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Regression with Time-Series Data: 
Nonstationary Variables 

Principles of Econometrics, 5e 

 The aim is to describe how to estimate regression models involving nonstationary 

variables 

 The first step is to examine the time-series concepts of stationarity (and 

nonstationarity) and how we distinguish between them.  

 Cointegration is another important related concept that has a bearing on our 

choice of a regression model 
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12.1 Stationary and Nonstationary 
Variables 1 of 3  

Principles of Econometrics, 5e 

 The change in a variable is an important concept 

 The change in a variable yt, also known as its first difference, is given by Δyt = yt 

– yt-1. 

 Δyt is the change in the value of the variable y from period t - 1 to period t 

 Observe how the GDP variable displays upward trending behavior, while the other 

series “wander up and down” 
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FIGURE 12.1 U.S. Economic Time 
Series 1 of 2 

Principles of Econometrics, 5e 5 Regression with Time-Series Data: Nonstationary Variables 



FIGURE 12.1 U.S. Economic Time 
Series 2 of 2 
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12.1 Stationary and Nonstationary 
Variables 2 of 3 

Principles of Econometrics, 5e 

 Recall that a stationary time series yt  has mean and variance that are constant over 

time 

 and that the covariance between two values from the series depends only on the 

length of time separating the two values 

 and not on the actual times at which the variables are observed 
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12.1 Stationary and Nonstationary 
Variables 3 of 3 

Principles of Econometrics, 5e 

 That is: 

 (12.1a) 

 (12.1b) 

 (12.1c) 

 Another characteristic of nonstationary variables is that their sample 

autocorrelations remain large at long lags 

 The sample autocorrelations of nonstationary series exhibit strong dependence 
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Table 12.1 Sample Means of Time 
Series Shown in Figure 12.1 
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FIGURE 12.2 Correlograms for GDP 
and the change in GDP 
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12.1.1 Trend Stationary Variables 
1 of 3 

Principles of Econometrics, 5e 

 Nonstationary variables that wander up and down, trending in one direction and then 

the other, are said to possess a stochastic trend 

 Definite trends, upward or downward, can be attributable to a stochastic trend or a 

deterministic trend 

 Variables that are stationary after “subtracting out” a deterministic trend are called 

trend stationary 

 Consider the model: 
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(12.2) 𝑦𝑡 = 𝑐1 + 𝑐2𝑡 + 𝑢𝑡 



12.1.1 Trend Stationary Variables 
 2 of 3 

Principles of Econometrics, 5e 

 If we focus just on the trend and assume any change in the error is zero then the 

coefficient 𝑐2 gives the change in y from a one period to the next 

 Since fluctuations are given by changes in the error term 

 (12.3) 

 𝑦𝑡 is trend stationary if 𝑢𝑡 is stationary 

 use least squares to find estimates 𝑐 1 and 𝑐 2 

 (12.4) 
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𝑢𝑡 = 𝑦𝑡 − (𝑐1 + 𝑐2𝑡  

𝑢 𝑡 = 𝑦𝑡 − (𝑐 1 + 𝑐 2𝑡  



12.1.1 Trend Stationary Variables 
 3 of 3 

Principles of Econometrics, 5e 

 Another popular trend is one where, on average, a variable is growing at a constant 

percentage rate  

 A model with this property, with an error term included, is 

 (12.9) 

 In this case 

 the deterministic trend for 𝑦𝑡 is exp(𝑎1 − 𝑎2𝑡) , and ln(𝑦𝑡) will be trend 

stationary if 𝑢𝑡 is stationary 
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ln(𝑦𝑡 = 𝑎1 − 𝑎2𝑡 + 𝑢𝑡 



12.1.2 The First-order Autoregressive 
Model 1 of 5 

Principles of Econometrics, 5e 

 To develop a framework for modeling nonstationary variables that possess a 

stochastic trend, we begin by revising the first-order autoregressive AR(1) model 

 The econometric model generating a time-series variable yt is called a stochastic or 

random process  

 A sample of observed yt values is called a particular realization of the stochastic 

process 

 It is one of many possible paths that the stochastic process could have taken 
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12.1.2 The First-order Autoregressive 
Model 2 of 5 

Principles of Econometrics, 5e 

 The autoregressive model of order one, the AR(1) model, is a useful univariate time 

series model for explaining the difference between stationary and nonstationary 

series: 

 (12.12) 

 The errors vt are independent, with zero mean and constant variance     , and may 

be normally distributed 

 The errors are sometimes known as ‘‘shocks’’ or ‘‘innovations’’ 

15 Regression with Time-Series Data: Nonstationary Variables 

𝑦𝑡 = 𝜌𝑦𝑡−1 + 𝑣𝑡 , |𝜌| < 1 

σ𝑣
2 



FIGURE 12.4 Time-series models 
1 of 2 
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FIGURE 12.4 Time-series models 
2 of 2 
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12.1.2 The First-order Autoregressive 
Model 3 of 5 

Principles of Econometrics, 5e 

 The value ‘‘zero’’ is the constant mean of the series, and it can be determined by 

doing some algebra known as recursive substitution 

 Consider the value of y at time t = 1, then its value at time t = 2 and so on 

 These values are: 
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12.1.2 The First-order Autoregressive 
Model 4 of 5 

Principles of Econometrics, 5e 

 The mean of yt is: 

 

 Real-world data rarely have a zero mean  

 We can introduce a nonzero mean μ as: 

 

 Or 

 (12.13) 

19 Regression with Time-Series Data: Nonstationary Variables 

𝐸 𝑦𝑡 = 𝐸 𝑣𝑡 + 𝜌𝑣𝑡−1 + 𝜌2𝑣𝑡−2 + ⋯ = 0 

(𝑦𝑡 − 𝜇 = 𝜌(𝑦𝑡−1 − 𝜇 + 𝑣𝑡 

𝑦𝑡 = 𝛼 + 𝜌 𝑦𝑡−1 + 𝑣𝑡,   |𝜌| < 1 



12.1.2 The First-order Autoregressive 
Model 5 of 5 

Principles of Econometrics, 5e 

 An example of a time series that follows this model, with α = 1 and ρ = 0.7: 

 

 An extension to (12.12) is to consider an AR(1) model fluctuating around a linear 

trend: (μ + δt) 

 Let the ‘‘de-trended’’ series (yt -μ - δt) behave like an autoregressive model: 

 

 Or 
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𝐸(𝑦𝑡 = 𝜇 = 𝛼 ( 1 − 𝜌 = 1 ( 1 − 0.7 = 3.33 

(𝑦𝑡 − 𝜇 − 𝛿𝑡 = 𝜌[𝑦𝑡−1 − 𝜇 − 𝛿(𝑡 − 1 ] + 𝑣𝑡,     |𝜌| < 1   

(12.4) 𝑦𝑡 = 𝛼 + 𝜌𝑦𝑡−1 + 𝜆𝑡 + 𝑣𝑡 



12.1.3 Random Walk Models 1 of 6 

Principles of Econometrics, 5e 

 Consider the special case of ρ = 1: 

 (12.15)  

 This model is known as the random walk model 

 These time series are called random walks because they appear to wander 

slowly upward or downward with no real pattern 

 the values of sample means calculated from subsamples of observations will be 

dependent on the sample period 

 This is a characteristic of nonstationary series 
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𝑦𝑡 = 𝑦𝑡−1 + 𝑣𝑡 



12.1.3 Random Walk Models 2 of 6 

Principles of Econometrics, 5e 

 We can understand the ‘‘wandering’’ by recursive substitution: 

 

 

 

 

 

 The random walk model contains an initial value 𝑦0  
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12.1.3 Random Walk Models 3 of 6 

Principles of Econometrics, 5e 

 A The term                 is often called the stochastic trend 

 This term arises because a stochastic component vt is added for each time t, and 

because it causes the time series to trend in unpredictable directions 

 Recognizing that the vt are independent, taking the expectation and the variance of yt 

yields, for a fixed initial value y0: 

 

 The random walk has a mean equal to its initial value and a variance that 

increases over time, eventually becoming infinite 
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𝐸(𝑦𝑡 = 𝑦0 + 𝐸(𝑣1 + 𝑣2+. . . +𝑣𝑡 = 𝑦0 

var(𝑦𝑡 = var(𝑣1 + 𝑣2+. . . +𝑣𝑡 = 𝑡σ𝑣
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12.1.3 Random Walk Models 4 of 6 

Principles of Econometrics, 5e 

 Another nonstationary model is obtained by adding a constant term:  

 (12.16) 

 This model is known as the random walk with drift 

  A better understanding is obtained by applying recursive substitution: 

 

24 Regression with Time-Series Data: Nonstationary Variables 

𝑦𝑡 = 𝛿 + 𝑦𝑡−1 + 𝑣𝑡 
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12.1.3 Random Walk Models 5 of 6 

Principles of Econometrics, 5e 

 The term tδ a deterministic trend component 

 It is called a deterministic trend because a fixed value δ is added for each time t  

 The variable y wanders up and down as well as increases by a fixed amount at 

each time t 

 The mean and variance of yt are: 
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𝐸(𝑦𝑡 = 𝑡δ + 𝑦0 + 𝐸(𝑣1 + 𝑣2 + 𝑣3+. . . +𝑣𝑡 = 𝑡δ + 𝑦0 

var(𝑦𝑡 = var(𝑣1 + 𝑣2 + 𝑣3+. . . +𝑣𝑡 = 𝑡𝜎𝑣
2 



12.1.3 Random Walk Models 6 of 6 

Principles of Econometrics, 5e 

 We can extend the random walk model even further by adding a time trend: 

 (12.17) 

 The addition of a time-trend variable t strengthens the trend behavior: 

 

 

 

 where we used: 
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𝑦𝑡 = 𝛼 + 𝛿𝑡 + 𝑦𝑡−1 + 𝑣𝑡 
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1 + 2 + 3 + ⋯+ 𝑡 = 𝑡 𝑡 + 1 2  



12.2 Consequences of Stochastic 
Trends 

Principles of Econometrics, 5e 

 Now we consider the implications of estimating regressions involving variables with 

stochastic trends 

 A consequence of proceeding with the regression involving nonstationary variables 

with stochastic trends is that OLS estimates no longer have approximate normal 

distributions in large samples. 

 One particular hazard is that two totally independent random walks can appear to 

have a strong linear relationship when none exists 

 Outcomes of this nature have been given the name spurious regressions 

27 Regression with Time-Series Data: Nonstationary Variables 



EXAMPLE 12.3 A Regression With 
Two Random Walks 1 of 3 

Principles of Econometrics, 5e 

 Consider two independent random walks: 

 

 where 𝑣1𝑡 and 𝑣2𝑡 are independent N(0, 1) random error 

 These series were generated independently and, in truth, have no relation to one 

another 

 Yet when plotted we see a positive relationship between them 
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𝑟𝑤1:   𝑦𝑡 = 𝑦𝑡−1 + 𝑣1𝑡

𝑟𝑤2:   𝑥𝑡 = 𝑥𝑡−1 + 𝑣2𝑡
 



FIGURE 12.5 Time series and scatter 
plot of two random walk variables 
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EXAMPLE 12.3 A Regression With 
Two Random Walks 2 of 3 

Principles of Econometrics, 5e 

 A simple regression of series one (rw1) on series two (rw2) yields: 

 

 And that the estimated slope is significantly different from zero 

 the t-statistic is huge 

 These results are completely meaningless, or spurious  

 The apparent significance of the relationship is false 
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EXAMPLE 12.3 A Regression With 
Two Random Walks 3 of 3 

Principles of Econometrics, 5e 

 When nonstationary time series are used in a regression model, the results may 

spuriously indicate a significant relationship when there is none 

 In these cases the least squares estimator and least squares predictor do not have 

their usual properties, and t-statistics are not reliable 

 Since many macroeconomic time series are nonstationary, it is particularly 

important to take care when estimating regressions with macroeconomic 

variables 
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12.3 Unit Root Tests for Stationarity 

Principles of Econometrics, 5e 

 There are many tests for determining whether a series is stationary or 

nonstationary 

 The most popular is the Dickey–Fuller test 
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12.3.1 Unit Roots 1 of 2  

Principles of Econometrics, 5e 

 The AR(1) process yt = ρyt-1 + vt is stationary when |ρ| < 1 

 But, when ρ = 1, it becomes the nonstationary random walk process 

 Consider the more general AR(p) model: 𝑦𝑡 = 𝛼 + 𝜃1𝑦𝑡−1 + 𝜃2𝑦𝑡−2 + ⋯+

𝜃𝑝𝑦𝑡−𝑝 + 𝑣𝑡 In this model, 𝑦𝑡 is stationary if the roots of the polynomial equation 

 (12.18) 

 are greater than one in absolute value 
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𝜑(𝑧 = 1 − 𝜃1𝑧 − 𝜃1𝑧
2 − ⋯− 𝜃𝑝𝑧

𝑝 



12.3.1 Unit Roots 2 of 2  

Principles of Econometrics, 5e 

 The roots are the values of z that satisfy the equation φ(z) = 0 

 The condition for stationarity is |z| > 1, which is the same as |𝜃1|  < 1 

 If, in (12.18), one of the roots is equal to one, then 𝑦𝑡 is said to have a unit root 

 In higher-order AR models, the conditions for a unit root and for stationarity, written 

in terms of the parameters 𝜃1, 𝜃2, … , 𝜃p, are more complicated  
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12.3.2 Dickey–Fuller Tests 

Principles of Econometrics, 5e 

 There are three variations of the Dickey–Fuller test 

1. The alternative hypothesis is that 𝑦𝑡 is stationary around a nonzero mean 

 The test equation includes an intercept but no trend term 

2. The alternative hypothesis is that 𝑦𝑡 is stationary around a linear deterministic trend 

 the test equation includes both intercept and trend terms 

3. The alternative hypothesis is that 𝑦𝑡 is stationary around a zero mean 

 Both intercept and trend are excluded from the test equation in this case 
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12.3.3 Dickey–Fuller Test with 
Intercept and No Trend 1 of 4 

Principles of Econometrics, 5e 

 The nonstationary random walk is set up as the null hypothesis 

 (12.19) 

 The stationary AR(1) process becomes the alternative hypothesis 

 (12.20) 

 testing 𝐻0∶ρ = 1 against the alternative 𝐻1 ∶|ρ| < 1, or simply 𝐻1 ∶ρ < 1 

 This one-sided (left tail) test  is put into a more convenient form by subtracting 

𝑦𝑡−1 from both sides of (12.20) 
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𝐻0: 𝑦𝑡 =  𝑦𝑡−1 + 𝑣𝑡 

𝐻1: 𝑦𝑡 =  𝛼 + 𝜌𝑦𝑡−1 + 𝑣𝑡 |𝜌| < 1 



12.3.3 Dickey–Fuller Test with 
Intercept and No Trend 2 of 4 

Principles of Econometrics, 5e 

 (12.21): 

 

 The hypotheses are: 

 (12.22) 

 Rejection of the null hypothesis that γ = 0 implies the series is stationary 

 A failure to reject 𝐻0 suggests the series could be nonstationary  
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𝑦𝑡 − 𝑦𝑡−1 = 𝛼 + 𝜌𝑦𝑡−1 − 𝑦𝑡−1 + 𝑣𝑡

𝛥𝑦𝑡 = 𝛼 + 𝜌 − 1 𝑦𝑡−1 + 𝑣𝑡

= 𝛼 + 𝛾 𝑦𝑡−1 + 𝑣𝑡

 

𝐻0: 𝜌 = 1  ⇔  𝐻0: 𝛾 = 0
𝐻1: 𝜌 < 1  ⇔  𝐻1: 𝛾 < 0

 



12.3.3 Dickey–Fuller Test with 
Intercept and No Trend 3 of 4 

Principles of Econometrics, 5e 

 To test the hypothesis in (12.22), we estimate the test equation (12.21) by OLS 

 We use a 𝛕 (tau) statistic, and its value must be compared to specially generated 

critical values 

 We reject 𝐻0 ∶γ = 0 if τ ≤ τc 

 To test for higher-order AR process 

 (12.23) 
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𝛥𝑦𝑡 = 𝛼 + 𝛾 𝑦𝑡−1 +  𝑎𝑠𝛥𝑦𝑡−𝑠

𝑝−1

𝑠=1

+ 𝑣𝑡 



12.3.3 Dickey–Fuller Test with 
Intercept and No Trend 4 of 4 

Principles of Econometrics, 5e 

 The test procedure for this case uses (12.23) as the test equation but otherwise 

proceeds just as before 

 The test is referred to as the augmented Dickey–Fuller test 

 Sufficient lags should be included to eliminate autocorrelation in the errors 

 In practice, we always use the augmented Dickey–Fuller test (rather than the 

nonaugmented version) to ensure the errors are uncorrelated 
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12.3.4 Dickey–fuller Test with 
Intercept and Trend 

Principles of Econometrics, 5e 

 The Dickey–Fuller test with intercept and trend is designed to discriminate between 

these two models  

 (12.24) 𝑦𝑡 =  𝛼 + 𝜌𝑦𝑡−1 + 𝜆𝑡 + 𝑣𝑡     |𝜌| < 1 is the alternative hypothesis  

 (12.25) 𝑦𝑡 =  𝛼 + 𝑦𝑡−1 + 𝑣𝑡 becomes the null hypothesis 

 the test equation is obtained by subtracting 𝑦𝑡−1 from both sides of (12.24) and 

adding augmentation terms to obtain 

 (12.26) 
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𝛥𝑦𝑡 = 𝛼 + 𝛾 𝑦𝑡−1 +  𝑎𝑠𝛥𝑦𝑡−𝑠

𝑝−1

𝑠=1

+ 𝑣𝑡 



12.3.5 Dickey–fuller Test with No 
Intercept and No Trend 

Principles of Econometrics, 5e 

 The test equation of a random walk is: 

 (12.27) 

 We test 𝐻0∶γ = 0 against 𝐻1∶γ < 0 

 Most time series measured in terms of their original levels do not have a zero mean. 

However, their first differences 𝛥𝑦𝑡 = 𝑦𝑡 – 𝑦𝑡−1 may turn out to have a zero mean 
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𝛥𝑦𝑡 = 𝛾 𝑦𝑡−1 +  𝑎𝑠𝛥𝑦𝑡−𝑠

𝑝−1

𝑠=1

+ 𝑣𝑡 



12.3.6 Order of Integration 

Principles of Econometrics, 5e 

 Recall that if yt follows a random walk, then γ = 0 and the first difference of yt 

becomes: 

 

 Series like yt, which can be made stationary by taking the first difference, are said to 

be integrated of order one, and denoted as I(1) 

 Stationary series are said to be integrated of order zero, I(0) 

 In general, the order of integration of a series is the minimum number of times it 

must be differenced to make it stationary 

42 Regression with Time-Series Data: Nonstationary Variables 

𝛥𝑦𝑡 = 𝑦𝑡 − 𝑦𝑡−1 = 𝑣𝑡 



12.3.7 Other Unit Root Tests 1 of 2 

Principles of Econometrics, 5e 

 The power of the Dickey–Fuller tests is low in the sense that they often cannot 

distinguish between a highly persistent stationary process and a nonstationary 

process  

 The power of the test also diminishes as deterministic terms constant and trend are 

included in the test equation 

 Here we briefly mention other tests that have been developed with a view to 

improving the power of the test 
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12.3.7 Other Unit Root Tests 2 of 2 

Principles of Econometrics, 5e 

 The ERS test proposes removing the constant/trend effects from the data and 

performing the unit root test on the residuals 

 The PP test adopts a nonparametric approach that assumes a general autoregressive 

moving-average structure and uses spectral methods to estimate the standard error of 

the test correlation 

 the KPSS test specifies a null hypothesis that the series is stationary or trend 

stationary 

 NP tests suggest various modifications of the PP and ERS tests 
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12.4 Cointegration 1 of 3 

Principles of Econometrics, 5e 

 As a general rule, nonstationary time-series variables should not be used in 

regression models to avoid the problem of spurious regression 

 There is an exception to this rule 

 There is an important case when et = yt - β1 - β2xt is a stationary I(0) process 

 In this case yt and xt are said to be cointegrated 

 Cointegration implies that yt and xt share similar stochastic trends, and, since the 

difference et is stationary, they never diverge too far from each other 
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12.4 Cointegration 2 of 3 

Principles of Econometrics, 5e 

 The test for stationarity of the residuals is based on the test equation: 

 (12.28) 

 The regression has no constant term because the mean of the regression residuals is 

zero.  

 We are basing this test upon estimated values of the residuals 

 The proper critical values for a test of cointegration are given in Table 12.4 
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𝛥𝑒 𝑡 = γ𝑒 𝑡−1 + 𝑣𝑡 



Table12.4 Critical Values for the 
Cointegration Test 
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12.4 Cointegration 3 of 3 

Principles of Econometrics, 5e 

 There are three sets of critical values 

  Which set we use depends on whether the residuals 𝑒 𝑡 are derived from: 

 (12.29a) 

 (12.29b) 

 (12.29c) 
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Example 12.8 Are the Federal Funds Rate 
and Bond Rate Cointegrated 1 of 2  

Principles of Econometrics, 5e 

 let us test whether y
𝑡
 = BR𝑡 and x𝑡 = FFR𝑡, are cointegrated 

 The estimated least-squares regression between these variables is 

  (12.30) 

 The unit root test for stationarity in the estimated residuals is: 
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𝐵𝑅 𝑡 = 1.328 + 0.832𝐹𝑡,   𝑅
2 = 0.908

(𝑡       (85.72                        (12.30 
 

𝛥𝑒 𝑡 = −0.0817𝑒 𝑡−1 + 0.223𝛥𝑒 𝑡−1 −  0.177𝛥𝑒 𝑡−1

𝜏 𝑎𝑛𝑑 𝑡  −5.53          6.29                        (−4.90  
 



Example 12.8 Are the Federal Funds Rate 
and Bond Rate Cointegrated 2 of 2  

Principles of Econometrics, 5e 

 The null and alternative hypotheses in the test for cointegration are: 

 

 

 Similar to the one-tail unit root tests, we reject the null hypothesis of no 

cointegration if τ ≤ τc, and we do not reject the null hypothesis that the series are not 

cointegrated if τ > τc 
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12.4.1 The Error Correction Model 
1 of 4 

Principles of Econometrics, 5e 

 Consider a general model that contains lags of y and x 

 Namely, the autoregressive distributed lag (ARDL) model, except the variables are 

nonstationary: 

 

 For simplicity, we shall consider lags up to order one, but the following analysis 

holds for any order of lags 
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𝑦𝑡 = δ + θ1𝑦𝑡−1 + δ0𝑥𝑡 + δ1𝑥𝑡−1 + 𝑣𝑡 



12.4.1 The Error Correction Model 
2 of 4 

Principles of Econometrics, 5e 

 If y and x are cointegrated, it means that there is a long-run relationship between 

them 

 To derive this exact relationship, we set yt = yt-1 = y, xt = xt-1 = x and vt = 0 

 Imposing this concept in the ARDL, we obtain: 

 This can be rewritten in the form: 
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𝑦 1 − θ1 = δ + δ0 + δ1 𝑥 

𝑦 = β1 + β2𝑥 



12.4.1 The Error Correction Model 
3 of 4 

Principles of Econometrics, 5e 

 Add the term -yt-1 to both sides of the equation: 

  

 Add the term – δ0xt-1+ δ0xt-1: 

 

 Manipulating this we get: 

 

 

53 Regression with Time-Series Data: Nonstationary Variables 

𝑦𝑡 − 𝑦𝑡−1 = δ + θ1 − 1 𝑦𝑡−1 + δ0𝑥𝑡 + δ1𝑥𝑡−1 + 𝑣𝑡 

𝛥𝑦𝑡 = δ + θ1 − 1 𝑦𝑡−1 + δ0 𝑥𝑡 − 𝑥𝑡−1 + δ0 + δ1 𝑥𝑡−1 + 𝑣𝑡 
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12.4.1 The Error Correction Model 
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Principles of Econometrics, 5e 

 Using the definitions β1 and β2, we get: 

 (12.31) 

 This is called an error correction equation 

 It allows for an underlying or fundamental link between variables (the long-run 

relationship) 

 It allows for short-run adjustments (i.e. changes) between variables, including 

adjustments to achieve the cointegrating relationship 
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𝛥𝑦𝑡 = −α 𝑦𝑡−1 − β1 − β2𝑥𝑡−1 + δ0𝛥𝑥𝑡 + 𝑣𝑡 



12.5 Regression When There is No 
Cointegration 1 of 2 

Principles of Econometrics, 5e 

 How we convert nonstationary series to stationary series, and the kind of model we 

estimate, depend on whether the variables are difference stationary or trend 

stationary 

 In the former case, we convert the nonstationary series to its stationary 

counterpart by taking first differences  

 In the latter case, we convert the nonstationary series to its stationary counterpart 

by de-trending 
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12.5 Regression When There is No 
Cointegration 2 of 2 

Principles of Econometrics, 5e 

 If 𝑦𝑡 is nonstationary with a stochastic trend and its first difference Δ𝑦𝑡 = 𝑦𝑡 – 𝑦𝑡−1  

is stationary 

 then 𝑦𝑡 is I(1) and first-difference stationary 

 A suitable regression involving only stationary variables is: 

 (12.33) 

 If 𝑦𝑡 and 𝑥𝑡 behave like random walks with drift, then: 

 (12.34) 
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𝛥𝑦𝑡 = 𝜃𝛥𝑦𝑡−1 + 𝛽0𝛥𝑥𝑡 + 𝛽1𝛥𝑥𝑡−1 + 𝑒𝑡 

𝛥𝑦𝑡 = 𝛼 + 𝜃𝛥𝑦𝑡−1 + 𝛽0𝛥𝑥𝑡 + 𝛽1𝛥𝑥𝑡−1 + 𝑒𝑡 



FIGURE 12.7 Regression with time-
series data: nonstationary variables 
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12.6 Summary 

Principles of Econometrics, 5e 

 If variables are stationary, or I(1) and cointegrated, we can estimate a regression 

relationship between the levels of those variables without fear of encountering a 

spurious regression.  

 If the variables are I(1) and not cointegrated, we need to estimate a relationship in 

first differences, with or without the constant term 

 If they are trend stationary, we can either detrend the series first and then perform 

regression analysis with the stationary (detrended) variables or, alternatively, 

estimate a regression relationship that includes a trend variable 
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