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9.1 Introduction 1 of 2 

Principles of Econometrics, 5e 

 When modeling relationships between variables, the nature of the data that have 

been collected has an important bearing on the appropriate choice of an econometric 

model 

 Two features of time-series data to consider: 

1. Time-series observations on a given economic unit, observed over a number of 

time periods, are likely to be correlated 

2. Time-series data have a natural ordering according to time 
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9.1 Introduction 2 of 2 

Principles of Econometrics, 5e 

 There is also the possible existence of dynamic relationships between variables 

 A dynamic relationship is one in which the change in a variable now has an 

impact on that same variable, or other variables, in one or more future time 

periods 

 These effects do not occur instantaneously but are spread, or distributed, over 

future time periods 
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Figure 9.1 The distributed lag effect 
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9.1.1 Modeling Dynamic Relationships 
1 of 4 

Principles of Econometrics, 5e 

 Specify that a dependent variable y is a function of current and past values of an 

explanatory variable x 

     (9.1)  

 Because of the existence of these lagged effects, (9.1) is called a distributed lag 

model 

 The model is called a finite distributed lag model because the effect of x on y cuts 

off after a finite number of periods q 
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𝑦𝑡 = 𝛼 + 𝛽0𝑥𝑡 + 𝛽1𝑥𝑡−1 + 𝛽2𝑥𝑡−2 + ⋯ + 𝛽𝑞𝑥𝑡−𝑞 + 𝑒𝑡 



9.1.1 Modeling Dynamic Relationships 
2 of 4 

Principles of Econometrics, 5e 

 An autoregressive model, or an autoregressive process, is one where a variable y 

depends on past values of itself 

    (9.2) 

 A more general model that includes both finite distributed lag models and 

autoregressive models as special cases is the autoregressive distributed lag model 

    (9.3) 
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𝑦𝑡 = 𝛿 + 𝜃1𝑦𝑡−1 + 𝜃2𝑦𝑡−2 + ⋯ + 𝜃𝑝𝑦𝑡−𝑝 + 𝑒𝑡 

𝑦𝑡 = 𝛿 + 𝜃1𝑦𝑡−1 + ⋯ + 𝜃𝑝𝑦𝑡−𝑝 + 𝛿0𝑥𝑡 + 𝛿1𝑥𝑡−1 + ⋯ + 𝛿𝑞𝑥𝑡−𝑞 + 𝑒𝑡 



9.1.1 Modeling Dynamic Relationships 
3 of 4 

Principles of Econometrics, 5e 

 If we take equation (9.1) and assume that the impact of past, lagged x’s does not cut 

off after q periods but goes back into the infinite past, then we have the infinite 

distributed lag (IDL) model  

    (9.4) 

 Assume that the coefficients βs eventually decline in magnitude with their effect 

becoming negligible at long lags 
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𝑦𝑡 =∝ +𝛽0𝑥𝑡 + 𝛽1𝑥𝑡−1 + 𝛽2𝑥𝑡−2 + 𝛽3𝑥𝑡−3 + ⋯ + 𝑒𝑡 



9.1.1 Modeling Dynamic Relationships 
4 of 4 

Principles of Econometrics, 5e 

 Another way in which lags can enter a model is through the error term. For example, 

if the error et satisfies the assumptions of an AR(1) model, it can be written as 

   (9.10)  

 with the 𝑣𝑡 being uncorrelated. This model means that the random error at time t is 

related to the random error in the previous time period plus a random component 
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𝑒𝑡 = 𝑝𝑒𝑡−1 + 𝑣𝑡 



Table 9.1 Summary of Dynamic 
Models for Stationary Time Series Data 
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9.1.2 Autocorrelations 1 of 5 

Principles of Econometrics, 5e 

 If there is no linear association between the variables, then both the covariance and 

the correlation are zero 

 In any ARDL model where there is a linear relationship between yt and its lags, yt 

must be correlated with lagged values of itself 

 Correlations of this kind are called autocorrelations  

 When a variable exhibits correlation over time, we say it is autocorrelated or 

serially correlated 
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9.1.2 Autocorrelations 2 of 5 

Principles of Econometrics, 5e 

 Sample autocorrelations are obtained using a sample of observations for a finite time 

period, 𝑥1, 𝑥2,…, 𝑥𝑇, to estimate the population autocorrelations 

 To estimate 𝑝1: 
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cov 𝑥𝑡 , 𝑥𝑡−1
 =

1

𝑇 − 1
 𝑥𝑡 − 𝑥 

𝑇

𝑡=2

𝑥𝑡−1 − 𝑥 

var 𝑥𝑡
 =

1

𝑇 − 1
 𝑥𝑡 − 𝑥 2

𝑇

𝑡=1

 



9.1.2 Autocorrelations 3 of 5 

Principles of Econometrics, 5e 

 Making the substitutions, we get: 

 (9.19) 

 More generally, the s-order sample autocorrelation for a series x that gives the 

correlation between observations that are s periods apart is: 

 (9.20)  
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𝑟1 =
 𝑥𝑡 − 𝑥 𝑇

𝑡=2 𝑥𝑡−1 − 𝑥 

 𝑥𝑡 − 𝑥 2𝑇
𝑡=1

 

𝑟𝑠 =
 𝑥𝑡 − 𝑥 𝑇

𝑡=𝑠+1 𝑥𝑡−𝑠 − 𝑥 

 𝑥𝑡 − 𝑥 2𝑇
𝑡=1

 



9.1.2 Autocorrelations 4 of 5 

Principles of Econometrics, 5e 

 It is often useful to test whether a sample autocorrelation is significantly different 

from zero 

 When the null hypothesis 𝐻0 ∶ 𝑝𝑠 = 0 is true, 𝑟𝑠 has an approximate normal 

distribution with mean zero and variance 1∕T. Thus, a suitable test statistic is 

 (9.21)  
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𝑍 =
𝑟𝑠 − 0

1 𝑇 
= 𝑇𝑟𝑠  𝑎  𝑁 0,1  



9.1.2 Autocorrelations 5 of 5 

Principles of Econometrics, 5e 

 A useful device for assessing the significance of autocorrelations is a diagrammatic 

representation called the correlogram 

 The correlogram, also called the sample autocorrelation function, is the sequence of 

autocorrelations 𝑟1, 𝑟2, 𝑟3 … . 

 A typical diagram for a correlogram will have bars or spikes to represent the 

magnitudes of the autocorrelations and approximate significant bounds drawn at 

±2/ 𝑇 
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9.2 Stationarity and Weak Dependence 

Principles of Econometrics, 5e 

 A critical assumption that is maintained throughout this chapter is that the variables 

in our equations are stationary 

 Stationary variables have means and variances that do not change over time and 

autocorrelations that depend only on how far apart the observations are in time 

 In addition to assuming that the variables are stationary, in this chapter we also 

assume they are weakly dependent 

 Weak dependence implies that, as s → ∞ (observations get further and further apart 

in time), they become almost independent 
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Figure 9.6 (a) Time series of a 
stationary variable 
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Figure 9.6 (b) time series of a nonstationary variable that is 
“slow-turning” or “wandering” 
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Figure 9.6 (c) time series 
of a nonstationary variable that “trends” 
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9.3 Forecasting 1 of 4 

Principles of Econometrics, 5e 

 The forecasting of values of economic variables is a major activity for many 

institutions including firms, banks, governments, and individuals 

 In this section, we consider forecasting using two different models, an AR 

model, and an ARDL model 

 Our focus is on short-term forecasting, typically up to three periods into the 

future 
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Example 9.5 Forecasting 
Unemployment with an AR(2) Model 

Principles of Econometrics, 5e 

 Consider an AR(2) model for real GDP growth: 

 (9.27) 

 The expressions for forecasts for the remainder of 2016: 

 (9.28) 

 (9.29) 

 (9.30)   𝑈 2016𝑄3 = 𝐸(𝑈2016𝑄3|𝐼2016𝑄1) = 𝛿 + θ1𝑈2016𝑄2 + θ2𝑈2016𝑄1 
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𝑈𝑡 = δ + θ1𝑈𝑡−1 + θ2𝑈𝑡−2 + 𝑒𝑡 

𝑈 2016𝑄2 = 𝐸(𝑈2016𝑄2|𝐼2016𝑄1) = 𝛿 + θ1𝑈2016𝑄1 + θ2𝑈2015𝑄4 

𝑈 2016𝑄3 = 𝐸(𝑈2016𝑄3|𝐼2016𝑄1) = 𝛿 + θ1𝑈2016𝑄2 + θ2𝑈2016𝑄1 



Table 9.2 Spreadsheet of Observations 
for AR(2) Model 
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9.3 Forecasting 2 of 4 

Principles of Econometrics, 5e 

 Using the observations in Table 9.2 to find OLS estimates of the model in equation 

(9.27) yields 

 (9.31) 

 These standard errors and the estimate 𝜎 = 0.2947 will be valid with the conditional 

homoskedasticity assumption 
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1 2
ˆ0.2885 1.6128 -0.6621 0.2947

( ) (0.0666) (0.0457) (0.0456)

    t t tU U U

se



𝑣𝑎𝑟 𝑒𝑡|𝑈𝑡−1,  𝑈𝑡−2  = 𝜎2 



9.3 Forecasting 3 of 4 

Principles of Econometrics, 5e 

 Having estimated the AR(2) model, we are now in a position to use it for forecasting 

 The unemployment rate for the two most recent quarters are 𝑈 2016𝑄1= 4.9 and 

𝑈 2015𝑄4 = 5 

 The forecast for 𝑈2016𝑄2 = 0.28852 + 1.61282 × 4.9 − 0.66209 × 5=4.8809 

 Two quarters ahead it is 𝑈 2016𝑄3= 0.28852+1.61282×4.8809−0.66209 × 4.9=4.9163 
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9.3 Forecasting 4 of 4 

Principles of Econometrics, 5e 

 Three quarters ahead it is 𝑈 2016𝑄4= 0.28852 + 1.61282 × 4.9163 − 0.66209 × 

4.8809 = 4.986  

 The forecast unemployment rates for 2016Q2, 2016Q3, and 2016Q4 are 

approximately 4.88%, 4.92%, and 4.99%, respectively 
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9.3.1 Forecast Intervals and Standard 
Errors 1 of 3 

Principles of Econometrics, 5e 

 We are interval forecasts that give a likely range in which a future value could fall 

and indicate the reliability of a point forecast 

 The forecast error for one quarter ahead is 

  we will be using 

 to forecast 
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𝑓1 = 𝑒𝑇+1 

𝑦 𝑇+2 = 𝛿 + θ1𝑦 𝑇+1 +θ2 𝑦𝑇 + 𝛿1𝑥 𝑇+1+𝛿2𝑥𝑇 

𝑦𝑇+2 = 𝛿 + θ1𝑦 𝑇+1 +θ2 𝑦𝑇 + 𝛿1𝑥 𝑇+1+𝛿2𝑥𝑇 + 𝑒𝑇+2 



9.3.1 Forecast Intervals and Standard 
Errors 2 of 3 

Principles of Econometrics, 5e 

 The two-period ahead forecast error is 

 (9.39) 

 For three periods ahead the error can be shown to be 

 (9.40) 

 Expressing the forecast errors in terms of the 𝑒𝑡′s is convenient for deriving 

expressions for the forecast error variances 
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𝑓2 = θ1(𝑦𝑇+1 − 𝑦 𝑇+1)+𝑒𝑇+2

= θ1(𝑦𝑇+1 − 𝑦 𝑇+1)+𝑒𝑇+2𝑓1 + 𝑒𝑇+2

= θ1𝑒𝑇+1 + 𝑒𝑇+2 

𝑓3 = θ1𝑓2 + θ2𝑓2 + 𝑒𝑇+3 = (θ1
2 + θ2)𝑒𝑇+1 + θ1𝑒𝑇+2 + 𝑒𝑇+31 



9.3.1 Forecast Intervals and Standard 
Errors 3 of 3 

Principles of Econometrics, 5e 

 Since 

 And 

 We can show  

 (9.41)   
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𝐸(𝑒𝑡|𝐼𝑇−1) = 0 

var(𝑒𝑡|𝑦𝑡−1, 𝑦𝑡−2, 𝑥𝑡−1, 𝑥𝑡−2) = 𝜎2 

σ𝑓1
2 = var 𝑓1|𝐼𝑇 = σ2

σ𝑓2
2 = var 𝑓2|𝐼𝑇 = σ2 1 + θ1

2

σ𝑓3
2 = var 𝑓3|𝐼𝑇 = σ2 θ1

2 + θ2
2

+ θ1
2 + 1

 



Example 9.6 Forecast Intervals for 
Unemployment from the AR(2) Model 
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Example 9.7 Forecasting Unemployment 
with an ARDL(2, 1) Model 
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9.3.2 Assumptions for Forecasting 

Principles of Econometrics, 5e 

 These are the assumptions that ensure an ARDL model can be estimated consistently 

and used for forecasting 

 F1: The time series y and x are stationary and weakly dependent 

 F2: The conditional expectation E(𝑦𝑡|𝐼𝑡−1) is a linear function of a finite number of 

lags of y and x 

 F3: The errors are conditionally homoskedastic, var(𝑒𝑡|𝒁𝒕) = 𝜎2 
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9.3.3 Selecting Lag Lengths 1 of 2 

Principles of Econometrics, 5e 

 A critical assumption to ensure that we had the best forecast in a minimum mean-

squared-error sense was that no lags beyond those included in the model contained 

extra information that could improve the forecast 

 Four ways to decide on p and q  

1. Extend the lag lengths for y and x as long as their estimated coefficients are 

significantly different from zero 
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9.3.3 Selecting Lag Lengths 2 of 2 

Principles of Econometrics, 5e 

2. Choose p and q to minimize either the AIC or the SC variable selection criterion 

3. evaluate the out-of-sample forecasting performance of each (p, q) combination 

using a hold-out sample 

4. check for serial correlation in the error term. Since E(𝑒𝑡|𝐼𝑡−1) = 0 implies that the 

lag lengths p and q are sufficient and the errors are not serially correlated 
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9.4 Testing for Serially Correlated 
Errors 

Principles of Econometrics, 5e 34 Regression with Time-Series Data: Stationary Variables 

 Consider again the ARDL(p, q) model 

 For the absence of serial correlation, we require the conditional covariance between 

any two different errors to be zero 

 One way of assessing whether sufficient lags have been included to get the best 

forecast is to test for serially correlated errors 

 Not using the best model for forecasting is not the only implication of serially 

correlated errors   



9.4.1 Checking the Correlogram of the Least Squares 
Residuals 

Principles of Econometrics, 5e 35 Regression with Time-Series Data: Stationary Variables 

 We can use the correlogram of the least squares residuals to check for serially 

correlated errors 

 The k-th order autocorrelation for the residuals can be written as: 

 (9.45) 

 Ideally, for the correlogram to suggest no serial correlation, we like to have 

                                 for k = 1, 2,…, 

 

𝑟𝑘 =
 𝑒 𝑡𝑒 𝑡−𝑘

𝑇
𝑡=𝑘+1

 𝑒 𝑡
2𝑇

𝑡=1

 

|  𝑟𝑘|   < 2     𝑇 



9.4.2 Lagrange Multiplier Test 

Principles of Econometrics, 5e 36 Regression with Time-Series Data: Stationary Variables 

 An advantage of the Lagrange Multiplier test is that it readily generalizes to a joint 

test of correlations at more than one lag 

 Consider the ARDL(1,1) model 

 The null hypothesis for the test is that the errors 𝑒𝑡 are uncorrelated 

 To express this null hypothesis in terms of restrictions on one or more parameters, 

we can introduce a model for an alternative hypothesis 

𝑦𝑡 = 𝛿 + 𝜃1𝑦𝑡−1 + 𝛿1x𝑡−1 + 𝑒𝑡 



9.4.2 Testing for AR(1) Errors 

Principles of Econometrics, 5e 37 Regression with Time-Series Data: Stationary Variables 

 consider an alternative hypothesis that the errors are correlated through the AR(1) 

process 

 Substituting for 𝑒𝑡 in the original equation yields 

 (9.47) 

 Now, if ρ = 0, then 𝑒𝑡 = 𝑣𝑡 and since 𝑣𝑡 is not serially correlated, et will not be 

serially correlated 

 The hypotheses 𝐻0∶ρ = 0 and 𝐻1∶ρ ≠ 0 

𝑒𝑡 = ρ𝑒𝑡−1 + 𝑣𝑡 

𝑦𝑡 = 𝛿 + 𝜃1𝑦𝑡−1 + 𝛿1x𝑡−1 + ρ𝑒𝑡−1 + 𝑣𝑡 



9.4.2 Testing for MA(1) Errors 

Principles of Econometrics, 5e 38 Regression with Time-Series Data: Stationary Variables 

 Another useful class of models is what is known as moving-average models 

 Following the previous strategy we get: 

 (9.51) 

 Notice that ϕ = 0 implies 𝑒𝑡 = 𝑣𝑡 , and so we can test for autocorrelation through the 

hypotheses 𝐻0∶ϕ = 0 and 𝐻1∶ϕ ≠ 0  

𝑦𝑡 = 𝛿 + 𝜃1𝑦𝑡−1 + 𝛿1x𝑡−1 + 𝜙𝑣𝑡−1 + 𝑣𝑡 



9.4.2 Testing for Higher Order AR or 
MA Errors 1 of 2 

Principles of Econometrics, 5e 39 Regression with Time-Series Data: Stationary Variables 

 The LM test and its variations can be readily extended to alternative hypotheses that 

are expressed in terms of higher order AR or MA models 

 Suppose that the model for an alternative hypothesis is either an AR(4) or an MA(4) 

process:  

 
𝐴𝑅(4):  𝑒𝑡 = 𝜓1𝑒𝑡−1 + 𝜓2𝑒𝑡−2 + 𝜓3𝑒𝑡−3 + 𝜓4𝑒𝑡−4 + 𝑣𝑡

𝑀𝐴(4):  𝑒𝑡 = 𝜙1𝑒𝑡−1 + 𝜙2𝑒𝑡−2 + 𝜙3𝑒𝑡−3 + 𝜙4𝑒𝑡−4 + 𝑣𝑡
 



9.4.2 Testing for Higher Order AR or 
MA Errors 2 of 2 

Principles of Econometrics, 5e 40 Regression with Time-Series Data: Stationary Variables 

 The corresponding null and alternative hypotheses for each case are: 

𝐴𝑅(4)  
𝐻0: 𝜓1 = 0,  𝜓2 = 0,  𝜓3 = 0,  𝜓4 = 0

𝐻1: 𝑎𝑡 𝑙𝑒𝑎𝑠𝑡 𝑜𝑛𝑒 𝜓𝑖  𝑖𝑠 𝑛𝑜𝑛𝑧𝑒𝑟𝑜

𝑀𝐴(4)  
𝐻0: 𝜙1 = 0,  𝜙2 = 0,  𝜙3 = 0,  𝜙4 = 0

𝐻1: 𝑎𝑡 𝑙𝑒𝑎𝑠𝑡 𝑜𝑛𝑒 𝜙𝑖  𝑖𝑠 𝑛𝑜𝑛𝑧𝑒𝑟𝑜

 



9.5 Time-Series Regressions for Policy 
Analysis 

Principles of Econometrics, 5e 41 Regression with Time-Series Data: Stationary Variables 

 Models for policy analysis differ in a number of ways. The individual coefficients 

are of interest because they might have a causal interpretation 

 In the following four sections, we are concerned with three main issues that add to 

our time-series regression results from earlier chapters 

1. Interpretation of coefficients of lagged variables in finite and infinite distributed lag 

models 

2. Estimation and inference for coefficients when the errors are autocorrelated 

3. The assumptions necessary for interpretation and estimation.  



9.5.1 Finite Distributed Lags 1 of 3 

Principles of Econometrics, 5e 42 Regression with Time-Series Data: Stationary Variables 

 The finite distributed lag model where we are interested in the impact of current and 

past values of a variable x on current and future values of a variable y can be written 

as (9.54) 

 It is called a finite distributed lag because the impact of x on y cuts off after q lags 

 (9.55) 

𝑦𝑡 = 𝛼 + 𝛽0𝑥𝑡 + 𝛽1𝑥𝑡−1 + 𝛽2𝑥𝑡−2 + ⋯ + 𝛽𝑞𝑥𝑡−𝑞 + 𝑒𝑡 

𝐸(𝑦𝑡|𝑥𝑡 , 𝑥𝑡−1, . . . ) = 𝛼 + 𝛽0 + 𝛽1𝑥𝑡−1 + 𝛽2𝑥𝑡−2 + ⋯ + 𝛽𝑞𝑥𝑡−𝑞

𝐸(𝑦𝑡|𝑥𝑡 , 𝑥𝑡−1, . . . ) = 𝐸(𝑦𝑡|𝑥𝑡)
 



9.5.1 Finite Distributed Lags 2 of 3 

Principles of Econometrics, 5e 43 Regression with Time-Series Data: Stationary Variables 

 Once q lags of x have been included in the equation, further lags of x will not have 

an impact on y 

 Given this assumption, a lag-coefficient βs can be interpreted as the change in 

E(𝑦𝑡|𝑥𝑡) when 𝑥𝑡−𝑠 changes by 1 unit, but x is held constant in other periods 

 In terms of derivatives (9.56) 𝜕𝐸(𝑦𝑡|𝑥𝑡)

𝜕𝑥𝑡−𝑠
=

𝜕𝐸(𝑦𝑡+𝑠|𝑥𝑡)

𝜕𝑥𝑡
= 𝛽𝑠 



9.5.1 Finite Distributed Lags 3 of 3 

Principles of Econometrics, 5e 44 Regression with Time-Series Data: Stationary Variables 

 The effect of a one-unit change in xt is distributed over the current and next q 

periods, from which we get the term ‘‘distributed lag model’’ 

 It is called a finite distributed lag model of order q  

 It is assumed that after a finite number of periods q, changes in x no longer have 

an impact on y 

 The coefficient βs is called a distributed-lag weight or an s-period delay 

multiplier  

 The coefficient β0 (s = 0) is called the impact multiplier 



9.5.1 Assumptions for Finite 
Distributed Lag Mode 

Principles of Econometrics, 5e 45 Regression with Time-Series Data: Stationary Variables 

 FDL1: The time series y and x are stationary and weakly dependent 

 FDL2: The finite distributed lag model describing how y responds to current and past 

values of x can be written as: 𝑦𝑡= 𝛼 + 𝛽0𝑥𝑡 + 𝛽1𝑥𝑡−1 + 𝛽2𝑥𝑡−2 + ⋯ 𝛽𝑞𝑥𝑡−𝑞 + 𝑒𝑡 

 FDL3: The error term is exogenous with respect to the current and all past values of x 

 FDL4: The error term is not autocorrelated  

 FDL5: The error term is homoskedastic 



9.5.2 HAC Standard Errors 

Principles of Econometrics, 5e 46 Regression with Time-Series Data: Stationary Variables 

 HAC (heteroscedasticity and autocorrelation consistent) standard errors, or know as, 

Newey–West standard errors 

 Different software packages may yield different HAC standard errors since there are 

a large number of possibilities 

 The analysis in this section extends to the finite distributed lag model with q lags 

and indeed to any time series regression involving stationary variables 
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 Consider the simple regression model: 

 (9.66) 

 This model can be extended to include extra lags from an FDL model and other 

variables. The AR(1) error model is given by (9.67) 

 Assume the vt are uncorrelated random errors with zero mean and constant 

variances:  

𝑦𝑡 = 𝛼 + 𝛽0𝑥𝑡 + 𝑒𝑡 

𝐸 𝑣𝑡|𝑥𝑡 , 𝑥𝑡−1, . . . = 0     var 𝑣𝑡|𝑥𝑡

= 𝜎𝑣
2     cov 𝑣𝑡, 𝑣𝑠|𝑥𝑡 , 𝑥𝑠 = 0   for  𝑡

≠ 𝑠 

𝑒𝑡 = 𝜌𝑒𝑡−1 + 𝑣𝑡| 𝜌 |  < 1 
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 Consider the equation: 

 (9.68) 

 We have transformed the original model, with the autocorrelated error term 𝑒𝑡 into a 

new model that has an error term 𝑣𝑡 that is uncorrelated over time 

 The advantage of doing so is that we can now proceed to find estimates for (α,𝛽0, ρ) 

that minimize the sum of squares of uncorrelated errors   

𝑦𝑡 = 𝛼(1 − 𝜌) + 𝜌𝑦𝑡−1 + 𝛽0𝑥𝑡 − 𝜌𝛽0𝑥𝑡−1 + 𝑣𝑡 
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 To introduce an alternative estimator for (α, β0, ρ) in the AR(1) error model 

 (9.69) 

 Defining 

 (9.70) 

 𝜌 is not known and must be estimated 

𝑦𝑡 − 𝜌𝑦𝑡−1 = 𝛼(1 − 𝜌) + 𝛽0(𝑥𝑡 − 𝜌𝑥𝑡−1) + 𝑣𝑡 

𝑦𝑡
∗  = 𝑦𝑡 − 𝜌𝑦𝑡−1, 𝛼∗ = 𝛼(1 − 𝜌) 𝑎𝑛𝑑 𝑥𝑡

∗ = 𝑥𝑡 − 𝜌𝑥𝑡−1 

𝑦𝑡
∗ = 𝛼∗ + 𝛽0𝑥𝑡

∗ + 𝑣𝑡 … , 𝑇 
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 The steps for obtaining the feasible generalized least squares estimator for α and β0 

using this estimator for ρ are as follows 

1. Find least-squares estimates a and b0 from the equation 𝑦𝑡 = 𝛼𝛽0𝑥𝑡 + 𝑒𝑡 

2. Compute the least squares residuals 

3. Estimate ρ by applying least squares to the equation  

4. Compute values of the transformed variables 𝑦𝑡
∗ = 𝑦𝑡 − 𝜌𝑦𝑡−1 𝑎𝑛𝑑 𝑥𝑡

∗ = 𝑥𝑡 −

𝜌𝑥𝑡−1 

5. Apply least squares to the transformed equation  

𝑒 𝑡 = 𝑦𝑡− a + 𝛽0𝑥𝑡 + 𝑒𝑡 

𝑒 𝑡 = 𝜌𝑒 𝑡−1 + 𝑣 𝑡 

𝑦𝑡
∗ = 𝛼∗ + 𝛽0𝑥𝑡

∗ + 𝑣𝑡 
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 To solve the problem when FDL4 and FDL5 are violated: 

1. Use the HAC estimator for variances and covariances and the corresponding HAC 

standard errors 

2. Assume a specific model for the autocorrelated errors and to use an estimator that 

is minimum variance for that model 

 Modeling of more general forms of autocorrelated errors with more than one lag 

requires 𝑒𝑡 to be uncorrelated with x values further than one period into the future 



9.5.4 Infinite Distributed Lags 
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 One way of avoiding the need to specify a value for q is to consider an IDL model 

where y depends on lags of x that go back into the indefinite past 

 (9.72) 

 For it to be feasible, the βs coefficients must eventually (but not necessarily 

immediately) decline in magnitude, becoming negligible at long lags 

𝑦𝑡 = 𝛼 + 𝛽0𝑥𝑡 + β1𝑥𝑡−1 + β2𝑥𝑡−2 + β3𝑥𝑡−3 + ⋯ + 𝑒𝑡 

β
𝑠

=
𝜕𝑦𝑡

𝜕𝑥𝑡−𝑠
= 𝑠 period delay multiplier,  β𝑗 = 𝑠 period interim multiplier

𝑠

𝑗=0

, 

 β𝑗 = total multiplier

∞

𝑗=0
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 An obvious disadvantage of the IDL model is its infinite number of parameters 

 By imposing the restrictions, derived in section 9.11, we have been able to reduce 

the infinite number of parameters to just three 

 (9.73) 

 The delay multipliers can be calculated from the restrictions 𝛽𝑠 = 𝜆𝑠𝛽0 

𝑦𝑡 = 𝛿 + 𝜃𝑦t−1 + β0 𝑥𝑡 + 𝑣𝑡 
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 The test is based on whether or not an estimate of the error et−1 adds explanatory 

power to the regression: 

 (9.74) 

1. Compute the least squares residuals from (9.74) under the assumption that H0 

holds 
t-1 0

ˆ?ˆ ( + β ), 2,3,...,     t t tu y y x t T

𝑦𝑡 = 𝛿 + 𝜆𝑦𝑡−1 + β0 𝑥𝑡 + (ρ − 𝜆)𝑒𝑡−1 + 𝑢𝑡 
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2. Using the least squares estimate    from step 1, and starting with 𝑒1 = 0, compute 

recursively 

3. Find the 𝑅2 from a least squares regression of  𝑢 𝑡 on 𝑦𝑡−1, 𝑥𝑡 and 𝑒 𝑡−1 

4. When 𝐻0 is true, and assuming that 𝑢𝑡 is homoskedastic, (T − 1) × 𝑅2 has a 𝜒(1)
2  

distribution in large samples 

𝜆  

𝑒 𝑡 = 𝜆𝑒 𝑡−1 + 𝑢𝑡, 𝑡 = 2,3, . . . , 𝑇 
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 An alternative strategy is to begin with an ARDL representation whose lags have 

been chosen using conventional model selection criteria and to derive the 

restrictions on the IDL model implied by the chosen ARDL model 

 Specifically, we first estimate the finite number of θ’s and δ’s from an ARDL model 

 Our task for the general case is made much easier if we can master some heavy 

machinery known as the lag operator 



The Error Term 
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 The question we need to ask is whether the error term will be such that the least 

squares estimator is consistent 

 

 

 In the general ARDL(p, q) model, this equation becomes 

 (9.93) 

 

𝑒𝑡 = (1−𝜃1𝐿−𝜃2𝐿2)−1𝑣𝑡

(1 − 𝜃1𝐿 − 𝜃2𝐿2)𝑒𝑡 = 𝑣𝑡

𝑒𝑡 − 𝜃1𝑒𝑡−1 − 𝜃2𝑒𝑡−2 = 𝑣𝑡

𝑒𝑡 = 𝜃1𝑒𝑡−1 + 𝜃2𝑒𝑡−2 + 𝑣𝑡

 

𝑒𝑡 = 𝜃1𝑒𝑡−1 + 𝜃2𝑒𝑡−2 + ⋯ + 𝜃𝑝𝑒𝑡−𝑝 + 𝑣𝑡 
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 IDL1: The time series y and x are stationary and weakly dependent 

 IDL2: The infinite distributed lag model describing how y responds to current and 

past values of x can be written as (9.95) 𝑦𝑡 = 𝛼 + 𝛽0𝑥𝑡 + β1𝑥𝑡−1 + β2𝑥𝑡−2 + ⋯ +

𝑒𝑡 with βs ⟶ 0 𝑎𝑠 𝑠 ⟶∞ 

 IDL3: Corresponding to (9.95) is an ARDL(p, q) model 

 

 

𝑦𝑡 = 𝛿 + 𝜃1𝑦𝑡−1 + ⋯ + 𝜃𝑝𝑦𝑡−𝑝 + 𝛿0𝑥𝑡 + 𝛿1𝑥𝑡−1 + ⋯ + 𝛿𝑞𝑥𝑡−𝑞 + 𝑣𝑡 
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 IDL4: The errors et are strictly exogenous 

                         where X includes all current, past, and future values of x. 

 IDL5: The errors 𝑒𝑡 follow the AR(p) process 

 Where 

1. 𝑣𝑡 is exogenous with respect to current and past values of x and past values of y 

2. 𝑣𝑡 is homoskedastic, var(𝑣𝑡|𝑥𝑡) =𝜎𝑣
2 

𝐸(𝑒𝑡|𝑋) = 0 
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