effects Estimation of a Production Function 

  The cluster-robust standard errors for the random effects estimates 
are slightly larger than the conventional FGLS standard errors, suggesting 
that there may be serial correlation and/or heteroskedasticity in the 
overall error component eit.
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The random effects estimator
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Testing for random effects

 We can test for the presence of heterogeneity by testing the null 

hypothesis H0: σ2
u = 0 against the alternative hypothesis H1: σ2

u > 0

 If the null hypothesis is rejected we conclude that there are random 

individual differences among sample members and that the random 

effects model might be appropriate 

 if we fail to reject the null hypothesis, then we have no evidence to 

conclude that random effects are present
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Testing for random effects

 The Lagrange multiplier (LM) principle for test construction is 

very convenient in this case

 If the null hypothesis is true, then ui = 0 and the random 

effects model reduces to the usual linear regression model

 The test statistic is based on the OLS residuals

Ƹ𝑒𝑖𝑡 = 𝑦𝑖𝑡 − 𝑏1 − 𝑏2𝑥2𝑖𝑡 − 𝑎1𝑤1𝑖
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Testing for random effects

• We reject H0 at significance level α and accept the alternative H1: σ2
u > 0:

• if LM > z(1-α), where z(1-α) is the 100(1–α) percentile of the standard normal 
distribution

• This critical value is 1.645 if α = 0.05 and 2.326 if α = 0.01
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A Hausman test for endogeneity in the random 
effects model

 The problem of endogenous regressors is common in random 
effects models because the individual-specific error component ui

may well be correlated with some of the explanatory variables

 Such a correlation will cause the random effects estimator to be 
inconsistent

 To check for any correlation between the error component ui and 
the regressors in a random effects model, we can use a Hausman
test

 The test compares the coefficient estimates from the random 
effects model to those from the fixed effects model
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Hausman test
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The Hausman-Taylor estimator

• The outcome from our comparison of the fixed and random effects 
estimates of the wage equation in Example 15.10 poses a dilemma. 
Correlation between the explanatory variables and the random 
effects means the random effects estimator will be inconsistent. We 
can overcome the inconsistency problem by using the fixed effects 
estimator, but doing so means we can no longer estimate the 
effects of the time-invariant variables EDUC and BLACK. The wage 
return for an extra year of education, and whether or not there is 
wage discrimination on the basis of race, might be two important 
questions that we would like to answer.

• The Hausman–Taylor estimator is an instrumental variables 
estimator applied to the random effects model, to overcome the 
problem of inconsistency caused by correlation between the 
random effects (the individual-specific error component ui) and 
some of the explanatory variables.

25



Steps of analysis

• Test for any correlation between the error component ui and 
the regressors in the regression model using Hausman test

• Rejecting the null  choose fixed effects model  test for 
joint significance of fixed effects (F test)

• Fail to reject the null  choose random effects model  test 
for the presence of random effects (LM test)
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