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CHAPTER 16

Qualitative and Limited
Dependent Variable
Models

L E A R N I N G O B J E C T I V E S

Based on the material in this chapter, you should be able to

1. Give some examples of economic decisions in
which the observed outcome is a binary variable.

2. Explain why probit, or logit, is usually preferred to
least squares when estimating a model in which
the dependent variable is binary.

3. Give some examples of economic decisions
in which the observed outcome is a choice
among several alternatives, both ordered and
unordered.

4. Compare and contrast the multinomial logit
model to the conditional logit model.

5. Give some examples of models in which the
dependent variable is a count variable.

6. Discuss the implications of censored data for least
squares estimation.

7. Describe what is meant by the phrase ‘‘sample
selection.’’

K E Y W O R D S
alternative specific variables
binary choice models
censored data
conditional logit
count data models
feasible generalized least squares
Heckit
identification problem
independence of irrelevant

alternatives (IIA)
index models

individual specific variables
latent variables
likelihood function
likelihood ratio
limited dependent variables
linear probability model
logistic random variable
logit
log-likelihood function
marginal effect
maximum likelihood estimation

multinomial choice models
multinomial logit
ordered probit
ordinal variables
Poisson random variable
Poisson regression model
probability ratio
probit
selection bias
Tobit model
truncated regression

681



❦

❦ ❦

❦
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In this book, we focus primarily on econometric models in which the dependent variable is
continuous and fully observable; quantities, prices, and outputs are examples of such variables.
However, microeconomics is a general theory of choice, and many of the choices that individuals
and firms make cannot be measured by a continuous outcome variable. In this chapter, we exam-
ine some fascinating models that are used to describe choice behavior, and which do not have the
usual continuous dependent variable. Our descriptions will be brief, since we will not go into all
the theory, but we will reveal to you a rich area of economic applications.

We also introduce a class of models with dependent variables that are limited. By that we
mean that they are continuous but that their range of values is constrained in some way, and their
values not completely observable. Alternatives to least squares estimation must be considered for
such cases, since the least squares estimator is both biased and inconsistent.

16.1 Introducing Models with Binary
Dependent Variables
Many of the choices that individuals and firms make are “either-or” in nature. For example, a
high-school graduate decides either to attend college or not. A worker decides either to drive
to work or to get there using a different means of transportation. A household decides either to
purchase a house or to rent. A firm decides either to advertise its product in a local newspaper
or it decides not to. As economists we are interested in explaining why particular choices are
made, and what factors enter into the decision process. We also want to know how much each
factor affects the outcome and how to predict outcomes. Such questions lead us to the problem
of constructing a statistical model of binary, either-or, choices. Such choices can be represented
by a binary (indicator) variable that takes the value 1 if one outcome is chosen and the value 0
otherwise. The binary variable describing a choice is the dependent variable rather than an inde-
pendent variable. This fact affects our choice of a statistical model.

The list of economic applications in which choice models may be useful is a long one. These
models are useful in any economic setting in which an agent must choose one of two alternatives.
Examples include the following:
• An economic model explaining why some individuals take a second or third job and engage

in “moonlighting.”
• An economic model of why some legislators in the U.S. House of Representatives vote for a

particular bill and others do not.
• An economic model explaining why some loan applications are accepted and others are not

at a large metropolitan bank.
• An economic model explaining why some individuals vote for increased spending in a school

board election and others vote against.
• An economic model explaining why some female college students decide to study engineer-

ing and others do not.
This list illustrates the great variety of circumstances in which a model of binary choice may
be used. In each case, an economic decision-maker chooses between two mutually exclusive
outcomes.

The key feature of binary choice models is the nature of the outcome variable. It is an indi-
cator variable representing the choice between two alternatives. We represent the ith individual’s
choice as

yi =
{

1 alternative one is chosen
0 alternative two is chosen (16.1)

Individuals make choices to maximize their utility, or well-being, and we economists would like
to understand the process. What are the important factors leading to the choice and how much
weight is given to each? Can we predict what the choice will be? These questions lead us to
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consider how individuals make their decisions, how to build an econometric model of the choice
process, and how to model the probability of choosing one alternative or the other.

It’s always best to start at the beginning. Unlike the outcome of a game of chance, such as
flipping a coin and observing a head or a tail, the probability that alternative one will be chosen
varies from individual to individual, and the probability depends on many factors, describing the
individual and the characteristics of the alternatives. As in a regression model, let these factors
be denoted xi =

(
xi1 = 1, xi2,… , xiK

)
. Then the conditional probability that the ith individual

chooses alternative one is P
(
yi = 1|xi

)
= p

(xi
)
, where p

(
!i
)

is a function of the factors xi, and
because it is a probability, 0 ≤ p(!i) ≤ 1. The conditional probability of choosing alternative two
is P

(
yi = 0|xi

)
= 1 − p

(xi
)
. We can represent the conditional probability function for the random

variable yi in equation (16.1) as

!
(
yi|xi

)
= p

(xi
)yi
[
1 − p

(xi
)]1−yi

yi = 0, 1 (16.2)

Then P
(
yi = 1|xi

)
= !

(
1|xi

)
= p

(xi
)

and P
(
yi = 0|xi

)
= !

(
0|xi

)
= 1 − p

(xi
)
. The standard

models of probabilistic choice are simply alternative ways of representing, or approximating,
P
(
yi = 1|xi

)
= p

(xi
)
.

E X A M P L E 16.1 A Transportation Problem

An important problem in transportation economics is
explaining an individual’s choice between driving (private
transportation) and taking the bus (public transportation)
when commuting to work, assuming, for simplicity, that these
are the only two alternatives. We can imagine many factors
that affect the choice, including an individual’s characteris-
tics, such as age, income, and sex; the characteristics of their
automobile, such as its reliability, comfort, and fuel economy;
the characteristics of the public transportation, such as relia-
bility, cost, and safety. In our example, we will focus on a sin-
gle factor, commuting time. Define the explanatory variable

xi = (commuting time by bus
− commuting time by car, for the ith individual)

A priori we expect that as xi increases, and commuting
time by bus increases relative to commuting time by car,

and holding all else constant, an individual would be more
inclined to drive. Suppose that alternative one is driving to
work, yi = 1, and alternative two is taking public transporta-
tion, yi = 0. Then the probability that the ith individual drives
to work is P

(
yi = 1|xi

)
= p

(
xi
)
. Our reasoning suggests that

there is a positive relationship between the difference in
commuting time and the probability that an individual will
drive to work. Using data on individuals and their choices, we
will obtain estimates of how much increases in commuting
time by bus relative to driving will affect the probability that
an individual will drive. Using the estimates, we can predict
the choice of an individual when the commuting time by bus
is, for example, 20 minutes longer than the commuting time
by car. We will also develop methods for testing hypotheses
about the nature of the relationship, such as testing whether
the difference in commuting time is a statistically significant
factor in the decision.

16.1.1 The Linear Probability Model
We discussed the linear probability model in Sections 7.4 and 8.7. It is a regression model that
arises straightforwardly from the definition of expected value. Using the probability model in
(16.2),

E
(
yi|xi

)
=

1∑
yi=0

yi!
(
yi|xi

)
= 0 × !

(
0|xi

)
+ 1 × !

(
1|xi

)
= p

(xi
)

(16.3)

The population average outcome, the average choice, is the probability that the first alternative is
chosen. It is natural to specify a linear regression model for the probability

p
(xi

)
= E

(
yi|xi

)
= β1 + β2xi2 + · · · + βKxiK (16.4)

Let the random error ei account for the difference between the observed outcome yi and the con-
ditional mean E

(
yi|xi

)
,

ei = yi − E
(
yi|xi

)
(16.5)
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Then
yi = E

(
yi|xi

)
+ ei = β1 + β2xi2 + · · · + βKxiK + ei (16.6)

If E
(
ei|xi

)
= 0, then the least squares estimator of the parameters is unbiased, or if random error

ei is uncorrelated with xi =
(
xi1 = 1, xi2,… , xiK

)
, then the least squares estimator is consistent.

These are the usual OLS properties.
For a continuous variable xik, the marginal effect is

∂E
(
yi|xi

)
∕∂xik = βk (16.7)

Here is where some difficulty enters. Suppose that βk > 0. Increasing xik by one unit increases
p(xi), the probability of alternative one being chosen, by a constant amount βk. This puts us into
the uncomfortable position of concluding that the probability can become one, or greater than
one, if xik becomes large enough. Similarly, if βk < 0 then the probability of alternative one being
chosen can become negative if xik becomes large enough. These are the logical inconsistencies
in the linear probability model. It is because of these difficulties that we develop alternatives to
the linear probability model in Section 16.2. Nevertheless, the regression model approach is very
familiar, and by now easy, and it is a useful approximation tool for the purpose of estimating
marginal effects in nonextreme cases.

Apart from the logical problem noted above, which is important, there are two other more
minor consequences of using the linear probability model. First, since yi takes only two values, one
and zero, it must be true that β1 + β2xi2 + · · · + βKxiK + ei takes the same two values. If yi = 1,
then it follows that β1 + β2xi2 + · · · + βKxiK + ei = 1, so that

ei = 1 −
(
β1 + β2xi2 + · · · + βKxiK

)

If yi = 0, then β1 + β2xi2 + · · · + βKxiK + ei = 0 so that

ei = −
(
β1 + β2xi2 + · · · + βKxiK

)

This seems very odd—the random error that accounts for all omitted factors and other specifica-
tion errors takes only two values. This is the result of imposing a linear regression structure on a
choice problem in which the outcome is binary, one or zero.

Secondly, the conditional variance in the random error is

var
(
ei|xi

)
= p

(xi
)[

1 − p
(xi

)]
= σ2

i (16.8)

and is necessarily heteroskedastic. When estimating the linear probability model, this feature
must be recognized. When using the OLS estimator, we must at least use heteroskedasticity
robust standard errors. Alternatively use the FGLS, feasible generalized least squares, estima-
tion methodology discussed in Section 8.6.

E X A M P L E 16.2 A Transportation Problem: The Linear Probability Model

Ben-Akiva and Lerman1 have sample data on automobile
and public transportation travel times and the alternative
chosen for N = 21 individuals in the data file transport.
The variable AUTO is an indicator variable taking the value
one if automobile transportation is chosen and is zero if

public transportation is chosen,

AUTO =
{

1 auto is chosen
0 public transportation (bus) is chosen

............................................................................................................................................
1(1985) Discrete Choice Analysis, MIT Press.



❦

❦ ❦

❦

16.2 Modeling Binary Choices 685

The variables AUTOTIME and BUSTIME are minutes of
commuting time. The explanatory variable we consider is
DTIME = (BUSTIME – AUTOTIME) ÷ 10, which is the
commuting time differential in 10-minute increments. The
linear probability model is AUTOi = β1 + β2DTIMEi + ei.
The OLS fitted model, with heteroskedasticity robust
standard errors, is

AUTO
⋀

i = 0.4848 + 0.0703DTIMEi R2 = 0.61
(robse) (0.0712) (0.0085)

We estimate that if travel times by public transportation
and automobile are equal, so that DTIME = 0, then the
probability of a person choosing automobile travel is
0.4848, close to 50–50, with a 95% interval estimate of
[0.34, 0.63]. We estimate that, holding all else constant,
an increase of 10 minutes in the difference in travel time,
increasing public transportation travel time relative to
automobile travel time, increases the probability of choosing
automobile travel by 0.07, with a 95% interval estimate
of [0.0525, 0.0881], which seems relatively precise. In
truth, any judgment about precision depends on the use
to which the results will be put. The fitted model can be

used to estimate the probability of automobile travel for any
commuting time differential. For example, if DTIME = 1,
a 10-minute longer commute by public transportation,
we estimate the probability of automobile travel to be
AUTO
⋀

i = 0.4848 + 0.0703(1) = 0.5551.
How well does the model fit the data? The R2 = 0.61

suggests that 61% of the variation in the outcome variable
is explained by the model. With probability models, we can
examine how well the model predicts the outcomes. Let’s pre-
dict the choice using a probability threshold of 0.50. That is,
if AUTO
⋀

i ≥ 0.50 we predict that a person will drive to work,
and otherwise, we predict that a person will use public trans-
portation. In the sample of 21 individuals, 10 drove to work
and 11 used public transportation. Using the classification
rule, we successfully predict 9 of the 10 drivers, and 10 of
the 11 bus riders. That is 19 successful predictions out of
the 21 cases. Looking at individual estimated probabilities
of driving, we find three negative values. If the commute is
69 minutes or less by public transportation, then the estimated
probability of driving is zero or negative. If commuting time
is 73 minutes or more by public transportation, then the esti-
mated probability of driving is one or greater.

16.2 Modeling Binary Choices
It is the probability of choosing one alternative or the other that is the key concept when modeling
binary choice. Probabilities must be between zero and one, and the flaw in the linear probability
model in Section 16.1 is that it does not impose this constraint. We now turn to two nonlinear
models for binary choices, the probit model and the logit model, which ensure that choice prob-
abilities remain between zero and one. To keep the choice probability p(xi) within the interval
(0, 1), a nonlinear S-shaped “sigmoid” curve can be used. In Figure 16.1(a), one such curve is illus-
trated for the case of a single explanatory variable, x. If, for example, β2 > 0, then, as x increases,
and, β1 + β2x increases, the probability curve rises rapidly at first, and then begins to increase at
a decreasing rate, keeping the probability less than one no matter how large x becomes. In the
other direction, the probability approaches but never reaches zero. The slope of the probability
curve, dp(xi)∕dx, is the change in probability given a unit change in x. It is the marginal effect
and, unlike in the linear probability model, the slope is not constant.

The curve shown in Figure 16.1(a) is the cumulative distribution function (cdf ) of the
standard normal random variable. This choice of the S-curve leads to a model called probit.
Any cdf function for a continuous random variable will work, and many have been tried over the
years. These days the main competitor to the standard normal cdf is the cdf of a logistic random
variable, leading to a model called logit. In binary choice cases, probit and logit provide very
similar inferences. Economists tend to choose probit rather than logit in individual choice appli-
cations because it follows logically from utility maximizing behavior and random utility models
(RUMs) under the assumption that the unobserved components of utility for the two alternatives
are jointly normal. To obtain a logit model within this framework, the unobserved components of
utility for the two alternatives must be statistically independent and have an unusual probability
density function (pdf ).2 However, the logit model is widely used in many disciplines and leads
to very convenient generalizations. We will discuss both the probit and logit models.
............................................................................................................................................
2For more on RUM and choice models, see Appendix 16B. Also Kenneth Train (2009) Discrete Choice Methods with
Simulation, Second Edition, Cambridge University Press.
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FIGURE 16.1 (a) Standard normal cdf ; (b) standard normal pdf .

16.2.1 The Probit Model for Binary Choice
As noted above, the probit model is based on the standard normal cdf . If Z is a standard normal
random variable, then its pdf is

ϕ(z) = 1√
2π

e−0.5z2 −∞ < z <∞ (16.9a)

The cdf of the standard normal distribution is

Φ(z) = P[Z ≤ z] = ∫
z

−∞

1√
2π

e−0.5u2 du (16.9b)

This integral expression is the probability that a standard normal random variable falls to the left
of point z. In geometric terms, it is the area under the standard normal pdf to the left of z. The
function Φ(z) is the cdf that we have worked with to compute normal probabilities.
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The probit statistical model expresses the probability p(xi) that alternative one is chosen,
yi = 1, to be
P
(
yi = 1|xi

)
= p

(xi
)
= P

[
Z ≤ β1 + β2xi2 + · · · + βKxiK

]
=Φ

(
β1 + β2xi2 + · · · + βKxiK

)
(16.10)

where Φ(z) is the standard normal cdf . The probit model is said to be nonlinear because (16.10)
is a nonlinear function of the parameters β1,… , βK. If the parameters β1,… , βK were known,
we could use (16.10) to find the probability that alternative one is chosen for any set of predictor
values xi =

(
xi1 = 1, xi2,… , xiK

)
. Because these parameters are not known we will estimate them.

16.2.2 Interpreting the Probit Model
Interpreting the probit model requires a bit of work. How we proceed to measure the impact of any
one variable xik depends on whether it is continuous or discrete, like an indicator variable. When
an explanatory variable is continuous, we can examine the marginal effect of a change in its value
on the probability p(xi). When the explanatory variable is an indicator variable, we can calculate
the difference in the probability p(xi) associated with xik = 0 and xik = 1. In both of these cases,
we must deal with the fact that the magnitudes of the effects depend not only on the parameter
values, β1,… , βK, but also on the values of the explanatory variables, !i =

(
xi1 = 1, xi2,… , xiK

)
.

We will examine these cases separately.

Marginal Effect of a Continuous Explanatory Variable If xk is a continuous
variable then we can calculate the marginal effect by finding the derivative of (16.10). The
marginal effect is

∂p
(xi

)

∂xik
=
∂Φ

(
ti
)

∂ti
•
∂ti
∂xik

= ϕ
(
β1 + β2xi2 + · · · + βKxiK

)
βk (16.11)

where ti = β1 + β2xi2 + · · · + βKxiK and ϕ
(
β1 + β2xi2 + · · · + βKxiK

)
is the standard normal pdf

evaluated at β1 + β2xi2 + · · · + βKxiK. To obtain this result, we have used the chain rule of differ-
entiation (see Derivative Rule 9 in Appendix A.3.1). Note that the marginal effect includes the
pdf of the standard normal random variable, ϕ(•).

To simplify the algebra, suppose that there is a single continuous explanatory variable, x.
Then, the probit probability model is p

(
xi
)
= P

[
Z ≤ β1 + β2xi

]
= Φ

(
β1 + β2xi

)
. Assuming β2 > 0,

this is the equation of the sigmoid S-shaped curve in Figure 16.1(a). At point A in Figure 16.1(a),
where β1 + β2xi = a, the marginal effect of a change in x on the probability is the slope of the
tangent line. At point B in Figure 16.1(a), where β1 + β2xi = b and the probability Φ(b) is larger,
the marginal effect is smaller, which it must be to keep the probability function less than one as
x increases.

The equation of the marginal effect dp
(
xi
)
∕dxi = ϕ

(
β1 + β2xi

)
β2 is the slope of the probability

function at the point β1 + β2xi. The pdf ϕ
(
β1 + β2xi

)
, plotted in Figure 16.1(b), appears in the

marginal effect because of its relationship to the cumulative distribution function Φ
(
β1 + β2xi

)
.

As noted in (16.9), the cdf is the integral of the pdf , and it follows that the pdf is the derivative
of the cdf in (16.11). The marginal effect at point A is larger because ϕ(a) > ϕ(b). The marginal
effect equation, dp

(
xi
)
∕dxi = ϕ

(
β1 + β2xi

)
β2, has the following implications.

1. Sinceϕ
(
β1 + β2xi

)
is a pdf its value is always positive. Consequently, the sign of dp

(
xi
)
∕dxi is

determined by the sign of β2. If β2 > 0 then dp
(
xi
)
∕dxi > 0, and if β2 < 0 then dp

(
xi
)
∕dxi < 0.

2. As xi changes the value of the function ϕ
(
β1 + β2xi

)
changes. The standard normal pdf

reaches its maximum when β1 + β2xi = 0. In this case p
(
xi
)
= P[Z ≤ 0] = Φ(0) = 0.5;

the alternatives one and two are equally likely to be chosen. It makes sense that in this case
the effect of a change in xi has its greatest effect, the marginal effect is largest, because the
individual is “on the borderline.”
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3. On the other hand, if β1 + β2xi is large, say near 3, then the probability that the individual
chooses alternative one, p

(
xi
)
, is very large and close to 1. In this case, a change in xi will

have relatively little effect since ϕ
(
β1 + β2xi

)
is nearly 0. The same is true if β1 + β2xi is

a large negative value, say near −3. These results are consistent with the notion that if an
individual is “set” in their ways, with p

(
xi
)

near 0 or 1, the effect of a small change in xi will
be negligible.

Discrete Change Effect of an Indicator Explanatory Variable The marginal
effect in (16.11) is valid only if the explanatory variable xk is continuous. If xk is a discrete vari-
able, such as an indicator variable for an individual’s sex, then the derivative in (16.11) cannot
be used. Instead we can compute the discrete change in probability effect of xk changing from
zero to one,

Δp
(xi

)
= p

(xi|xki = 1
)
− p

(xi|xki = 0
)

(16.12a)

To simplify the notation, suppose p
(
!i
)
= Φ

(
β1 + β2xi2 + δDi

)
where Di is an indicator variable.

The difference in the probability of choosing alternative one given Di = 1 as compared to when
Di = 0 is

Δp
(xi

)
= p

(xi|Di = 1
)
− p

(xi|Di = 0
)
= Φ

(
β1 + β2xi2 + δ

)
− Φ

(
β1 + β2xi2

)
(16.12b)

The change can be positive or negative, depending on the sign of the parameter δ. If δ > 0, then
there is an increase in the probability of choosing alternative one. If δ < 0, then the probability
of choosing alternative one decreases. Note that the magnitude of the effect depends on the sign
and magnitude of the parameter δ but also on the values of the other explanatory variables and
their parameters.

Discrete Change Effect of any Explanatory Variable The use of the discrete
change approach is not limited to indicator variables. It can also be used for an explanatory vari-
able that is a count, such as x3 = 0, 1, 2,… Suppose that yi is an individual’s health outcome,
such as whether their blood pressure reading is too high, or not, and x3 is the person’s number
of periods of exercise per week. We might be interested in the change in the probability of high
blood pressure of increasing from one workout per week to three workouts per week. The discrete
change approach can also be used for a continuous variable. Suppose that x3 is the number of min-
utes of exercise per week. We might be interested in the change in the probability of high blood
pressure of increasing the number of minutes of exercise from 90 to 120 per week. In general,
suppose that we are interested in the change xi3 = c to xi3 = c + δ. Then the discrete change in
probability is

Δp
(xi

)
= p

(xi|xi3 = c + δ
)
− p

(xi|xi3 = c
)

= Φ
(
β1 + β2xi2 + β3c + β3δ

)
− Φ

(
β1 + β2xi2 + β3c

)
(16.12c)

Because the model is nonlinear, the values of c and δ will affect the change in probability.

Estimating Marginal and Discrete Change Effects In order to estimate the
marginal effect in (16.11) or the discrete change effect (16.12), we must have parameter esti-
mates, β̃1,… , β̃K . The estimates are obtained by maximum likelihood estimation, which we
will discuss in Section 16.2.3. For the moment, suppose that we have these estimates. In practice,
they are obtained just like OLS estimates, with a simple computer command. Focus now on the
possible values of the explanatory variables !i =

(
xi1 = 1, xi2,… , xiK

)
. There are several options

for reporting marginal effects:
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1. Marginal effect at means (MEM)3 One choice is x =
(
1, x2,… , xK

)
where xk is the sample

mean of the values for the kth explanatory variable. There are two points of interest here.
First, unlike the linear regression model, the fitted probit model does not pass through the
“point of the means,” so choosing the point x has no special significance. Second, for an
indicator variable, such as xik = 1 for females and xik = 0 for males, the average value xk
is the fraction of the sample that is female. Instead of a 1 or a 0, we might have xk = 0.53,
indicating that 53% of the sample is female.

2. Marginal effect at a representative value (MER) Another possibility is to choose the
values of xi =

(
xi1 = 1, xi2,… , xiK

)
to reflect a particular scenario, a set of values that

tell a “story” about the results. That is, suppose that xi2 is a person’s years of schooling,
xi3 is the person’s sex (1 = female), and xi4 is their income ($1000s). We might specify
!i =

(
1, xi2 = 14, xi3 = 1, xi4 = 100

)
, representing a female with 14 years of schooling and

$100,000 income. This approach is more work because the representative values for the
variables should have some meaning within the context of the research problem, but in
some sense, it is also the most meaningful when describing the results. Of course, some of
the variables’ representative values might be variable means, medians, or quartiles.

3. Average marginal effect (AME) A third option is to calculate the sample average marginal
effect. For a continuous variable, the AME is the sample average of (16.11) evaluated at each
sample observation,

AME
(
xk
)
= N−1

N∑
i=1
∂p
(xi

)
∕∂xik = βk

N∑
i=1
ϕ
(
β1 + β2xi2 + · · · + βKxiK

)
∕N (16.13a)

For a discrete variable, we average the differences in (16.12a). In the simple model
p
(
!i
)
= Φ

(
β1 + β2xi2 + δDi

)
, this average is

AME(D) = N−1
N∑

i=1
Δp

(xi
)

=
N∑

i=1
Φ
(
β1 + β2xi2 + δ

)
∕N −

N∑
i=1
Φ
(
β1 + β2xi2

)
∕N (16.13b)

If, for example, Di = 1 if a person is female, then the first term ∑N
i=1Φ

(
β1 + β2xi2 + δ

)
∕N

assigns the female sex to everyone in the sample, and the second term ∑N
i=1Φ

(
β1 + β2xi2

)
∕N

assigns the male sex to everyone in the sample. There are two advantages to computing the
AME. First, it relieves us of having to make a choice about what to do. Second, relying on
a “law of large numbers” argument, the sample average marginal, or discrete change, effect
can be thought of as estimating the population average response to a change in a variable.

4. A Histogram A fourth option is to examine a histogram of the marginal effects computed
for each xi in the sample.

Predicting Choice with a Probit Model Last but not least, we can use
the probit model to not only estimate the probability that an individual chooses one alter-
native or another but also predict the choice they will make. The probability model is
p
(
!i
)
= Φ

(
β1 + β2xi2 + · · · + βKxiK

)
. Given values of the explanatory variables, and parameter

estimates, β̃1,… , β̃K , we can estimate the probability that an individual will choose alternative
one as p̃

(xi
)
= Φ

(
β̃1 + β̃2xi2 + · · · + β̃KxiK

)
. By comparing the estimated probability to a suitable

threshold, τ, we can predict choice. The first threshold that comes to mind is 0.5. If we estimate
the probability to be greater than or equal to 0.5 we predict ỹi = 1, and if the estimated probability
is less than 0.5, then we predict ỹi = 0.

The threshold 0.5 is not necessarily the best threshold value to use. For example, suppose
that we are the loan officer at a lending institution and must decide whether to give a loan to an
............................................................................................................................................
3We use the abbreviations MEM, MER, and AME, following Cameron and Trivedi (2010) Microeconometrics Using
Stata, Second Edition, pp. 343–356.
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applicant. Using data on previous borrowers, we can estimate a probit model for whether a loan
was repaid on time, yi = 1, or not, yi = 0, as a function of borrower and loan characteristics. The
fact is that most borrowers do repay their loans. If 90% of borrowers pay their loan back and if our
applicant’s estimated probability of repayment is 0.60, then that is a weak endorsement for giving
a loan. For a lender, choosing the profit maximizing threshold τ* is not an easy task. The correct
decision is to give a loan to someone who will repay it and to not give a loan to someone who
won’t repay it. Lenders must weigh two types of incorrect decisions. If the lender gives a loan to
someone who does not repay it, then there are costs (losses) associated with collecting the loan;
further correspondence, legal action, and so on. If the lender does not give a loan to someone
who would repay, there are foregone profits, opportunity costs. Lenders must compare the costs
of these errors. If the threshold is raised, there are increased foregone profits; if the threshold is
lowered, there are more collection costs. There is no one universal threshold that is suitable for
every type of situation.

16.2.3 Maximum Likelihood Estimation of the Probit Model
The maximum likelihood estimation (MLE) methodology is discussed in Appendix C.8. Max-
imum likelihood estimation is based on a principle that is an alternative to the least squares
principle or to other principles such as generalized least squares, or the method of moments,
although it sometimes yields the same results. The MLE methodology is well suited to mod-
els we discuss in this chapter, including the probit binary choice model. Under some suitable
conditions, maximum likelihood estimators have properties that are valid in large samples. If
β̃k is the maximum likelihood estimator of the parameter βk, then it is a consistent estimator,
plim β̃k = βk, and it has an approximate normal distribution in large samples, β̃k

a∼ N
[
βk, var

(
β̃k
)]

.
The estimator variance is known (though complicated algebraically) and can be consistently esti-
mated in several ways. If var

⋀(
β̃k
)

is a consistent estimator of var
(
β̃k
)
, then we can calculate a

standard error, se
(
β̃k
)
=
√

var
⋀(

β̃k
)
. Using the standard error, we can compute interval estimates,

β̃k ± z(1−α∕2)se
(
β̃k
)
, carry out “t-tests,” and so on in the usual way. All of these theoretical results

are illustrated in Appendix C.8. In Example 16.3, we present the essence of the maximum likeli-
hood estimation method.

E X A M P L E 16.3 Probit Maximum Likelihood: A Small Example

We first illustrate the idea of maximum likelihood estimation
in an abbreviated version of the transportation choice model
from Examples 16.1 and 16.2. Suppose that we randomly
select three individuals and observe that the first two drive
to work and the third takes the bus; y1 = 1, y2 = 1, y3 = 0.
Furthermore, suppose that the differences in commuting
times for these individuals, in 10-minute units, are x1 = 1.5,
x2 = 0.6, x3 = 0.7. What is the joint probability of observing
y1 = 1, y2 = 1, y3 = 0? The probability function for yi is
given by (16.2), which we now combine with the probit
model (16.10) to obtain

!
(
yi|xi

)

=
[
Φ
(
β1 + β2xi

)]yi[1 − Φ
(
β1 + β2xi

)]1−yi
, yi = 0, 1

If the three individuals are independently drawn, then the
joint pdf for y1, y2, and y3 is the product of the marginal
probability functions:

!
(
y1, y2, y3|x1, x2, x3

)
= !

(
y1|x1

)
!
(
y2|x2

)
!
(
y3|x3

)

Consequently, the probability of observing y1 = 1, y2 = 1,
and y3 = 0 is

P
(
y1 = 1, y2 = 1, y3 = 0|x1, x2, x3

)

= !
(
1, 1, 0|x1, x2, x3

)
= !

(
1|x1

)
!
(
1|x2

)
!
(
0|x3

)

Substituting the y and x values, we have
P
(
y1 = 1, y2 = 1, y3 = 0|x1, x2, x3

)

= Φ
[
β1 + β2(1.5)

]
× Φ

[
β1 + β2(0.6)

]

×
{

1 − Φ
[
β1 + β2(0.7)

]}

= L
(
β1, β2|y, x) (16.14)

In statistics, the function (16.14), which gives us the proba-
bility of observing the sample data, is called the likelihood
function. The notation L

(
β1, β2|y, x) indicates that the like-

lihood function is a function of the unknown parameters once
we are given the data. It is intuitively reasonable to use as esti-
mates those values β̃1 and β̃2 that maximize the probability,
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or likelihood, of the observed outcome. Unfortunately, for
the probit model, there are no formulas that give us the
values for β̃1 and β̃2 as there are in least squares estimation of
the linear regression model. Consequently, we must use the
computer and techniques from numerical analysis to find the
values β̃1 and β̃2 that maximize L

(
β1, β2|y, x). In practice,

instead of maximizing (16.14), we maximize the logarithm
of (16.14), which is called the log-likelihood function

lnL
(
β1, β2|y, x) = ln

{
Φ
[
β1 + β2(1.5)

]
× Φ

[
β1 + β2(0.6)

]

×
{

1 − Φ
[
β1 + β2(0.7)

]}}

= lnΦ
[
β1 + β2(1.5)

]
+ lnΦ

[
β1 + β2(0.6)

]

+ ln
{

1 − Φ
[
β1 + β2(0.7)

]}
(16.15)

On the surface, this appears to be a difficult task, because
Φ(z) from (16.9) is such a complicated function. As it turns
out, however, using a computer to maximize (16.15) is a
relatively easy process.

The maximization of the log-likelihood function
lnL

(
β1, β2|y, x

)
is easier than the maximization of (16.14),

because it is a sum of terms and not a product of terms.
The logarithm is a nondecreasing, or monotonic, func-
tion so that the maximum values of the two functions
L
(
β1, β2||y, x) and lnL(β1, β2|| y, x) occur at the same val-

ues of β1 and β2, namely, β̃1 and β̃2. The value of the
log-likelihood function (16.15) evaluated at the maximizing
values β̃1 and β̃2 is very useful for hypothesis testing, which is
discussed in Sections 16.2.4 and 16.2.5. Using econometric
software, we find that the parameter values that maximize
(16.15) are β̃1 = −1.1525 and β̃2 = 0.1892. These values
maximize the log-likelihood function, lnL

(
β1, β2|y, x

)
, and

also maximize the likelihood function L
(
β1, β2|y, x

)
. They

are the maximum likelihood estimates. Any other values of
the parameters that we might try will yield a lower value
of the log-likelihood function. Plugging these values into
(16.15), we obtain the value of the log-likelihood function
evaluated at the maximum likelihood estimates, which is
L
(
β̃1, β̃2 |y, x) = −1.5940.

An interesting feature of the maximum likelihood estimation procedure is that while its prop-
erties in small samples are not known, we can show that in large samples the maximum likelihood
estimator is normally distributed, consistent and best, in the sense that no competing estimator
has smaller variance. The properties of maximum likelihood estimators are fully discussed in
Appendix C.8.

We have used only three observations in the numerical illustration above for demonstration
purposes only. In practice, such maximum likelihood estimation procedures should only be used
when large samples are available. In the following section, we present another simple example
that will demonstrate more aspects of the probit choice model.

E X A M P L E 16.4 The Transportation Data: Probit

In Example 16.2, we estimated a linear probability model
using the transportation data, transport. In this example,
we carry out probit estimation. The probit model is
P(AUTO = 1) = Φ

(
β1 + β2DTIME

)
. The maximum likeli-

hood estimates of the parameters are
β̃1 + β̃2DTIME = −0.0644 + 0.3000DTIME

(se) (0.3992) (0.1029)
The values in parentheses below the parameter estimates
are estimated standard errors that are valid in large sam-
ples. These standard errors can be used to carry out
hypothesis tests and construct interval estimates in the
usual way, with the qualification that they are valid in
large samples. The negative sign of β̃1 implies that when
commuting times via bus and auto are equal so DTIME = 0,
individuals have a bias against driving to work, relative
to public transportation, The estimated probability of
a person choosing to drive to work when DTIME = 0
is P̂(AUTO = 1|DTIME = 0) = Φ(−0.0644) = 0.4743. The

positive sign of β̃2 indicates that an increase in public
transportation travel time, relative to auto travel time,
increases the probability that an individual will choose to
drive to work, and this coefficient is statistically significant.

Suppose that we wish to estimate the marginal effect
of increasing public transportation time, given that travel via
public transportation currently takes 20 minutes longer than
auto travel. Using (16.11),

dp
dDTIME

⋀

= ϕ
(
β̃1 + β̃2DTIME

)
β̃2

= ϕ(−0.0644 + 0.3000 × 2)(0.3000)
= ϕ(0.5355)(0.3000) = 0.3456 × 0.3000 = 0.1037

For the probit probability model, an incremental (10-minute)
increase in the travel time via public transportation increases
the probability of travel via auto by approximately 0.1037,
given that taking the bus already requires 20 minutes more
travel time than driving.
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The estimated parameters of the probit model can also
be used to “predict” the behavior of an individual who must
choose between auto and public transportation to travel to
work. If an individual is faced with the situation that it takes
30 minutes longer to take public transportation than to drive
to work, then the estimated probability that auto transporta-
tion will be selected is calculated using (16.12):

p̂ = Φ
(
β̃1 + β̃2DTIME

)
= Φ(−0.0644 + 0.3000 × 3)

= 0.7983

Since the estimated probability that the individual will choose
to drive to work is 0.7983, which is greater than 0.5, we “pre-
dict” that when public transportation takes 30 minutes longer
than driving to work, the individual will choose to drive.

E X A M P L E 16.5 The Transportation Data: More Postestimation Analysis

In Example 16.4, we estimated the probit model for
transportation choice and illustrated basic calculations.
In this example, we carry out further, more advanced,
postestimation analysis.

Marginal Effect at a Representative Value (MER)

The marginal effect of a change in the travel time differen-
tial is

dp
dDTIME

⋀

= ϕ
(
β̃1 + β̃2DTIME

)
β̃2 = g

(
β̃1, β̃2

)

The marginal effect is an estimator, since, given DTIME, it
is a function of the estimators β̃1 and β̃2. The discussions of
the “delta method” in Section 5.7.4 and Appendix 5B are
relevant because the marginal effect is a nonlinear function
of β̃1 and β̃2. The marginal effect estimator is consistent and
asymptotically normal with a variance given by equation
(5B.4). Using this result, we can test marginal effects or
compute interval estimates for them. For example, if the time
differential is currently 20 minutes, so that the representative
value is DTIME = 2, the estimated marginal effect (MER)
is 0.1037 and the estimated standard error of the marginal
effect is 0.0326 using the delta method. Therefore, a 95%
interval estimate of the marginal effect, using the t-critical
value t(0.975,19) = 2.093, is [0.0354, 0.1720]. This interval is
fairly wide. Recall, however, that the maximum likelihood
estimates are based on only 21 observations, which is a very
small sample. The details of the calculation of the standard
error are given in Appendix 16A.1.

Marginal Effect at the Mean (MEM)

If particular values of interest are difficult to identify, many
researchers evaluate the marginal effect “at the means,”
MEM. In these data, the average time travel differential is
DTIME = −0.1224 (1.2 minutes), and for this value, the
marginal effect of a 10-minute increase in the time travel
differential is 0.1191. The slightly larger effect, compared
to DTIME = 2, is consistent with the second point in the

Section 16.2.1 discussion. When the mean difference in
travel time is near zero, the effect of a change in travel time
difference is greater. We can compute a standard error for
this marginal effect just as we did for MER, if we treat
DTIME as given.

Average Marginal Effect (AME)

Rather than evaluate the marginal effect at a specific value, or
the mean value, we can compute the average of the marginal
effects evaluated at each sample data point. That is,

AME
⋀

= 1
N

N∑
i=1
ϕ
(
β̃1 + β̃2DTIMEi

)
β̃2

= 1
N
β̃2

N∑
i=1
ϕ
(
β̃1 + β̃2DTIMEi

)

The average marginal effect has become a popular alter-
native to computing the marginal effect at the mean as
it summarizes the response of individuals in the sample
to a change in the value of an explanatory variable. For
the current example, AME

⋀

= 0.0484, which is the sample
average estimated increase in probability given a 10-minute
increase in bus travel time relative to auto travel time.
Because the estimated marginal effect is different for each
individual in the sample, we are interested in not only its
average value but also its variation in the sample. The sample
standard deviation of ϕ

(
β̃1 + β̃2DTIMEi

)
β̃2 is 0.0365, and its

minimum and maximum values are 0.0025 and 0.1153.
We can evaluate the standard error of the aver-

age marginal effect using the delta method. Recall that
AME
⋀

= 0.0484. Its standard error estimated using the delta
method is 0.0034. Details of this calculation are given in
Appendix 16A.2. A 95% interval estimate of the population
average marginal effect, using the t-critical value, is [0.0413,
0.0556]. This is much narrower than the MER interval
estimate because we are estimating a different quantity,
namely AME = 1

N
β2
∑N

i=1ϕ
(
β1 + β2DTIMEi

)
.
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Estimated Probability of Driving

The estimated probability that AUTO = 1 given that the
commuting time difference is 30 minute is calculated as p̂ =
Φ
(
β̃1 + β̃2DTIME

)
= Φ(−0.0644 + 0.3000 × 3) = 0.7983.

Note that the predicted probability is a nonlinear function
of the parameter estimates. Using the delta method, we can

compute a standard error for the prediction and thus an inter-
val estimate. The details of the calculation of the standard
error are given in Appendix 16A.3. The calculated standard
error is 0.1425, so that a 95% prediction interval, again using
the t-critical value t(0.975,19) = 2.093, is [0.5000, 1.0966].
Note that the upper endpoint of the interval is greater than 1,
which means that some of the values are infeasible.

This example has been used to illustrate in a simple problem how probit works. In reality, estimat-
ing complicated models like probit and logit with as few observations as we are using, N = 21, is
not a good idea. In fact, microeconometric models can have many more parameters and sometimes
are estimated using very large data sets.

16.2.4 The Logit Model for Binary Choices
A frequently used alternative to the probit model for binary choice situations is the logit model.
These models differ only in the particular S-shaped curve used to constrain probabilities to the
[0, 1] interval. If L is a logistic random variable, then its pdf is

λ(l) = e−l
(
1 + e−l

)2 , −∞ < l <∞ (16.16)

The corresponding cumulative distribution function, unlike the normal distribution, has a
closed-form expression, which makes analysis somewhat easier. The cumulative distribution
function for a logistic random variable is

Λ(l) = p[L ≤ l] = 1
1 + e−l (16.17)

In the logit model, if there is a single explanatory variable x, the probability p(x) that the observed
value y takes the value 1 is

p(x) = P
[
L ≤ γ1 + γ2x

]
= Λ

(
γ1 + γ2x

)
= 1

1 + e−(γ1+γ2x) (16.18)

A more generally useful form of p(x) is

p(x) = 1
1 + e−(γ1+γ2x) =

exp
(
γ1 + γ2x

)

1 + exp
(
γ1 + γ2x

)

Then the probability that y = 0 is

1 − p(x) = 1
1 + exp

(
γ1 + γ2x

)

Represented in this way, the logit model can be extended to cases in which the choice is between
more than two alternatives, as we will see in Section 16.3.

In maximum likelihood estimation of the logit model, the probability given in (16.18) is used
to form the likelihood function (16.14) by inserting “Λ” for “Φ.” To interpret the logit estimates,
the equations (16.11) and (16.12) are still valid, using (16.16) instead of the normal pdf .
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The shapes of the logistic and normal pdfs are somewhat different and maximum likelihood
estimates of β1 and β2 will differ from γ1 and γ2. Roughly4

γ̃Logit ≅ 4β̂LPM

β̃Probit ≅ 2.5β̂LPM

γ̃Logit ≅ 1.6β̃Probit

While the probit and logit parameter estimates differ, the marginal effects and predicted proba-
bilities differ very little in most cases. In these expressions LPM denotes the linear probability
model.

E X A M P L E 16.6 An Empirical Example from Marketing

In Section 7.4.1, we introduced the example of a linear proba-
bility model for the choice between Coke and Pepsi. Here, we
compare the linear probability model to the probit and logit
models for this binary choice. The outcome variable is COKE

COKE =
{

1 if Coke is chosen
0 if Pepsi is chosen

The expected value of this variable is E(COKE|x) = pCOKE =
probability that Coke is chosen. As explanatory variables, x,
we use the relative price of Coke to Pepsi (PRATIO), as
well as DISP_COKE and DISP_PEPSI, which are indicator
variables taking the value 1 if the respective store display
is present and 0 if it is not present. We anticipate that the
presence of a Coke display will increase the probability of
a Coke purchase, and the presence of a Pepsi display will
decrease the probability of a Coke purchase.

The data file coke contains “scanner” data on 1140 indi-
viduals who purchased Coke or Pepsi. The linear probability,
probit, and logit models for the choice are

pCOKE = E(COKE|x)
= α1 + α2PRATIO + α3DISP_COKE
+ α4DISP_PEPSI

pCOKE = E(COKE|x)
= Φ

(
β1 + β2PRATIO + β3DISP_COKE

+ β4DISP_PEPSI
)

pCOKE = E(COKE|x)
= Λ

(
γ1 + γ2PRATIO + γ3DISP_COKE

+ γ4DISP_PEPSI
)

We have given the choice model parameters different symbols
to emphasize that the parameters have different meanings.
The estimates are given in Table 16.1.

The parameters and their estimates vary across the mod-
els and no direct comparison is very useful. More relevant,

T A B L E 16.1 Coke-Pepsi Choice Models

LPM Probit Logit
C 0.8902 1.1081 1.9230

(0.0653) (0.1900) (0.3258)

PRATIO −0.4009 −1.1460 −1.9957
(0.0604) (0.1809) (0.3146)

DISP_COKE 0.0772 0.2172 0.3516
(0.0339) (0.0966) (0.1585)

DISP_PEPSI −0.1657 −0.4473 −0.7310
(0.0344) (0.1014) (0.1678)

Standard errors in parentheses (White robust se for LPM)

however, is the comparison of the estimated probabilities and
marginal effects implied by the alternative models.
Estimated probabilities at representative values Suppose
that PRATIO = 1.1, indicating that the price of Coke is 10%
higher than the price of Pepsi, and no store displays are
present. Using the linear probability model, the estimated
probability of Coke choice is 0.4493 with standard error
0.0202. Using probit, the estimated probability is 0.4394
with standard error 0.0218, and for logit, the estimated
probability is 0.4323 with standard error 0.0224.
Average marginal effects (AME) In the linear probability
model, the estimated marginal effect of PRATIO is −0.4009.
This does not depend on the values of the variables. For
the probit model, the average marginal effect of PRATIO is
−0.4097 with standard error 0.0616, and for the logit model,
the average marginal effect of PRATIO is −0.4333 with
standard error 0.0639. In this example, the average marginal
effect from the probit model is not too different from that
implied by the linear probability model.

............................................................................................................................................
4T. Amemiya (1981) “Qualitative response models: A Survey,” Journal of Economic Literature, 19, pp. 1483–1536, or
A. Colin Cameron and Pravin K. Trivedi (2010) Microeconometrics Using Stata: Revised Edition, Stata Press, p. 465.
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Marginal effect at a representative value (MER) If we
examine specific scenarios then differences appear. For
example, suppose PRATIO = 1.1, indicating that the price
of Coke is 10% higher than the price of Pepsi, and no
store displays are present. The estimated marginal effect of
PRATIO from the probit model is −0.4519, with standard
error 0.0703. Using the logit estimates, the marginal effect is
−0.4898 with standard error 0.0753.
Prediction success Another basis for comparison is how well
the alternative models predict choice outcomes. For the linear

probability model, compute the predicted value COKE
⋀

,
then predict consumer choice by comparing this value to
0.5. If COKE
⋀

is greater than 0.5, we predict the consumer
will choose Coke. For the probit model, we estimate the
probability of choosing Coke using equation (16.10). Using
the 0.5 threshold, we find that of the 510 consumers who
chose COKE, 247 were correctly predicted. Of the 630
who chose PEPSI, 507 were correctly predicted. In this
example, the number of correct predictions is identical for
the linear probability model, probit and logit.

16.2.5 Wald Hypothesis Tests
Hypothesis tests concerning individual coefficients in probit and logit models are carried out in
the usual way based on an “asymptotic-t” test. If the null hypothesis is H0∶βk = c, then the test
statistic using the probit model is

t =
β̃k − c
se
(
β̃k
) a∼ N(0, 1)

where β̃k is the probit parameter estimator. The test is asymptotically justified and we should
use the test critical values from the standard normal distribution. For two-tail tests, these are the
familiar 1.645 for 10%, 1.96 for 5%, and 2.58 for 1%. However, it is not uncommon to take a
more conservative approach and, if the sample size is not very large, to use critical values from
the t(N−K) distribution, where K is the number of parameters estimated. Your software may report
“z” statistics instead of “t” and automatically compute p-values and calculate interval estimates
with critical numbers from the standard normal distribution, rather than the t-distribution.

The t-test is based on the Wald principle, which uses the model coefficient estimates, esti-
mated variances, covariances, and standard errors that are asymptotically valid. This testing prin-
ciple is discussed in Appendix C.8.4. It is common for software packages to have “built in” Wald
test statements (something like “TEST”) that are convenient to use after a model is estimated. For
linear hypotheses, such as H0∶c2β2 + c3β3 = c0, the test statistic is of the familiar form,

t =
(
c2β̃2 + c3β̃3

)
− c0√

c2
2var
⋀(

β̃2
)
+ c2

3var
⋀(

β̃3
)
+ 2c2c3cov

⋀(
β̃2, β̃3

)

If the null hypothesis is true, then this statistic has an asymptotic N(0, 1) distribution but again
t(N−K) might be used if the sample is not truly large. For joint linear hypotheses, such as

H0∶c2β2 + c3β3 = c0, a4β4 + a5β5 = a0

a valid large sample Wald test is based on the chi-square distribution. If there are J joint hypothe-
ses, the Wald statistic has an asymptotic χ2

(J) distribution. The null hypothesis is rejected if the
Wald test statistic, W, is greater than or equal to the (1 − α) percentile of the χ2

(J) distribu-
tion, χ2

(1−α, J). In Section 6.1.5, we discuss large sample tests in the linear regression model. The
chi-square test was labeled V̂1 in equation (6.14), and it was calculated as the difference between
the sums of squared residuals from an unrestricted and a restricted model, divided by the esti-
mated error variance. That is not the way the statistic is calculated in nonlinear models such as
probit and logit, but the interpretation is the same. There is a “small-sample” conservative cor-
rection using the F-statistic, F = W∕J a∼ F(J,N−K), which is similar to using t-critical values instead
of those from the N(0, 1) distribution. Do not be surprised if your software reports a chi-square
statistic instead of a t-statistic even when only one hypothesis is being tested.
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E X A M P L E 16.7 Coke Choice Model: Wald Hypothesis Tests

Here are some examples of various tests in the Coke choice
model.
Test of significance Using the estimates in Table 16.1, we
can test the significance of the coefficients in the usual way.
The probit model for COKE is

pCOKE = Φ
(
β1 + β2PRATIO + β3DISP_COKE

+ β4DISP_PEPSI
)

We might like to test the null hypothesis H0∶β3 ≤ 0 against
H1∶β3 > 0. The test statistic is t = β̃3∕se

(
β̃3
) a∼ N(0, 1) if

the null hypothesis is true. Using a 5% one-tail test, the
critical value is z(0.95) = 1.645. The calculated value of the
test statistic is t = β̃3∕se

(
β̃3
)
= 2.2481, and thus, we reject

the null hypothesis at the 5% level and conclude that a
display for Coke has a positive effect on the probability that
a consumer will purchase Coke. Using a TEST statement
might also produce the Wald statistic W = 5.0540. For a
single hypothesis W = t2. The Wald test statistic is designed
for two-tail tests; in this case H0∶β3 = 0 versus H1∶β3 ≠ 0,
yields a two-tail p-value of p = 0.0246. If your software
reports a t-statistic or an F-statistic, the p-value will be
slightly larger, p = 0.0248. There is little difference here
because the sample is large with N = 1140 observations. The
Wald test critical value is χ2

(0.95,1) = 3.841 from Statistical
Table 3.
Testing an economic hypothesis Another hypothesis of
interest is H0∶β3 = −β4 versus H1∶β3 ≠ −β4. This hypothe-
sis is that the coefficients on the display variables are equal
in magnitude but opposite in sign or that the effects of the
Coke and Pepsi displays have an equal but opposite effect on
the probability of choosing Coke. The t-test statistic is

t =
β̃3 + β̃4

se
(
β̃3 + β̃4

) a∼ N(0, 1)

Noting that it is a two-tail alternative hypothesis, we reject
the null hypothesis at the α = 0.05 level if t ≥ 1.96 or

t ≤ −1.96. The calculated t-value is t = −2.3247, so we
reject the null hypothesis and conclude that the effects of
the Coke and Pepsi displays are not of equal magnitude
with opposite sign. This test is asymptotically valid because
N − K = 1140 − 4 = 1136 is a large sample. Automatic
TEST statements usually generate the chi-square distribu-
tion version of the test, which in this case is the square
of the t-statistic, W = 5.4040. The 5% critical value is
χ2
(0.95,1) = 3.841 so we reject the null hypothesis. We reach

the same conclusion as using the t-test. The link between the
t- and chi-square test is fully explained in Appendix C.8.4.
Testing joint significance Another hypothesis of interest is

H0∶β3 = 0, β4 = 0 H1∶β3 ≠ 0 and∕or β4 ≠ 0

This joint null hypothesis is that neither the Coke nor Pepsi
display affects the probability of choosing Coke. Here we
are testing J = 2 hypotheses, so that the Wald statistic has
an asymptotic χ2

(2) distribution. Using Statistical Table 3, the
0.95 percentile value for this distribution is 5.991. In this
case, the value of the Wald statistic is W = 19.4594, and thus,
we reject the null hypothesis and conclude that the Coke or
Pepsi display has an effect on the probability of choosing
Coke. This test statistic value can be computed using the auto-
matic TEST statement in your software.
Testing the overall model significance As in the linear
regression model, we are interested in testing the overall sig-
nificance of the probit model. In the Coke choice example, the
null hypothesis for this test is H0∶β2 = 0, β3 = 0, β4 = 0.
The alternative hypothesis is that at least one of the param-
eters is not zero. The value of the Wald test statistic is
132.54. The test statistic has an asymptotic χ2

(3) distribution if
the null hypothesis is true. The 0.95 percentile value for this
distribution is 7.815, so we reject the null hypothesis that
none of the explanatory variables help explain the choice of
Coke versus Pepsi.

16.2.6 Likelihood Ratio Hypothesis Tests
When using maximum likelihood estimators, such as probit and logit, tests based on the likelihood
ratio principle are generally preferred. Appendix C.8.4 contains a discussion of this methodol-
ogy. The idea is much like the F-test in the linear regression model. One test component is the
log-likelihood function value in the unrestricted, full model (call it lnLU) evaluated at the maxi-
mum likelihood estimates. This calculation was illustrated in Example 16.3. Whenever a model
is estimated by maximum likelihood, the maximized value of the log-likelihood function is auto-
matically reported by econometric software. The second ingredient in a likelihood ratio test is
the log-likelihood function value from the model that is “restricted” by imposing the condition
that the null hypothesis is true (call it lnLR). Thus, the likelihood ratio test has the disadvantage
of requiring two estimations of the model; once for the original model and once for the model
that assumes the hypothesis is true. The likelihood ratio test statistic is LR = 2

(
ln LU − ln LR

)
.
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The idea is that if the null hypothesis is true, then there should be little difference between the
log-likelihood function with or without the hypothesis being assumed true. In that case, the LR
statistic will be small but always greater than zero. If the null hypothesis is not true, then when
we estimate the model assuming that it is true, the model should not fit as well, and the maximum
value of the restricted log-likelihood function will be lower, making LR larger. Large values of
the LR test statistic are evidence against the null hypothesis. If the null hypothesis is true, the
statistic has an asymptotic chi-square distribution with degrees of freedom equal to the number
of hypotheses, J, being tested. The null hypothesis is rejected if the value LR is larger than the
chi-square distribution critical value, χ2

(1−α, J).

E X A M P L E 16.8 Coke Choice Model: Likelihood Ratio Hypothesis Tests

We can use likelihood ratio tests for the same hypotheses con-
sidered in Example 16.7.
Test of significance The probit model for COKE is

pCOKE = Φ
(
β1 + β2PRATIO + β3DISP_COKE

+ β4DISP_PEPSI
)

To test the null hypothesis H0∶β3 = 0 against H1∶β3 ≠ 0
using the likelihood ratio principle, we first note that the
maximized value of the log-likelihood function is lnLU =
−710.9486. If the null hypothesis is true, then the restricted
model is pCOKE = Φ

(
β1 + β2PRATIO + β4DISP_PEPSI

)
.

Estimating this model by maximum likelihood, we find
lnLR = −713.4803, which is smaller than in the original
model, as it must be. Imposing constraints on a probit
model will reduce the maximized value of the log-likelihood
function. Then

LR = 2
(
lnLU − lnLR

)
= 2

[
−710.9486 − (−713.4803)

]

= 5.0634
The 5% critical value is χ2

(0.95,1) = 3.841. We reject the null
hypothesis that a display for Coke has no effect.
Test of an economic hypothesis To test H0∶β3 = −β4,
we first obtain the unrestricted probit model log-likelihood
value, lnLU = −710.9486. The restricted probit model is
obtained by imposing the condition β3 = −β4 on the model,
leading to

pCOKE = Φ
(
β1 + β2PRATIO + β3DISP_COKE

+ β4DISP_PEPSI
)

= Φ
(
β1 + β2PRATIO − β4DISP_COKE

+ β4DISP_PEPSI
)

= Φ
(
β1 + β2PRATIO

+ β4(DISP_PEPSI − DISP_COKE)
)

Estimating this model by maximum likelihood probit, we
obtain lnLR = −713.6595. The likelihood ratio test statistic

value is then

LR = 2
(
lnLU − lnLR

)
= 2

[
−710.9486 − (−713.6595)

]

= 5.4218

This value is larger than the 0.95 percentile from the χ2
(1) dis-

tribution, χ2
(0.95,1) = 3.841. Note that the values of the LR and

Wald statistics (from Example 16.7) are not the same but
are close in this case. The Wald test statistic value is easier
to compute, since it requires only the maximum likelihood
estimates for the original, unrestricted model. However, the
likelihood ratio test has been found to be more reliable in a
wide variety of more complex testing situations, and it is the
preferred test.5
Test of joint significance To test the joint null hypoth-
esis H0∶β3 = 0, β4 = 0, use the restricted model
E(COKE|x) = Φ(β1 + β2PRATIO

)
. The value of the

likelihood ratio test statistic is 19.55, which is larger than the
χ2
(2) 0.95 percentile value 5.991. We reject the null hypothesis

that neither the Coke nor Pepsi display has an effect on the
choice of Coke.
Testing the overall model significance As in the linear
regression model, we are interested in testing the overall sig-
nificance of the probit model. In the Coke choice example,
the null hypothesis for this test is H0∶β2 = 0, β3 = 0,
β4 = 0. The alternative hypothesis is that at least one of the
parameters is not zero. If the null hypothesis is true, the
restricted model is E(COKE) = Φ

(
β1
)
. The log-likelihood

value for this restricted model is lnLR = −783.8603 and the
value of the likelihood ratio test statistic is LR = 145.8234.
The test statistic has an asymptotic χ2

(3) distribution if the
null hypothesis is true. The 0.95 percentile value for this
distribution is 7.815, so we reject the null hypothesis that
none of the explanatory variables help explain the choice of
Coke versus Pepsi. In addition, like in the linear regression
model, this “overall” test is reported in standard probit
computer output.

............................................................................................................................................
5Griffiths, W. E., Hill, R. C., & Pope, P. (1987). Small Sample Properties of Probit Model Estimators. Journal of the
American Statistical Association, 82, 929–937.



❦

❦ ❦

❦

698 CHAPTER 16 Qualitative and Limited Dependent Variable Models

16.2.7 Robust Inference in Probit and Logit Models
You may be wondering if there are “robust” standard errors for use with probit and logit that
correct for heteroskedasticity and/or serial correlation. Unfortunately, the answer is no. As noted
in Chapter 8, equation (8.32), the 0-1 random variable yi has conditional variance var

(
yi|xi

)
=

p
(xi

)[
1 − p

(xi
)]

. In the probit model, for example, this means that

var
(
yi|xi

)
= Φ

(
β1 + β2xi2 + · · · + βKxiK

)[
1 − Φ

(
β1 + β2xi2 + · · · + βKxiK

)]

There is no other possible variance if the probit model is correct. Maximum likelihood estimation
of the probit model does not require any adjustment for this built in heteroskedasticity. Some
software packages do have probit with a robust option, but it does not provide the type of robust
results we have seen in Chapters 8 and 9. If you happen to use one of these options, and if the
“robust” standard errors are much different from the usual probit standard errors, then, if anything,
it is a symptom of some specification problem, such as incorrect functional form.

An exception is when there are data clusters. In Section 15.2.1, we introduced cluster-robust
standard errors. There we discussed clusters in the context of panel data. However, clusters of
observations, in which there are intracluster correlations, can occur in many contexts. We may
observe individuals within different villages, and there may be a common unobserved hetero-
geneity within villages representing a “village effect.” The unobserved heterogeneity causes a
correlation among individuals in the same village, while there is no correlation among individ-
uals across villages. In these situations, conventional standard errors may greatly overstate the
precision of estimation. Therefore, using cluster-robust standard errors with probit and logit is
recommended when the problem is suitable. In general, this means that there are many clusters
with not too many observations in each.6 Be careful when implementing cluster-robust standard
errors as the computer command may be quite different from the usual “robust” standard error
command.

16.2.8 Binary Choice Models with a Continuous
Endogenous Variable

There are several ways that probit concepts can be combined with endogenous variables. The
first is when the outcome variable is binary, as in the linear probability or probit models, and an
explanatory variable is endogenous. As in our discussions of instrumental variables and two-stage
least squares estimation in Chapters 10 and 11, the estimation methods here require instrumental
variables.

The first, and easiest, option is to estimate a linear probability model for the binary outcome
variable using IV/2SLS. To be specific, suppose that the equation of interest is

yi1 = α2yi2 + β1 + β2xi2 + ei

where yi1 = 1 or 0, yi2 is a continuous endogenous variable, and xi2 is an exogenous variable, that
is uncorrelated with the random error ei. Suppose that we have an instrumental variable zi so that
the first-stage equation, or reduced form, is

yi2 = π1 + π2xi2 + π3zi + vi

Using the IV/2SLS estimation approach, we first estimate this equation by OLS, obtain the fitted
values ŷi2 = π̂1 + π̂2xi2 + π̂3zi. Substituting these fitted values into the equation of interest we
have yi1 = α2ŷi2 + β1 + β2xi2 + e∗i . Estimating this model by OLS produces IV/2SLS estimates.
However, as always, to obtain correct standard errors use IV/2SLS software, and in this case use
heteroskedasticity robust standard errors.

............................................................................................................................................
6A complete but advanced resource is A. Colin Cameron and Douglas L. Miller (2015). A Practitioner’s Guide to
Cluster-Robust Inference, The Journal of Human Resources, 50(2), 317–372.
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This approach is familiar and easy to implement. As always we must be concerned about the
strength of the instrumental variable. The coefficient π3 must not be zero, and when the first-stage
model is estimated, it must be statistically very significant. As previously noted, using the lin-
ear probability model is not ideal when the outcome variable is binary. The procedure we have
outlined ignores the binary character of the outcome variable, but it may reasonably estimate
the population average marginal effect. There is another, more theoretically complicated, maxi-
mum likelihood estimator that is called instrumental variables probit, or simply IV probit.7 This
estimator is available in some software packages.

E X A M P L E 16.9 Estimating the Effect of Education
on Labor Force Participation

When studying the wages of married women, Examples
10.1–10.7 using data file mroz, we were very concerned with
the endogeneity of education. In those examples, we only
considered women who were in the labor force and had an
observable market wage. Now we ask about the effect of
education on the decision to join the labor force or not. Let

LFP =
{

1 in labor force
0 not in labor force

Consider the linear probability model

LFP = α1EDUC + β1 + β2EXPER + β3EXPER2

+ β4KIDSL6 + β5AGE + e

Suppose the instrumental variable for EDUC is MOTHERE-
DUC. The first-stage equation is

EDUC = π1 + π2EXPER + π3EXPER2 + π4KIDSL6
+ π5AGE + π6MOTHEREDUC + v

In the first-stage estimation, the t-value for the coefficient
of MOTHEREDUC is 12.85, which using conventional
standards indicates that this instrument is not weak.
The two-stage least squares estimates of the labor force
participation equation, with robust standard errors, are

LFP
⋀

= 0.0388EDUC + 0.5919 + 0.0394EXPER
(se) (0.0165) (0.2382) (0.0060)

− 0.0006EXPER2− 0.2712KIDSL6 − 0.0177AGE
(0.0002) (0.03212) (0.0023)

We estimate that each additional year of education increases
the probability of a married woman being in the labor force
by 0.0388, holding all else constant. The regression-based
Hausman test for the endogeneity of education, using robust
standard errors, has a p-value of 0.646. Thus, we cannot reject
the exogeneity of education in this model, using the instru-
ment MOTHEREDUC.

16.2.9 Binary Choice Models with a Binary Endogenous
Variable

Modify the model in Section 16.2.8 so that the endogenous variable yi2 is binary. The first, and
easiest, option is again to estimate a linear probability model for the binary outcome variable
using IV/2SLS. To be specific, suppose that the equation of interest is

yi1 = α2yi2 + β1 + β2xi2 + ei

where yi1 = 1 or 0, yi2 = 1 or 0, and xi2 is an exogenous variable, that is uncorrelated with the
random error ei. Suppose that we have an instrumental variable zi so that the first-stage equation,
or reduced form, is

yi2 = π1 + π2xi2 + π3zi + vi

Using the IV/2SLS estimation approach, we first estimate this equation by OLS, obtain the fitted
values ŷi2 = π̂1 + π̂2xi2 + π̂3zi. Substituting these fitted values into the equation of interest we

............................................................................................................................................
7See William Greene (2018) Econometric Analysis, Eighth Edition, Prentice-Hall, page 773, or Jeffery M. Wooldridge
(2010) Econometric Analysis of Cross Section and Panel Data, Second Edition, MIT Press, p. 585–594. These
references are very advanced.
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have yi1 = α2ŷi2 + β1 + β2xi2 + e∗i . Estimate this model by OLS to obtain IV/2SLS estimates. Of
course, as always, use proper IV/2SLS software and, because the dependent variable is binary,
use heteroskedasticity robust standard errors.

It is tempting but incorrect to think that the first-stage equation can be estimated by probit,
followed by substituting p̃i = P̃

(
yi2 = 1

)
= Φ

(
π̃1 + π̃2xi2 + π̃3zi

)
into the equation of interest, and

then applying either probit or the linear probability model. The second estimation is called a for-
bidden regression.8 Two-stage least squares works only when it consists of two OLS regressions,
substituting OLS fitted values from a first-stage regression in for the endogenous variable in the
first equation. 2SLS works because OLS has the property that the residuals are uncorrelated with
the explanatory variables.

Once again the linear probability model approach “works” but does not use the fact that
yi1 = 1 or 0 and yi2 = 1 or 0 are binary variables. A maximum likelihood estimation approach
called bivariate probit9 does take this into account.

E X A M P L E 16.10 Women’s Labor Force Participation and Having
More Than Two Children

The Angrist and Evans (1998)10 model of labor force
participation, LFP = 1 or 0, includes as an explanatory
variable the indicator variable MOREKIDS = 1 if the woman
has three or more children, and MOREKIDS = 0 otherwise.
Intuitively, we think having three or more children will
have a negative effect on the probability of labor force
participation. The very clever instrumental variable used
is the indicator variable where the value SAMESEX = 1

if the woman’s first two children are of the same sex, and
SAMESEX = 0 otherwise. The idea behind this instrumental
variable is that while it should have no direct effect on labor
force participation it is correlated with a woman having three
or more children. If a woman’s first two children are both
boys (girls), then she may be inclined to have another child
in the hope of getting a girl (boy).

16.2.10 Binary Endogenous Explanatory Variables
Modify the model in Section 16.2.9 so that the outcome variable yi1 is continuous and the endoge-
nous variable yi2 is binary. This model has long been studied and was first called a dummy
endogenous variable model by Nobel prize winner James Heckman. The first, and easiest, option
is to use IV/2SLS. To be specific, suppose that the equation of interest is

yi1 = α2yi2 + β1 + β2xi2 + ei

where yi1 is continuous, the endogenous variable yi2 = 1 or 0, and xi2 is an exogenous variable,
that is uncorrelated with the random error ei. Suppose that we have an instrumental variable zi so
that the first-stage equation, or reduced form, is

yi2 = π1 + π2xi2 + π3zi + vi

............................................................................................................................................
8Jeffery M. Wooldridge (2010) Econometric Analysis of Cross Section and Panel Data, Second Edition, MIT Press,
p. 267–268 and 596–597.
9See William Greene (2018) Econometric Analysis, Eighth Edition, Prentice-Hall, Chapter 17.9, or Jeffery M.
Wooldridge (2010) Econometric Analysis of Cross Section and Panel Data, Second Edition, MIT Press, pages.
594–599. These references are very advanced.
10Children and Their Parents’ Labor Supply: Evidence from Exogenous Variation in Family Size, The American
Economic Review, Vol. 88, No. 3 (Jun., 1998), pp. 450–477. See also Jeffery M. Wooldridge (2010) Econometric
Analysis of Cross Section and Panel Data, Second Edition, MIT Press, pp. 597–598.
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Using the IV/2SLS estimation approach, we first estimate this linear probability model by
OLS, obtain the fitted values ŷi2 = π̂1 + π̂2xi2 + π̂3zi. Substituting these fitted values into the
equation of interest we have yi1 = α2ŷi2 + β1 + β2xi2 + e∗i . Estimating this model by OLS yields
the 2SLS estimates. As always proper IV/2SLS software should be used.

The presence of an endogenous binary variable is an important feature in some treatment
effect models.11

E X A M P L E 16.11 Effect of War Veteran Status on Wages

A widely cited work by Joshua Angrist examines the effect of
serving in the Vietnam war on the wages of male American
workers. December 1, 1969, there was a lottery to determine
eligibility for being drafted into service. Imagine 366 slips
of paper each written with a birth date. The slips are placed
in a jar, mixed up, and a slip drawn. The first date drawn was
September 14. All men of eligible age with that birthday were
given draft lottery number 1. The second date drawn was
April 24 and was given lottery number 2, and so on. In the
first lottery, all those with lottery numbers 195 or less were
called to report for possible induction into the military. Some
of those chosen did not serve for medical or other reasons, and
some chose to volunteer. Thus, those who ultimately served,
and became war veterans, did not correspond exactly to those
with lottery numbers less than or equal to 195.

Consider a model of worker earnings, 10 years after the
draft. Let VETERAN = 1 if a person was a veteran and = 0

otherwise. Because some chose to volunteer, the binary vari-
able VETERAN is endogenous in the model

EARNINGS = α2VETERAN + β1
+ β2OTHER_FACTORS + ei

What is a possible instrument? A person’s lottery number
is correlated with veteran status. More specifically, let
LOTTERY = 1 if a person’s draft lottery number was 195
or less, and LOTTERY = 0 otherwise. We anticipate that
LOTTERY will be positively correlated with VETERAN and
is a potential instrument. This type of binary IV leads to the
Wald estimator, introduced in Exercises 10.5 and 10.6. The
results of the IV estimation show that serving in the military
has a negative and significant effect on wages.

16.2.11 Binary Choice Models and Panel Data
In Chapter 15, we used panel data to control for unobservable heterogeneity across individuals.
The fixed effects estimator includes an indicator, or dummy, variable for each individual. Equiva-
lently, the within estimator uses deviations about individual means to estimate coefficients of the
regression function. We use the fixed effects estimator when the unobservable heterogeneity is
correlated with the explanatory variables. The random effects estimator is a generalized least
squares estimator that accounts for intra-individual error correlations caused by unobserved het-
erogeneity. It is more efficient than the fixed effects estimator but is inconsistent if the unobserv-
able heterogeneity is correlated with any of the included explanatory variables.

If the outcome variable is binary, then using the panel data methods with the linear probability
model is exactly the same as with the linear regression model. If there is unobserved heterogeneity
that is correlated with one or more explanatory variables, then using the fixed effects estimator
or the first difference estimator is appropriate. If the unobserved heterogeneity is not correlated
with any explanatory variables, then using the random effects estimator is an option, as is the less
efficient but consistent OLS estimator with robust cluster-corrected standard errors.

Using probit or logit with panel data is a different story. The probit model is a nonlin-
ear model, that is, a nonlinear function of the parameters. If the unobserved heterogeneity is

............................................................................................................................................
11A discussion of the results and similar estimators can be found in Joshua D. Angrist and Jörn-Steffen Pischke (2009)
Mostly Harmless Econometrics: An Empiricist’s Guide, Princeton Press, pages 128–138. This reference is advanced.
Other examples and estimation approaches for treatment effects are in Jeffery M. Wooldridge (2010) Econometric
Analysis of Cross Section and Panel Data, Second Edition, MIT Press, Chapter 21. This reference is very advanced. For
an advanced and exhaustive survey see G. W. Imbens and J. M. Wooldridge (2009) “Recent Developments in the
Econometrics of Program Evaluation,” Journal of Economic Literature, 47(1), 5–86.
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correlated with the explanatory variables, we have a problem. The usual fixed effect approach
to dealing with individual heterogeneity fails. If there are N individuals and N → ∞ (gets large)
while T remains fixed, then adding an indicator variable for each individual leads to a model in
which the number of parameters we must estimate N + K also approaches ∞. The probit estima-
tor is no longer consistent because there are too many parameters. In statistics, this is called the
incidental parameters problem. In the linear regression model, we avoid this problem by using the
within-transformation, based on the Frisch–Waugh–Lovell theorem, so that we can estimate the
regression function parameters without having to estimate all the fixed effects coefficients. This
does not work in probit because of the nonlinear nature of the problem. In probit, we cannot apply
the Frisch–Waugh–Lovell theorem and simply using variables in deviations about the mean form
does not work. There is no fixed effects probit estimator, although researchers are considering
methods for reducing the bias of the estimator so that it might be used. On the other hand, there
is a type of panel logit fixed effects model called conditional logit, or sometimes Chamberlain’s
conditional logit,12 recognizing the innovative econometrician Gary Chamberlain. It is not the
same as introducing indicator variables for each individual into the logit model.

The probit model can however be combined with random effects to obtain a random effects
probit model. The actual method of maximizing the likelihood function requires some tricky
integrals, which can be solved using numerical approximations or simulations. As with the
linear regression model, the random effects estimator is inconsistent if the random effects
are correlated with the explanatory variables. It has been suggested that controls for time
invariant factors, such as the time averages of the independent variables, xi •, be introduced,
similar to the Mundlak method for carrying out the Hausman test discussed in Chapter 15. The
resulting model is called the Mundlak–Chamberlain-correlated random effects probit model.13

The added variables xi • act like control variables, possibly reducing the random effects probit
estimator bias.

A dynamic binary choice model, which includes the lagged value of the choice variable on
the right-hand side as an explanatory variable, is an obvious way to handle habit persistence.
Coke drinkers buying soda today are more likely to purchase Coke if they purchased Coke when
shopping on the previous occasion. However, in such models, the lagged endogenous variable will
be correlated with the random effect, as noted in Chapter 15. In this case, the previous estimators
are inconsistent and new methods14 must be considered.

16.3 Multinomial Logit
In probit and logit models, the decision-maker chooses between two alternatives. Clearly, we
are often faced with choices involving more than two alternatives. These are called multinomial
choice situations. Examples include the following:
• If you are shopping for a laundry detergent, which one do you choose? Tide, Cheer, Arm &

Hammer, Wisk, and so on. The consumer is faced with a wide array of alternatives. Mar-
keting researchers relate these choices to prices of the alternatives, advertising, and product
characteristics.

• If you enroll in the business school, will you major in economics, marketing, management,
finance, or accounting?

• If you are going to a mall on a shopping spree, which mall will you go to, and why?
• When you graduated from high school, you had to choose between not going to college and

going to a private 4-year college, a public 4-year college, or a 2-year college. What factors
led to your decision among these alternatives?

............................................................................................................................................
12See Wooldridge (2010, 620–622), Greene (2018, 787–789), or Baltagi (2013, 240–243). The material is advanced.
13See Greene (2018, 792–793) and Wooldridge (2010, 616–619).
14See Greene (2018, 794–796), Baltagi (2013, 248–253), and Wooldridge (2010, 625–630).
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It would not take you long to come up with other illustrations. In each of these cases, we wish
to relate the observed choice to a set of explanatory variables. More specifically, as in probit and
logit models, we wish to explain and estimate the probability that an individual with a certain set
of characteristics chooses one of the alternatives. The estimation and interpretation of such models
is, in principle, similar to that in logit and probit models. The models themselves go under the
names multinomial logit, conditional logit, and multinomial probit. We will discuss the most
commonly used logit models.

16.3.1 Multinomial Logit Choice Probabilities
Suppose that a decision-maker must choose between several distinct alternatives. Let us focus on
a problem with J = 3 alternatives. An example might be the choice facing a high-school graduate.
Shall I attend a 2-year college, a 4-year college, or not go to college? The factors affecting this
choice might include household income, the student’s high-school grades, family size, race, and
sex, and the parents’ education. As in the logit and probit models, we will try to explain the
probability that the ith person will choose alternative j,

pij = P
[
individual i chooses alternative j

]

In our example, there are J = 3 alternatives, denoted by j = 1, 2, or 3. These numerical values
have no meaning because the alternatives in general have no particular ordering and are assigned
arbitrarily. You can think of them as categories A, B, and C.

If we assume a single explanatory factor, xi, then, in the multinomial logit specification, the
probabilities of individual i choosing alternatives j = 1, 2, 3 are

pi1 = 1
1 + exp

(
β12 + β22xi

)
+ exp

(
β13 + β23xi

) , j = 1 (16.19a)

pi2 =
exp

(
β12 + β22xi

)

1 + exp
(
β12 + β22xi

)
+ exp

(
β13 + β23xi

) , j = 2 (16.19b)

pi3 =
exp

(
β13 + β23xi

)

1 + exp
(
β12 + β22xi

)
+ exp

(
β13 + β23xi

) , j = 3 (16.19c)

The parameters β12 and β22 are specific to the second alternative and β13 and β23 are specific to
the third alternative. The parameters specific to the first alternative are set to zero to solve an
identification problem and to make the probabilities sum to one.15 Setting β11 = β21 = 0 leads to
the 1 in the numerator of pi1 and the 1 in the denominator of each part of (16.19). Specifically,
the term that would be there is exp(β11 + β21xi) = exp(0 + 0xi) = 1.

A distinguishing feature of the multinomial logit model in (16.19) is that there is a single
explanatory variable that describes the individual, not the alternatives facing the individual. Such
variables are called individual specific. To distinguish the alternatives, we give them different
parameter values. This situation is common in the social sciences, where surveys record many
characteristics of the individuals, and choices they made.

16.3.2 Maximum Likelihood Estimation
Let yi1, yi2, and yi3 be indicator variables representing the choice made by individual i. If alter-
native 1 is selected, then yi1 = 1, yi2 = 0, and yi3 = 0. If alternative 2 is selected, then yi1 = 0,
yi2 = 1, and yi3 = 0. In this model, each individual must choose one, and only one, of the available
alternatives.
............................................................................................................................................
15Some software may choose the parameters of the last (Jth) alternative to set to zero, or perhaps the most frequently
chosen group. Check your software documentation.
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Estimation of this model is by maximum likelihood. Suppose that we observe three individu-
als, who choose alternatives 1, 2, and 3, respectively. Assuming that their choices are independent,
then the probability of observing this outcome is

P
(
y11 = 1, y22 = 1, y33 = 1|x1, x2, x3

)
= p11 × p22 × p33

= 1
1 + exp

(
β12 + β22x1

)
+ exp

(
β13 + β23x1

)

×
exp

(
β12 + β22x2

)

1 + exp
(
β12 + β22x2

)
+ exp

(
β13 + β23x2

)

×
exp

(
β13 + β23x3

)

1 + exp
(
β12 + β22x3

)
+ exp

(
β13 + β23x3

)

= L
(
β12, β22, β13, β23

)

In the last line, we recognize that this joint probability depends on the unknown parameters and is
in fact the likelihood function. Maximum likelihood estimation seeks those values of the param-
eters that maximize the likelihood or, more specifically, the log-likelihood function, which is
easier to work with mathematically. In a real application, the number of individuals will be greater
than three, and computer software will be used to maximize the log-likelihood function numeri-
cally. While the task might look daunting, finding the maximum likelihood estimates in this type
of model is fairly simple.

16.3.3 Multinomial Logit Postestimation Analysis
Given that we can obtain maximum likelihood estimates of the parameters, which we denote as
β̃12, β̃22, β̃13, and β̃23, what can we do then? The first thing we might do is estimate the probability
that an individual will choose alternative 1, 2, or 3. For the value of the explanatory variable x0,
we can calculate the predicted probabilities of each outcome being selected using (16.19). For
example, the probability that such an individual will choose alternative 1 is

p̃01 = 1
1 + exp

(
β̃12 + β̃22x0

)
+ exp

(
β̃13 + β̃23x0

)

The estimated probabilities for alternatives 2 and 3, p̃02 and p̃03, can similarly be obtained. If we
wanted to predict which alternative would be chosen, we might choose to predict that alternative
j will be chosen if p̃0j is the maximum of the estimated probabilities.

Because the model is such a complicated nonlinear function of the parameters, it will not
surprise you to learn that the βs are not “slopes.” In these models, the marginal effect is the
effect of a change in x, everything else held constant, on the probability that an individual chooses
alternative m = 1, 2, or 3. It can be shown16 that

Δpim
Δxi

||||all else constant
=
∂pim
∂xi

= pim

[
β2m −

3∑
j=1
β2jpij

]
(16.20)

Recall that the model we are discussing has a single explanatory variable, xi, and that β21 = 0.

............................................................................................................................................
16One can quickly become overwhelmed by the mathematics when seeking references on this topic. Two relatively
friendly sources with good examples are Regression Models for Categorical and Limited Dependent Variables by
J. Scott Long (Thousand Oaks, CA: Sage Publications, 1997) [see Chapter 5] and Quantitative Models in Marketing
Research by Philip Hans Franses and Richard Paap (Cambridge University Press, 2001) [see Chapter 5]. At a much
more advanced level, see Econometric Analysis, Eighth edition by William Greene (Upper Saddle River, NJ: Pearson
Prentice Hall, 2018) [see Section 18.2.3].
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Alternatively, and somewhat more simply, the difference in probabilities can be calculated for
two specific values of xi. If xa and xb are two values of xi, then the estimated change in probability
of choosing alternative 1 [m = 1] when changing from xa to xb is

Δp
∼

1 = p̃b1 − p̃a1

= 1
1 + exp

(
β̃12 + β̃22xb

)
+ exp

(
β̃13 + β̃23xb

)

− 1
1 + exp

(
β̃12 + β̃22xa

)
+ exp

(
β̃13 + β̃23xa

)

This approach is good if there are certain scenarios that you as a researcher have in mind as typical
or important cases or if x is an indicator variable with only two values, xa = 0 and xb = 1.

Another useful interpretive device is the probability ratio. It shows how many times more
likely category j is to be chosen relative to the first category and is given by

P
(
yi = j

)

P
(
yi = 1

) =
pij

pi1
= exp

(
β1j + β2jxi

)
, j = 2, 3 (16.21)

The effect on the probability ratio of changing the value of xi is given by the derivative
∂
(
pij∕pi1

)

∂xi
= β2jexp

(
β1j + β2jxi

)
, j = 2, 3 (16.22)

The value of the exponential function exp
(
β1j + β2jxi

)
is always positive. Thus, the sign of β2j

tells us whether a change in xi will make the jth category more or less likely relative to the first
category.

An interesting feature of the probability ratio (16.21) is that it does not depend on how many
alternatives there are in total. There is the implicit assumption in logit models that the probability
ratio between any pair of alternatives is independent of irrelevant alternatives (IIA). This is a
strong assumption, and if it is violated, multinomial logit may not be a good modeling choice.
It is especially likely to fail if several alternatives are similar. Tests for the IIA assumption work
by dropping one or more of the available options from the choice set and then reestimating the
multinomial model. If the IIA assumption holds, then the estimates should not change very much.
A statistical comparison of the two sets of estimates, one set from the model with a full set of
alternatives, and the other from the model using a reduced set of alternatives, is carried out using
a Hausman contrast test proposed by Hausman and McFadden (1984).17

E X A M P L E 16.12 Postsecondary Education Multinomial Choice

The National Education Longitudinal Study of 1988
(NELS:88) was the first nationally representative longitu-
dinal study of eighth-grade students in public and private
schools in the United States. It was sponsored by the
National Center for Education Statistics. In 1988, some
25,000 eighth-graders and their parents, teachers, and
principals were surveyed. In 1990, these same students (who

were then mostly 10th graders, and some dropouts) and
their teachers and principals were surveyed again. In 1992,
the second follow-up survey was conducted of students,
mostly in the 12th grade, but dropouts, parents, teachers,
school administrators, and high school transcripts were
also surveyed. The third follow-up was in 1994, after most
students had graduated.18

............................................................................................................................................
17“Specification Tests for the Multinomial Logit Model,” Econometrica, 49, pp. 1219–1240. A brief explanation of the
test may be found in Greene (2018, Chapter 18.2.4), op. cit., p. 767.
18The study and data are summarized in National Education Longitudinal Study: 1988–1994, Descriptive Summary
Report with an Essay on Access and Choice in Post-Secondary Education, by Allen Sanderson, Bernard Dugoni,
Kenneth Rasinski, and John Taylor, C. Dennis Carroll project officer, NCES 96-175, National Center for Education
Statistics, March 1996.
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We have taken a subset of the total data, namely those
who stayed in the panel of data through the third follow-up.
On this group, we have complete data on the individuals
and their households, high-school grades, and test scores, as
well as their postsecondary education choices. In the data
file nels_small, we have 1000 observations on students who
chose, upon graduating from high school, either no college
(PSECHOICE = 1), a 2-year college (PSECHOICE = 2),
or a 4-year college (PSECHOICE = 3). For illustration
purposes, we focus on the explanatory variable GRADES,
which is an index ranging from 1.0 (highest level, A+ grade)
to 13.0 (lowest level, F grade) and represents combined
performance in English, maths, and social studies.

Of the 1000 students, 22.2% selected not to attend a
college upon graduation, 25.1% selected to attend a 2-year
college, and 52.7% attended a 4-year college. The average
value of GRADES is 6.53, with highest grade 1.74 and lowest
grade 12.33. The estimated values of the parameters and
their standard errors are given in Table 16.2. We selected the
group who did not attend a college to be our base group, so
that the parameters β11 = β21 = 0.

Based on these estimates, what can we say? Recall
that a larger numerical value of GRADES represents a
poorer academic performance. The parameter estimates for

T A B L E 16.2
Maximum Likelihood Estimates
of PSE Choice

Parameters Estimates
Standard
Errors t-Statistics

β12 2.5064 0.4183 5.99
β22 −0.3088 0.0523 −5.91
β13 5.7699 0.4043 14.27
β23 −0.7062 0.0529 −13.34

T A B L E 16.3 Effects of Grades on Probability of PSE Choice

PSE Choice GRADES p̂ se( p̂
) Marginal Effect se(ME)

No college 6.64 0.1810 0.0149 0.0841 0.0063
2.635 0.0178 0.0047 0.0116 0.0022

Two-year college 6.64 0.2856 0.0161 0.0446 0.0076
2.635 0.0966 0.0160 0.0335 0.0024

Four-year college 6.64 0.5334 0.0182 −0.1287 0.0095
2.635 0.8857 0.0174 −0.0451 0.0030

the coefficients of GRADES are negative and statistically sig-
nificant. Using expression (16.22) on the effect of a change in
an explanatory variable on the probability ratio, this means
that if the value of GRADES increases, the probability that
high-school graduates will choose a 2-year or a 4-year college
goes down, relative to the probability of not attending college.
This is the anticipated effect, as we expect that a poorer aca-
demic performance will increase the odds of not attending
college.

We can also compute the estimated probability of each
type of college choice using (16.19) for given values of
GRADES. In our sample, the median value of GRADES is
6.64, and the top 5th percentile value is 2.635.19 What are
the choice probabilities of students with these grades? In
Table 16.3, we show that the probability of choosing no
college is 0.1810 for the student with median grades, but
this probability is reduced to 0.0178 for students with top
grades. Similarly, the probability of choosing a 2-year school
is 0.2856 for the average student but is 0.0966 for the better
student. Finally, the average student has a 0.5334 chance of
selecting a 4-year college, but the better student has a 0.8857
chance of selecting a 4-year college.

The marginal effect of a change in GRADES on the
choice probabilities can be calculated using (16.20). The
marginal effect again depends on particular values for
GRADES, and we report these in Table 16.3 for the median
and 5th percentile students. An increase in GRADES of one
point (worse performance) increases the probabilities of
choosing either no college or a 2-year college and reduces
the probability of attending a 4-year college. The probability
of attending a 4-year college declines more for the average
student than for the top student, given the one-point increase
in GRADES. Note that for each value of GRADES the sum
of the predicted probabilities is one, and the sum of the
marginal effects is zero, except for rounding error. This is a
feature of the multinomial logit specification.

............................................................................................................................................
19The 5th percentile value of GRADES is given as 2.635 which is halfway between observations 50 and 51 in this 1,000
observation data set. While this is a common way to calculate the 5th percentile, it is not the only way. Since
0.05 × 1000 = 50, some software will report the 50th value, after sorting according to increasing value, 2.63. Others
may take a weighted average of the 50th and 51st values, such as 0.95 × 2.63 + 0.05 × 2.64 = 2.6305. Thanks to Tom
Doan (Estima) for noting this. Standard errors in Table 16.3 are computed via “the delta method,” in a fashion similar to
that described in Appendix 16A.
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16.4 Conditional Logit
Suppose that a decision-maker must choose between several distinct alternatives, just as in the
multinomial logit model. In a marketing context, suppose that our decision is between three types
(J = 3) of soft drinks, say Pepsi, 7-Up, and Coke Classic, in 2-liter bottles. Shoppers will visit
their supermarkets and make a choice, based on prices of the products and other factors. With the
advent of supermarket scanners at checkout, data on purchases (what brand, how many units, and
the price paid) are recorded. Of course, we also know the prices of the products that the consumer
did not buy on a particular shopping occasion. The key point is that if we collect data on soda pur-
chases from a variety of supermarkets, over a period of time, we observe consumer choices from
the set of alternatives and we know the prices facing the shopper on each trip to the supermarket.

Let yi1, yi2, and yi3 be indicator variables that indicate the choice made by individual i. If
alternative one (Pepsi) is selected, then yi1 = 1, yi2 = 0, and yi3 = 0. If alternative two (7-Up)
is selected, then yi1 = 0, yi2 = 1, and yi3 = 0. If alternative 3 (Coke) is selected, then yi1 = 0,
yi2 = 0, and yi3 = 1. The price facing individual i for brand j is PRICEij. That is, the price of
Pepsi, 7-Up, and Coke is potentially different for each customer who purchases soda. Remember,
different customers can shop at different supermarkets and at different times. Variables like PRICE
are individual- and alternative-specific because they vary from individual to individual and are
different for each choice the consumer might make. This type of information is very different from
what we assumed was available in the multinomial logit model, where the explanatory variable
xi was individual-specific; it did not change across alternatives.

16.4.1 Conditional Logit Choice Probabilities
Our objective is to understand the factors that lead a consumer to choose one alternative over
another. We construct a model for the probability that individual i chooses alternative j

pij = P
[
individual ichooses alternative j

]

The conditional logit model specifies these probabilities as

pij =
exp

(
β1j + β2PRICEij

)

exp
(
β11 + β2PRICEi1

)
+ exp

(
β12 + β2PRICEi2

)
+ exp

(
β13 + β2PRICEi3

) (16.23)

Note that unlike the probabilities for the multinomial logit model in (16.19), there is only one
parameter β2 relating the effect of each price to the choice probability pij. We have also included
alternative specific constants (intercept terms). These cannot all be estimated, and one must be
set to zero. We will set β13 = 0.

Estimation of the unknown parameters is by maximum likelihood. Suppose that we observe
three individuals, who choose alternatives one, two, and three, respectively. Assuming that their
choices are independent, then the probability of observing this outcome is

P
(
y11 = 1, y22 = 1, y33 =1

)
= p11 × p22 × p33

=
exp

(
β11+ β2PRICE11

)

exp
(
β11+ β2PRICE11

)
+ exp

(
β12 + β2PRICE12

)
+ exp

(
β2PRICE13

)

×
exp

(
β12 + β2PRICE22

)

exp
(
β11 + β2PRICE21

)
+ exp

(
β12 + β2PRICE22

)
+ exp

(
β2PRICE23

)

×
exp

(
β2PRICE33

)

exp
(
β11 + β2PRICE31

)
+ exp

(
β12 + β2PRICE32

)
+ exp

(
β2PRICE33

)

= L
(
β11, β12, β2

)
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16.4.2 Conditional Logit Postestimation Analysis
How a change in price affects the choice probability is different for “own price” changes and
“cross-price” changes. Specifically, it can be shown that the own price effect is

∂pij

∂PRICEij
= pij

(
1 − pij

)
β2 (16.24)

The sign of β2 indicates the direction of the own price effect.
The change in probability of alternative j being selected if the price of alternative k changes

(k ≠ j) is
∂pij

∂PRICEik
= −pijpikβ2 (16.25)

The cross-price effect is in the opposite direction of the own price effect.
An important feature of the conditional logit model is that the probability ratio between alter-

natives j and k is
pij

pik
=

exp
(
β1j + β2PRICEij

)

exp
(
β1k + β2PRICEik

) = exp
[(
β1j − β1k

)
+ β2

(
PRICEij − PRICEik

)]

The probability ratio depends on the difference in prices but not on the prices themselves. As in
the multinomial logit model, this ratio does not depend on the total number of alternatives, and
there is the implicit assumption of the independence of irrelevant alternatives (IIA). See the
discussion at the end of Section 16.3.3. Models that do not require the IIA assumption have been
developed, but they are difficult. These include the multinomial probit model, which is based on
the normal distribution, and the nested logit and mixed logit models.20

E X A M P L E 16.13 Conditional Logit Soft Drink Choice

We observe 1822 purchases, covering 104 weeks and 5 stores,
in which a consumer purchased 2-liter bottles of either Pepsi
(34.6%), 7-Up (37.4%), or Coke Classic (28%). These data
are in the file cola. In the sample, the average price of Pepsi
was $1.23, 7-Up $1.12, and Coke $1.21. We estimate the con-
ditional logit model shown in (16.22), and the estimates are
shown in Table 16.4a.

T A B L E 16.4a
Conditional Logit Parameter
Estimates

Variable Estimate
Standard

Error t-Statistic p-Value
PRICE(β2) −2.2964 0.1377 −16.68 0.000
PEPSI(β11) 0.2832 0.0624 4.54 0.000
7-UP(β12) 0.1038 0.0625 1.66 0.096

We see that all the parameter estimates are significantly
different from zero at a 10% level of significance, and the sign
of the coefficient of PRICE is negative. This means that a
rise in the price of an individual brand will reduce the prob-
ability of its purchase, and the rise in the price of a com-
petitive brand will increase the probability of its purchase.
Table 16.4b contains the marginal effects of price changes
on the probability of choosing Pepsi. The marginal effects
are calculated using (16.24) and (16.25) with prices of Pepsi,
7-Up, and Coke set to $1.00, $1.25, and $1.10, respectively.
The standard errors are calculated using the delta method.
Note two things about these estimates. First, they have the
signs we anticipate. An increase in the price of Pepsi is esti-
mated to have a negative effect on the probability of Pepsi
purchase, while an increase in the price of either Coke or
7-Up increases the probability that Pepsi will be selected.
Second, these values are very large for changes in probabili-
ties because a “one-unit change” is $1, which then represents
almost a 100% change in price. For a 10-cent increase in

............................................................................................................................................
20For a brief description of these models at an advanced level, see William Greene, Econometric Analysis, Eighth
Edition by (Upper Saddle River, NJ: Pearson Prentice Hall, 2018), Chapter 18.2.5. Mixed and nested logit models are
important in applied research. David A. Hensher, John M. Rose, William H. Greene (2015) Applied Choice Analysis,
2nd Edition, Cambridge University Press, provide a comprehensive overview and integration of choice models, along
with software instructions using the NLOGIT software package. Survey methodology is also discussed.
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the prices the marginal effects, standard errors and interval
estimate bounds should be multiplied by 0.10.

T A B L E 16.4b
Marginal Effect of Price on
Probability of Pepsi Choice

PRICE
Marginal

Effect
Standard

Error
95% Interval

Estimate
COKE 0.3211 0.0254 [0.2712, 0.3709]
PEPSI −0.5734 0.0350 [−0.6421, −0.5048]
7-UP 0.2524 0.0142 [0.2246, 0.2802]

As an alternative to computing marginal effects, we can com-
pute specific probabilities at given values of the explanatory

variables. For example, at the prices used for Table 16.4b, the
estimated probability of selecting Pepsi is then

p̂i1 =
exp

(
β̃11 + β̃2 × 1.00

)
[
exp

(
β̃11 + β̃2 × 1.00

)
+ exp

(
β̃12 + β̃2 × 1.25

)

+exp
(
β̃2 × 1.10

) ]

= 0.4832

The standard error for this predicted probability is 0.0154,
which is computed via the delta method. If we raise the price
of Pepsi to $1.10, we estimate that the probability of its pur-
chase falls to 0.4263 (se = 0.0135). If the price of Pepsi stays
at $1.00 but we increase the price of Coke by 15 cents, then
we estimate that the probability of a consumer selecting Pepsi
rises by 0.0445 (se = 0.0033). These numbers indicate to us
the responsiveness of brand choice to changes in prices, much
like elasticities.

16.5 Ordered Choice Models
The choice options in multinomial and conditional logit models have no natural ordering or
arrangement. However, in some cases, choices are ordered in a specific way. Examples include
the following:

1. Results of opinion surveys in which responses can be strongly in disagreement, in disagree-
ment, neutral, in agreement, or strongly in agreement.

2. Assignment of grades or work performance ratings. Students receive grades A, B, C, D, and
F, which are ordered on the basis of a teacher’s evaluation of their performance. Employees
are often given evaluations on scales such as outstanding, very good, good, fair, and poor,
which are similar in spirit.

3. Standard and Poor’s rates bonds as AAA, AA, A, BBB, and so on, as a judgment about the
credit worthiness of the company or country issuing a bond, and how risky the investment
might be.

4. Levels of employment as unemployed, part time, or full time.

When modeling these types of outcomes, numerical values are assigned to the outcomes, but the
numerical values are ordinal and reflect only the ranking of the outcomes. In the first example,
we might assign a dependent variable y the values

y =

⎧
⎪
⎪
⎪
⎨
⎪
⎪
⎪⎩

1 strongly disagree
2 disagree
3 neutral
4 agree
5 strongly agree

In Section 16.3, we considered the problem of choosing what type of college to attend after
graduating from high school as an illustration of a choice among unordered alternatives.



❦

❦ ❦

❦

710 CHAPTER 16 Qualitative and Limited Dependent Variable Models

However, in this particular case, there may in fact be natural ordering. We might rank the
possibilities as

y =
⎧
⎪
⎨
⎪⎩

3 four-year college (the full college experience)
2 two-year college (apartial college experience)
1 no college

(16.26)

The usual linear regression model is not appropriate for such data, because in regression we would
treat the y-values as having some numerical meaning when they do not. In the following section,
we discuss how probabilities of each choice might be modeled.

16.5.1 Ordinal Probit Choice Probabilities
When faced with a ranking problem, we develop a “sentiment” about how we feel concerning
the alternative choices, and the higher the sentiment, the more likely a higher ranked alternative
will be chosen. This sentiment is, of course, unobservable to the econometrician. Unobservable
variables that enter decisions are called latent variables, and we will denote our sentiment toward
the ranked alternatives by y∗i , with the “star” reminding us that this variable is unobserved. See
Appendix 16B for more on latent variables.

Microeconomics is well described as the “science of choice.” Economic theory will suggest
that certain factors (observable variables) may affect how we feel about the alternatives facing
us. As a concrete example, let us think about what factors might lead a high-school graduate to
choose among the alternatives “no college,” “2-year college,” and “4-year college” as described
by the ordered choices in (16.26). Some factors that affect this choice are household income, the
student’s high-school grades, how close a 2- or 4-year college is to the home, whether parents
had attended a 4-year college, and so on. For simplicity, let us focus on the single explanatory
variable GRADES. The model is then

y∗i = βGRADESi + ei

This model is not a regression model because the dependent variable is unobservable. Conse-
quently, it is sometimes called an index model. The error term is present for the usual reasons.
The choices we observe are based on a comparison of “sentiment” toward higher education y∗i
relative to certain thresholds, as shown in Figure 16.2.

Because there are M = 3 alternatives, there are M – 1 = 2 thresholds μ1 and μ2, with μ1 < μ2.
The index model does not contain an intercept because it would be exactly collinear with the
threshold variables. If sentiment toward higher education is in the lowest category, then y∗i ≤ μ1
and the alternative “no college” is chosen, if μ1 < y∗i ≤ μ2 then the alternative “2-year college”

µ1 µ2

–∞ +∞
*
iy

iy  = 1 (no college) yi = 2 (2-year college) yi = 3 (4-year college)

FIGURE 16.2 Ordinal choices relative to thresholds.
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is chosen, and if sentiment toward higher education is in the highest category, then y∗i > μ2 and
“4-year college” is chosen. That is,

yi =
⎧
⎪
⎨
⎪⎩

3 (four-year college) if y∗i > μ2
2 (two-year college) if μ1 < y∗i ≤ μ2
1 (no college) if y∗i ≤ μ1

We are able to represent the probabilities of these outcomes if we assume a particular probability
distribution for y∗i , or equivalently for the random error ei. If we assume that the errors have the
standard normal distribution, N(0, 1), an assumption that defines the ordered probit model, then
we can calculate the following:

P
(
yi = 1

)
= P

(
y∗i ≤ μ1

)
= P

(
βGRADESi + ei ≤ μ1

)

= P
(
ei ≤ μ1 − βGRADESi

)

= Φ
(
μ1 − βGRADESi

)

P
(
yi = 2

)
= P

(
μ1 < y∗i ≤ μ2

)
= P

(
μ1 < βGRADESi + ei ≤ μ2

)

= P
(
μ1 − βGRADESi < ei ≤ μ2 − βGRADESi

)

= Φ
(
μ2 − βGRADESi

)
− Φ

(
μ1 − βGRADESi

)

and the probability that y = 3 is
P
(
yi = 3

)
= P

(
y∗i > μ2

)
= P

(
βGRADESi + ei > μ2

)

= P
(
ei > μ2 − βGRADESi

)

= 1 − Φ
(
μ2 − βGRADESi

)

16.5.2 Ordered Probit Estimation and Interpretation
Estimation, as with previous choice models, is by maximum likelihood. If we observe a random
sample of N = 3 individuals, with the first not going to college (y1 = 1), the second attending
a 2-year college (y2 = 2), and the third attending a 4-year college (y3 = 3), then the likelihood
function is

L
(
β, μ1, μ2

)
= P

(
y1 = 1

)
× P

(
y2 = 2

)
× P

(
y3 = 3

)

Note that the probabilities depend on the unknown parameters μ1 and μ2 as well as the index
function parameter β. These parameters are obtained by maximizing the log-likelihood function
using numerical methods. Econometric software includes options for both ordered probit, which
depends on the errors being standard normal, and ordered logit, which depends on the assumption
that the random errors follow a logistic distribution. Most economists will use the normality
assumption, but many other social scientists use the logistic. In the end, there is little difference
between the results.

The types of questions we can answer with this model are the following:

1. What is the probability that a high-school graduate with GRADES = 2.5 (on a 13-point scale,
with one being the highest) will attend a 2-year college? The answer is obtained by plug-
ging in the specific value of GRADES into the estimated probability using the maximum
likelihood estimates of the parameters,

P̂(y = 2|GRADES = 2.5) = Φ
(
μ̃2 − β̃ × 2.5

)
− Φ

(
μ̃1 − β̃ × 2.5

)
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2. What is the difference in probability of attending a 4-year college for two students, one
with GRADES = 2.5 and another with GRADES = 4.5? The difference in the probabilities
is calculated directly as

P̂(y = 3|GRADES = 4.5) − P̂(y = 3|GRADES = 2.5)

3. If we treat GRADES as a continuous variable, what is the marginal effect on the probability
of each outcome, given a one-unit change in GRADES? These derivatives are

∂P(y = 1)
∂GRADES

= −ϕ
(
μ1 − βGRADES

)
× β

∂P(y = 2)
∂GRADES

=
[
ϕ
(
μ1 − βGRADES

)
− ϕ

(
μ2 − βGRADES

)]
× β

∂P(y = 3)
∂GRADES

= ϕ
(
μ2 − βGRADES

)
× β

In these expressions, “ϕ( • )” denotes the pdf of a standard normal distribution, and its values are
always positive. Consequently, the sign of the parameter β is opposite the direction of the marginal
effect for the lowest category, but it indicates the direction of the marginal effect for the highest
category. The direction of the marginal effect for the middle category goes one way or the other,
depending on the sign of the difference in brackets.

There are a variety of other devices that can be used to analyze the outcomes, including some
useful graphics. For more on these, see (from a social science perspective) Regression Models
for Categorical and Limited Dependent Variables by J. Scott Long (Sage Publications, 1997,
Chapter 5) or (from a marketing perspective) Quantitative Models in Marketing Research by
Philip Hans Franses and Richard Paap (Cambridge University Press, 2001, Chapter 6). A com-
prehensive reference is by William H. Greene and David A. Hensher (2010) Modeling Ordered
Choices: A Primer, Cambridge University Press.

E X A M P L E 16.14 Postsecondary Education Ordered Choice Model

To illustrate, we use the college choice data introduced in
Section 16.3 and contained in the data file nels_small. We
treat PSECHOICE as an ordered variable with 1 represent-
ing the least favored alternative (no college) and 3 denoting
the most favored alternative (4-year college). The estimation
results are in Table 16.5.

T A B L E 16.5
Ordered Probit Parameter
Estimates for PSE Choice

Parameters Estimates Standard Errors
β −0.3066 0.0191
μ1 −2.9456 0.1468
μ2 −2.0900 0.1358

The estimated coefficient of GRADES is negative,
indicating that the probability of attending a 4-year college
goes down when GRADES increase (indicating a worse
performance), and the probability of the lowest ranked
choice, attending no college, increases. Let us examine the
marginal effects of an increase in GRADES on attending
a 4-year college. For a student with median grades (6.64),
the marginal effect is −0.1221, and for a student in the 5th
percentile (2.635), the marginal effect is −0.0538. These
are similar in magnitude to the marginal effects shown in
Table 16.3.
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16.6 Models for Count Data
When the dependent variable in a regression model is a count of the number of occurrences of an
event, the outcome variable is y = 0, 1, 2, 3,… These numbers are actual counts and thus different
from the ordinal numbers of the previous section. Examples include the following:

• The number of trips to a physician a person makes during a year.
• The number of fishing trips taken by a person during the previous year.
• The number of children in a household.
• The number of automobile accidents at a particular intersection during a month.
• The number of televisions in a household.
• The number of alcoholic drinks a college student takes in a week.

While we are again interested in explaining and estimating probabilities, such as the probability
that an individual will take two or more trips to the doctor during a year, the probability distribu-
tion we use as a foundation is the Poisson, not the normal or the logistic. If Y is a Poisson random
variable, then its probability function is

!(y) = P(Y = y) = e−λλy

y! , y = 0, 1, 2,… (16.27)

The factorial (!) term y! = y × (y − 1) × (y − 2) × · · · × 1. This probability function has one
parameter, λ, which is the mean (and variance) of Y . That is, E(Y) = var(Y) = λ. In a regression
model, we try to explain the behavior of E(Y) as a function of some explanatory variables. We do
the same here, keeping the value of E(Y) ≥ 0 by defining

E
(
Y|x) = λ = exp

(
β1 + β2x

)
(16.28)

This choice defines the Poisson regression model for count data.

16.6.1 Maximum Likelihood Estimation of the Poisson
Regression Model

The parameters β1 and β2 in (16.28) can be estimated by maximum likelihood. Suppose that we
randomly select N = 3 individuals from a population and observe that their counts are y1 = 0,
y2 = 2, and y3 = 2, indicating 0, 2, and 2 occurrences of the event for these three individuals.
Recall that the likelihood function is the joint probability function of the observed data, interpreted
as a function of the unknown parameters. That is,

L
(
β1, β2

)
= P(Y = 0) × P(Y = 2) × P(Y = 2)

This product of functions like (16.27) will be very complicated and difficult to maximize. How-
ever, in practice, maximum likelihood estimation is carried out by maximizing the logarithm of
the likelihood function, or

lnL
(
β1, β2

)
= lnP(Y = 0) + lnP(Y = 2) + lnP(Y = 2)

Using (16.28) for λ, the log of the probability function is

ln
[
P(Y = y|x)

]
= ln

[
e−λλy

y!

]
= −λ + yln(λ) − ln(y!)

= −exp
(
β1 + β2x

)
+
[
y ×

(
β1 + β2x

)]
− ln(y!)
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Then the log-likelihood function, given a sample of N observations, becomes

lnL
(
β1, β2

)
=

N∑
i=1

{
−exp

(
β1 + β2xi

)
+ yi ×

(
β1 + β2xi

)
− ln

(
yi!

)}

This log-likelihood function is a function of only β1 and β2 once we substitute in the data values
(yi, xi). The log-likelihood function itself is still a nonlinear function of the unknown parameters,
and the maximum likelihood estimates must be obtained by numerical methods. Econometric
software has options that allow for the maximum likelihood estimation of count models with the
click of a button.

16.6.2 Interpreting the Poisson Regression Model
As in other modeling situations, we would like to use the estimated model to predict outcomes,
determine the marginal effect of a change in an explanatory variable on the mean of the dependent
variable, and test the significance of coefficients.

Estimation of the conditional mean of y is straightforward. Given the maximum likelihood
estimates β̃1 and β̃2, and given a value of the explanatory variable x0,

E
(
y0
)⋀

= λ̃0 = exp
(
β̃1 + β̃2x0

)

This value is an estimate of the expected number of occurrences observed if x takes the value x0.
The probability of a particular number of occurrences can be estimated by inserting the estimated
conditional mean into the probability function, as

P(Y = y)
⋀

=
exp

(
−λ̃0

)
λ̃y

0
y! , y = 0, 1, 2,…

The marginal effect of a change in a continuous variable x in the Poisson regression model
is not simply given by the parameter because the conditional mean model is a nonlinear
function of the parameters. Using our specification that the conditional mean is given by
E
(
yi|xi

)
= λi = exp

(
β1 + β2xi

)
, and using rules for derivatives of exponential functions, we

obtain the marginal effect
∂E

(
yi|xi

)

∂xi
= λiβ2 (16.29)

To estimate this marginal effect, replace the parameters by their maximum likelihood estimates
and select a value for x. The marginal effect is different depending on the value of x chosen.
A useful fact about the Poisson model is that the conditional mean E

(
yi|xi

)
= λi = exp

(
β1 + β2xi

)
is always positive because the exponential function is always positive. Thus, the direction of the
marginal effect can be determined from the sign of the coefficient β2.

Equation (16.29) can be expressed as a percentage, which can be useful:

%ΔE
(
yi|x

)

Δxi
= 100

∂E
(
yi|x

)
∕E
(
yi|x

)

∂xi
= 100β2%

If x is not transformed, then a one-unit change in x leads to 100β2% change in the conditional mean.
Suppose that the conditional mean function contains a indicator variable, how do we calculate

its effect? If E
(
yi|x

)
= λi = exp

(
β1 + β2xi + δDi

)
, we can examine the conditional expectation

when D = 0 and when D = 1.

E
(
yi|xi,Di = 0

)
= exp

(
β1 + β2xi

)

E
(
yi|xi,Di = 1

)
= exp

(
β1 + β2xi + δ

)
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Then, the percentage change in the conditional mean is

100
[

exp
(
β1 + β2xi + δ

)
− exp

(
β1 + β2xi

)

exp
(
β1 + β2xi

)
]
% = 100

[
eδ − 1

]
%

This is identical to the expression we obtained for the effect of an indicator variable in a log-linear
model. See Section 7.3.

Finally, hypothesis testing can be carried out using standard methods. The maximum likeli-
hood estimators are asymptotically normal with a variance of a known form. The actual expression
for the variance is complicated and involves matrix expressions, so we will not report the formula
here.21 Econometric software has the variance expressions encoded, and along with parameter
estimates, it will provide standard errors, t-statistics, and p-values, which are used as always.

E X A M P L E 16.15 A Count Model for the Number of Doctor Visits

The economic analysis of the health care system is a vital area
of research and public interest. In this example, we consider
data used by Riphahn, Wambach, and Million (2003).22 The
data file rwm88_small contains data on 1,200 individuals’
number of doctor visits in the past three months (DOCVIS),
their age in years (AGE), their sex (FEMALE), and whether
or not they had public insurance (PUBLIC). The frequencies
of doctor visits are illustrated in Table 16.6, with 90.5% of
the sample having eight or fewer visits.

T A B L E 16.6
Number of Doctor Visits
(DOCVIS)

DOCVIS Number
0 443
1 200
2 163
3 111
4 51
5 49
6 37
7 7
8 25

These are numerical count data (number of times an event
occurs) so that the Poisson model is a feasible choice.

Applying maximum likelihood estimation, we obtain the
fitted model

E(DOCVIS)
⋀

= exp
(
− 0.0030 + 0.0116AGE

(se) (0.0918) (0.0015)
+ 0.1283FEMALE + 0.5726PUBLIC

)
(0.0335) (0.0680)

What can we say about these results? First, the coefficient
estimates are all positive, implying that older individu-
als, females and those with public health insurance will
have more doctor visits. Second, the coefficients of AGE,
FEMALE and PUBLIC are significantly different from zero,
with p-values less than 0.01. Using the fitted model, we can
estimate the expected number of doctor visits. For example,
the first person in the sample is a 29-year-old female who
has public insurance. Substituting these values we estimate
her expected number of doctor visits to be 2.816, or 3.0
rounded to the nearest integer. Her actual number of doctor
visits was zero.

Using the notion of generalized-R2, we can get a
notion of how well the model fits the data by computing
the squared correlation between DOCVIS and the pre-
dicted number of visits. If we use the rounded values, for
example, 3.0 instead of 3.33, the correlation is 0.1179 giving
R2

g = (0.1179)2 = 0.0139. The fit for this simple model is
not very good as we might well expect. This model does
not account for so many important factors, such as income,
general health status, and so on. Different software packages
report many different values, sometimes called pseudo-R2,

............................................................................................................................................
21See J. Scott Long, Regression Models for Categorical and Limited Dependent Variables (Thousand Oaks, CA: Sage
Publications, 1997), Chapter 8. A much more advanced and specialized reference is Regression Analysis of Count Data
Second Edition by A. Colin Cameron and Pravin K. Trivedi (Cambridge, UK: Cambridge University Press, 2013).
22Regina T. Riphahn, Achim Wambach, and Andreas Million, “Incentive Effects in the Demand for Health Care: A
Bivariate Panel Count Data Estimation”, Journal of Applied Econometrics, Vol. 18, No. 4, 2003, pp. 387–405.
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with different meanings as well. We urge you to ignore all
these values, including R2

g.
Instead of an R2-like number, it is a good idea to report

a test of overall model significance, analogous to the overall
F-test for the regression model. The null hypothesis is that
all the model coefficients, except the intercept, are equal
to zero. We recommend the likelihood ratio statistic. See
Section 16.2.7 for a discussion of this test in the context of
the probit model. The test statistic is LR = 2

(
lnLU − lnLR

)
where lnLU is the value of the log-likelihood function for
the full and unrestricted model and lnLR is the value of the
log-likelihood function for the restricted model that assumes
that the hypothesis is true. The restricted model in this case
is E(DOCVIS) = exp(γ1). If the null hypothesis is true, the
LR test statistic has a χ2

(3)-distribution in large samples. In
our example, LR = 174.93 and the 0.95 percentile of the
χ2
(3)-distribution is 7.815. We reject the null hypothesis at

the 5% level of significance, and we conclude that at least
one variable makes a significant impact on the number of
doctor visits.

What about the magnitudes of the effects of these
variables on the number of doctor visits? Treating AGE as
continuous we can use (16.29) to compute a marginal effect,

∂E(DOCVIS)
∂AGE

⋀

= exp
(
− 0.0030 + 0.0116AGE

+ 0.1283FEMALE + 0.5726PUBLIC
)

× 0.0116

To evaluate this effect, we must insert values for AGE,
FEMALE, and PUBLIC. Let FEMALE = 1 and PUBLIC = 1.

If AGE = 30, the estimate is 0.0332, with the 95% interval
estimate being [0.0261, 0.0402]. That is, we estimate for a
30-year-old female with public insurance an additional year
of age will increase her expected number of doctor visits in
a 3-month period by 0.0332. Because the marginal effect is a
nonlinear function of the estimated parameters, the interval
estimate uses a standard error calculated using the delta
method. For AGE = 70, it is 0.0528 [0.0355, 0.0702]. The
effect of another year of age is greater for older individuals,
as you would expect.

Both FEMALE and PUBLIC are indicator variables,
taking values zero and one. For these variables, we cannot
evaluate the “marginal effect” using a derivative. Instead,
we estimate the difference between the expected number of
doctor visits for the two cases. For example,

ΔE(DOCVIS) = E(DOCVIS|PUBLIC = 1)
− E(DOCVIS|PUBLIC = 0)

The calculated value of the difference is

ΔE(DOCVIS)
⋀

= exp
(
− 0.0030 + 0.0116AGE

+ 0.1283FEMALE + 0.5726
)

− exp
(
− 0.0030 + 0.0116AGE

+ 0.1283FEMALE
)

We estimate the difference for a 30-year-old female to be 1.24
[1.00, 1.48], and for a 70-year-old female, it is 1.98 [1.59,
2.36]. Women with public insurance visit the doctor signif-
icantly more than women of the same age who do not have
public insurance.

There are many generalizations of the Poisson model that are used in applied work. One
generalization is called the negative binomial model. It can be used when an assumption implicit
in the Poisson model is violated, namely that the variance of Poisson variable is equal to its
expected value, that is var(Y) = E(Y) for Poisson random variables. There are tests for whether
this assumption holds. These are sometimes called tests for overdispersion. A second type of
possible misspecification is illustrated by the following question: How many extramarital affairs
did you have in the last year?23 The first thing to note is that the question is relevant only
for married individuals. The possible answers are zero, one, two, three, etc. However, here a
“zero” might mean two different things. It might mean, “I would never cheat on my spouse!!”
or it might mean, “Well, I have cheated in the past, but not in the last year.” Statistically, in
this situation, there will be “too many zeros” for the standard Poisson distribution. As a result,
there are some zero-inflated versions of the Poisson model (ZIP) that may be a better choice.
These extensions of the Poisson model are quite fascinating and useful but beyond the scope
of this book.24

............................................................................................................................................
23Ray Fair (1978) “The Theory of Extramarital Affairs,” Journal of Political Economy, 86(1), 45–61.
24Two excellent but advanced references are: A. Colin Cameron and Pravin K. Trivedi (2013) Regression Analysis
of Count Data, Cambridge University Press; and Rainer Winkelman (2008) Econometric Analysis of Count Data,
Springer.
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16.7 Limited Dependent Variables
In the previous sections of this chapter, we reviewed choice behavior models that have dependent
variables that are discrete variables. When a model has a discrete dependent variable, the usual
regression methods we have studied must be modified. In this section, we present another case in
which standard least squares estimation of a regression model fails.

16.7.1 Maximum Likelihood Estimation of the Simple Linear
Regression Model

We have stressed the least squares and method of moments estimators when estimating the simple
linear regression model. Another option is maximum likelihood estimation (MLE). Our dis-
cussion of the method will be in the context of the simple linear model with one explanatory
variable, but the method extends to the case of multiple regression with more explanatory vari-
ables. We discuss this now because several strategies for estimating limited dependent vari-
able models are tied to MLE. In this case, we make assumptions SR1–SR6, which include the
assumption about the conditional normality of the random errors. When the assumption of condi-
tionally normal errors is made, we write ei|xi ∼ N

(
0, σ2), and also then yi|xi ∼ N

(
β1 + β2xi, σ2).

It is a very strong assumption when it is made, and it is not necessary for least squares estima-
tion, so we have called it an optional assumption. For maximum likelihood estimation, it is not
optional. It is necessary to assume a distribution for the data so that we can form the likelihood
function.

If the data
(
yi, xi

)
pairs are drawn independently, then the conditional joint pdf of the data is

!
(
y1, y2, … , yN

||x, β1, β2, σ2) = !
(
y1||x1, β1, β2, σ2) × · · · × !

(
yN
||xN , β1, β2, σ2) (16.30a)

where

!
(
yi
||xi, β1, β2, σ2) = 1√

2πσ2
exp

(
−1

2

(
yi − β1 − β2xi

)2

σ2

)
(16.30b)

Writing out the product we have

!
(
y1, … , yN

||x, β1, β2, σ2) = (2π)−N∕2(σ2)−N∕2 exp
[
− 1

2σ2

N∑
i=1

(
yi − β1 − β2xi

)2
]

= L
(
β1, β2, σ2||y, x

)
(16.30c)

The likelihood function L
(
β1, β2, σ2||y, x

)
is the joint pdf interpreted as function of the unknown

parameters, conditional on the data. In practice, we maximize the log-likelihood,

lnL
(
β1, β2, σ2||y, x

)
= −(N∕2)ln(2π) − (N∕2)ln

(
σ2)

− 1
2σ2

N∑
i=1

(
yi − β1 − β2xi

)2 (16.30d)

This looks quite intimidating to maximize, but this is one of the times we can actually maximize
the log-likelihood using calculus. See Exercise 16.1 for hints. The maximum likelihood estimators
β̃1 and β̃2 are the OLS estimators, which have all their usual properties including a conditionally
normal distribution. The MLE of the error variance is σ̃2 = ∑

ê2
i
/

N, which is the sum of the
squared least squares residuals divided by the sample size, with no degrees of freedom correction.
This estimator is consistent but biased.
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16.7.2 Truncated Regression
The first limited dependent variable model we consider is truncated regression. In this model,
we only observe the data

(
yi, xi

)
when yi > 0. How can this happen? Imagine collecting survey

data by waiting at the checkout station in a supermarket. As customers exit you ask “How much
did you spend today?” The answer will be some positive number given that they have just paid
for their purchases. If the random error is conditionally normal, then the pdf of

(
yi|yi > 0, xi

)
is

truncated normal. The properties of the truncated normal distribution are discussed in Appendix
B.3.5. In this case, the truncated normal density function is

!
(
yi
||yi > 0, xi, β1, β2, σ2) = !

(
yi
||xi, β1, β2, σ2)

P
(
yi > 0||xi, β1, β2, σ2)

=
!
(
yi
||xi, β1, β2, σ2)

Φ
(β1 + β2xi

σ

) =
!
(
yi
||xi, β1, β2, σ2)

Φi
(16.31)

Here we use Φi = Φ
[(
β1 + β2xi

)
∕σ

]
as a simplifying notation. See Exercise 16.2 for hints on

obtaining (16.31). The log-likelihood function is

lnL
(
β1, β2, σ2||y, x

)
= −

N∑
i=1

lnΦi − (N∕2)ln(2π) − (N∕2)ln
(
σ2)

− 1
2σ2

N∑
i=1

(
yi − β1 − β2xi

)2 (16.32)

Maximization of this log-likelihood has to be done using numerical methods, but economet-
ric software has simple commands to obtain the estimates of β1, β2, and σ2. The question then
becomes, what can we do with these estimates? The answer is, all the usual things. For the cal-
culation of marginal effects, use the conditional mean function

E
(
yi|yi > 0, xi

)
= β1 + β2xi + σ

ϕ
[(
β1 + β2xi

)
∕σ
]

Φ
[(
β1 + β2xi

)
∕σ
] = β1 + β2xi + σλ

(
αi
)

(16.33)

where λ
(
αi
)

is the inverse Mill’s ratio (IMR) mentioned in Appendix B.3.5 and
αi =

(
β1 + β2xi

)
∕σ. This is a bit of a mess isn’t it? If xi is continuous, the marginal effect is the

derivative of this expression, dE
(
yi|yi > 0, xi

)
∕dxi = β2

(
1 − δi

)
, where δi = λ

(
αi
)[
λ
(
αi
)
− αi

]
,

which is even more messy.25 Because 0 < δi < 1, the marginal effect is only a fraction of the
parameter value. Once again econometricians in conjunction with computer programmers have
made our lives much easier than would otherwise be true and these quantities can be calculated.

16.7.3 Censored Samples and Regression
Censored samples are similar to truncated samples but have more information. In a truncated
sample, we observe

(
yi, xi

)
when yi > 0. For censored samples, we observe xi for all individuals,

but the outcome values are of two different types. In a survey of households, suppose we ask
“How much did you spend on major appliances, such as refrigerators or washing machines, last
month?” For many households, the answer will be $0, as they made no such purchases in the
previous month. For others, the answer will be a positive value, if such a purchase was made.
This is the outcome variable, yi. On the other hand, the survey will include income and other
characteristics of the household, which are explanatory variables, xi. This is called a censored
sample, with a substantial fraction of the observations taking a limit value, in this case $0. We are
............................................................................................................................................
25See Greene (2018), page 932–933.
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interested in estimating the relationship between expenditures and an xi. What should we do?
There are a number of strategies. We will mention four, two that work and two that do not work.

Strategy 1 Delete the limit observations and apply OLS
A simple strategy is to drop from the sample the observations with yi = 0 and go ahead. This
strategy does not work. The usual OLS model, for yi > 0, is yi = β1 + β2xi + ui, where ui is
an error term. We usually think of this model as resulting from the sum of a systematic part,
the regression function, and a random error. That is, yi = E

(
yi|yi > 0, xi

)
+ ei. The conditional

mean function is given by (16.33), so that

yi = E
(
yi|yi > 0, xi

)
+ ei = β1 + β2xi + σ

ϕ
[(
β1 + β2xi

)
∕σ
]

Φ
[(
β1 + β2xi

)
∕σ
] + ei

= β1 + β2xi +
⎧
⎪
⎨
⎪⎩
σ
ϕ
[(
β1 + β2xi

)
∕σ

]

Φ
[(
β1 + β2xi

)
∕σ

] + ei

⎫
⎪
⎬
⎪⎭

= β1 + β2xi + ui (16.34)
The error term ui is not simple. It consists of the random component ei and a complicated func-
tion of xi. The error term ui will be correlated with xi, making OLS biased and inconsistent,
which is not the result we want.
Strategy 2 Retain all observations and apply OLS
This strategy does not work. Using the definition for conditional expectation,

E
(
yi|xi

)
= E

(
yi|yi > 0, xi

)
× P

(
yi > 0

)
+ E

(
yi|yi = 0, xi

)
× P

(
yi = 0

)

= E
(
yi|yi > 0, xi

)
×
{

1 − Φ
[
−
(
β1 + β2xi

)
∕σ

]}

= E
(
yi|yi > 0, xi

)
× Φ

[(
β1 + β2xi

)
∕σ

]

=Φ
[(
β1 + β2xi

)
∕σ

]
β1 +Φ

[(
β1 + β2xi

)
∕σ
]
β2xi + σϕ

[(
β1 + β2xi

)
∕σ

]

Simply estimating yi = β1 + β2xi + ui by OLS clearly is inappropriate.
Strategy 3 Heckman’s two-step estimator
The problem with Strategy 1 is that the error term ui includes two components and one of
them is correlated with the variable xi. This is analogous to an omitted variables problem,
the solution of which is to not omit the variable, but include it in the regression. That is, we
would like to estimate the model

yi = β1 + β2xi + σλi + ei
where

λi =
ϕ
[(
β1 + β2xi

)
∕σ

]

Φ
[(
β1 + β2xi

)
∕σ

] =
ϕ
(
β∗1 + β

∗
2xi

)

Φ
(
β∗1 + β

∗
2xi

)

where β∗1 = β1∕σ and β∗2 = β2∕σ. Nobel Prize winner James Heckman realized that while λi
is unknown it can be consistently estimated as λ̃i = ϕ

(
β̃∗1 + β̃

∗
2xi

)
∕Φ

(
β̃∗1 + β̃

∗
2xi

)
where β̃∗1 and

β̃∗2 come from a probit model with dependent variable di = 1 if yi > 0, and di = 0 if yi = 0,
and with explanatory variable xi. Then the model we estimate by OLS is

yi = β1 + β2xi + σλ̃i + e∗i
It is called a two-step estimator because we use estimates from a first step, probit, and then a
second step, OLS. The estimator is consistent and while correct standard errors are compli-
cated, they are known and can be obtained.



❦

❦ ❦

❦

720 CHAPTER 16 Qualitative and Limited Dependent Variable Models

Strategy 4 Maximum likelihood estimation: Tobit
Heckman’s two-step estimator is consistent but not efficient. There is a maximum likelihood
estimation procedure that is preferable. It is called Tobit in honor of James Tobin, winner of
the 1981 Nobel Prize in Economics, who first studied the model.

Tobit is a maximum likelihood procedure that recognizes that we have data of two sorts,
the limit observations (y = 0) and the nonlimit observations (y > 0). The two types of obser-
vations that we observe, the limit observations and those that are positive, are generated by
a latent variable y∗ crossing the zero threshold or not crossing that threshold. The (probit)
probability that y = 0 is

P(y = 0|x) = P
(
y∗≤ 0|x) = 1 − Φ

[(
β1 + β2x

)
∕σ
]

If we observe a positive value of yi, then the term that enters the likelihood function is the
normal pdf with mean β1 + β2xi and variance σ2. The full likelihood function is the product of
the probabilities that the limit observations occur times the pdfs for all the positive, nonlimit,
observations. Using “large pi” notation to denote multiplication, the likelihood function is

L
(
β1, β2, σ|x, y

)
=
∏
yi=0

{
1 − Φ

(β1 + β2xi
σ

)}

×
∏
yi>0

{(
2πσ2)−0.5 exp

(
− 1

2σ2
(
yi − β1 − β2xi

)2
)}

This complicated-looking likelihood function is maximized numerically using econometric
software.26 The maximum likelihood estimator is consistent and asymptotically normal, with
a known covariance matrix.27

16.7.4 Tobit Model Interpretation
In the Tobit model, the parameters β1 and β2 are the intercept and slope of the latent variable
model (16.31). In practice, we are interested in the marginal effect of a change in x on either
the regression function of the observed data E(y|x) or the regression function conditional on
y > 0, E(y|x, y > 0). As we indicated earlier, these functions are not straight lines. Their graphs
are shown in Figure 16.3. The slope of each changes at each value of x. The slope of E(y|x) has
a relatively simple form, being a scale factor times the parameter value; it is

∂E(y|x)
∂x = β2Φ

(β1 + β2x
σ

)
(16.35)

where Φ is the cumulative distribution function (cdf ) of the standard normal random variable
that is evaluated at the estimates and a particular x-value. Because the cdf values are positive, the
sign of the coefficient tells the direction of the marginal effect, but the magnitude of the marginal
effect depends on both the coefficient and the cdf . If β2 > 0, as x increases, the cdf function
approaches one, and the slope of the regression function approaches that of the latent variable

............................................................................................................................................
26Tobit requires data on both the limit values of y = 0 and also the nonlimit values for which y > 0. Sometimes, it is
possible that we do not observe the limit values; in such a case, the sample is said to be truncated. In this case, Tobit
does not apply; however, there is a similar maximum likelihood procedure, called truncated regression, for such a case.
An advanced reference is William Greene (2018) Econometric Analysis, Eighth edition, Pearson Prentice Hall,
Section 19.2.3.
27The asymptotic covariance matrix can be found in Introduction to the Theory and Practice of Econometrics,
2nd edition, by George G. Judge, R. Carter Hill, William E. Griffiths, Helmut Lütkepohl, and Tsoung-Chao Lee
(John Wiley and Sons, 1988), Section 19.3.2.
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FIGURE 16.3 Three regression functions.

model, as is shown in Figure 16.3. The marginal effect can be decomposed into two factors called
the “McDonald–Moffitt” decomposition:

∂E(y|x)
∂x = Prob(y > 0)∂E(y|x, y > 0)

∂x + E(y|x, y > 0)∂Prob(y > 0)
∂x

The first factor accounts for the marginal effect of a change in x for the portion of the population
whose y-data is observed already. The second factor accounts for changes in the proportion of
the population who switch from the y-unobserved category to the y-observed category when x
changes.28

E X A M P L E 16.16 Tobit Model of Hours Worked

An example that illustrates the situation is based on Thomas
Mroz’s (1987) study of married women’s labor force partic-
ipation and wages. The data are in the file mroz and consist
of 753 observations on married women. Of these, 325 did
not work outside the home and thus had no hours worked
and no reported wages. The histogram of hours worked is
shown in Figure 16.4. The histogram shows the large fraction
of women with zero hours of work.

If we wish to estimate a model explaining the market
hours worked by a married woman, what explanatory

variables would we include? Factors that would tend to
pull a woman into the labor force are her education and her
prior labor market experience. Factors that may reduce her
incentive to work are her age and the presence of young
children in the home.29

Thus, we might propose the regression model

HOURS = β1 + β2EDUC + β3EXPER + β4AGE
+ β4KIDSL6 + e (16.36)

............................................................................................................................................
28J. F. McDonald and R. A. Moffitt (1980) “The Uses of Tobit Analysis,” Review of Economics and Statistics, 62,
318–321. Jeffrey M. Wooldridge (2009) Introductory Econometrics: A Modern Approach, 5th edition, South-Western
Cengage Learning, Section 17.2 has a relatively friendly presentation.
29This equation does not include wages, which is jointly determined with hours. The model in (16.36) may be
considered a reduced-form equation. See Section 11.2.
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FIGURE 16.4 Wife’s hours of work in 1975.

where KIDSL6 is the number of children less than 6 years old
in the household. Using Mroz’s data, we obtain the estimates
shown in Table 16.7. As previously argued, the least squares
estimates are unreliable because the least squares estimator
is both biased and inconsistent. The Tobit estimates have
the anticipated signs and are all statistically significant at
the 0.01 level. To compute the scale factor required for
calculation of the marginal effects, we must choose values
of the explanatory variables. We choose the sample means
for EDUC (12.29), EXPER (10.63), and AGE (42.54) and
assume one small child at home (rather than the mean value
of 0.24). The calculated scale factor is Φ̃ = 0.3630. Thus,
the marginal effect on observed hours of work of another
year of education is

∂E(HOURS)
∂EDUC

= β̃2Φ̃ = 73.29 × 0.3630 = 26.61

That is, we estimate that another year of education will
increase a wife’s hours of work by about 27 hours, con-
ditional upon the assumed values of the explanatory
variables.

T A B L E 16.7
Estimates of Labor Supply
Function

Estimator Variable Estimate
Standard

Error
Least squares INTERCEPT 1335.31 235.65

EDUC 27.09 12.24
EXPER 48.04 3.64
AGE −31.31 3.96
KIDSL6 −447.85 58.41

Least squares INTERCEPT 1829.75 292.54
y > 0 EDUC −16.46 15.58

EXPER 33.94 5.01
AGE −17.11 5.46
KIDSL6 −305.31 96.45

Tobit INTERCEPT 1349.88 386.30
EDUC 73.29 20.47
EXPER 80.54 6.29
AGE −60.77 6.89
KIDSL6 −918.92 111.66
SIGMA 1133.70 42.06
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16.7.5 Sample Selection
If you consult an econometrician concerning an estimation problem, the first question you will
usually hear is, “How were the data obtained?” If the data are obtained by random sampling, then
classic regression methods, such as least squares, work well. However, if the data are obtained by
a sampling procedure that is not random, then standard procedures do not work well. Economists
regularly face such data problems. A famous illustration comes from labor economics. If we wish
to study the determinants of the wages of married women, we face a sample selection problem.
If we collect data on married women and ask them what wage rate they earn, many will respond
that the question is not relevant since they are homemakers. We only observe data on market
wages when the woman chooses to enter the workforce. One strategy is to ignore the women who
are not in the labor force, omit them from the sample, then use least squares to estimate a wage
equation for those who work. This strategy fails, the reason for the failure being that our sample
is not a random sample. The data we observe are “selected” by a systematic process for which we
do not account.

A solution to this problem is a technique called Heckit, named after its developer, Nobel
Prize winning econometrician James Heckman. This simple procedure uses two estimation steps.
In the context of the problem of estimating the wage equation for married women, a probit model
is first estimated explaining why a woman is in the labor force or not. In the second stage, a least
squares regression is estimated relating the wage of a working woman to education, experience,
and so on, and a variable called the “inverse Mills ratio,” or IMR. The IMR is created from the
first step probit estimation and accounts for the fact that the observed sample of working women
is not random.

The econometric model describing the situation is composed of two equations. The first is
the selection equation that determines whether the variable of interest is observed. The sample
consists of N observations; however, the variable of interest is observed only for n < N of these.
The selection equation is expressed in terms of a latent variable z∗i that depends on one or more
explanatory variables wi and is given by

z∗i = γ1 + γ2wi + ui, i = 1,… ,N (16.37)
For simplicity, we will include only one explanatory variable in the selection equation. The latent
variable is not observed, but we do observe the indicator variable

zi =
{

1 z∗i > 0
0 otherwise (16.38)

The second equation is the linear model of interest. It is
yi = β1 + β2xi + ei, i = 1,… , n, N > n (16.39)

A selectivity problem arises when yi is observed only when zi = 1 and if the errors of the two
equations are correlated. In such a situation, the usual least squares estimators of β1 and β2 are
biased and inconsistent.

Consistent estimators are based on the conditional regression function30

E
(
yi|z∗i > 0

)
= β1 + β2xi + βλλi, i = 1,… , n (16.40)

where the additional variable λi is the inverse Mills ratio. It is equal to

λi =
ϕ
(
γ1 + γ2wi

)

Φ
(
γ1 + γ2wi

) (16.41)

............................................................................................................................................
30Our Appendix B.2.6 provides a brief introduction to this important concept. See William Greene (2018) Econometric
Analysis, Eighth edition, Pearson Prentice Hall, Chapter 19.2 for much more about the truncated normal.
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While the value of λi is not known, the parameters γ1 and γ2 can be estimated using a probit
model, based on the observed binary outcome zi in (16.38). Then the estimated IMR

λ̃i =
ϕ
(
γ̃1 + γ̃2wi

)

Φ
(
γ̃1 + γ̃2wi

)

is inserted into the regression equation as an extra explanatory variable, yielding the estimating
equation

yi = β1 + β2xi + βλλ̃i + vi, i = 1,… , n (16.42)
Least squares estimation of this equation yields consistent estimators of β1 and β2. A word of
caution, however, as the least squares estimator is inefficient relative to the maximum likelihood
estimator, and the usual standard errors and t-statistics produced after estimation of (16.42) are
incorrect. Proper estimation of standard errors requires the use of specialized software for the
“Heckit” model.

E X A M P L E 16.17 Heckit Model of Wages

As an example, we will reconsider the analysis of wages
earned by married women using the Mroz (1987) data in the
data file mroz. In the sample of 753 married women, 428
have market employment and nonzero earnings. First, let us
estimate a simple wage equation, explaining ln(WAGE) as
a function of the woman’s education, EDUC, and years of
market work experience (EXPER), using the 428 women
who have positive wages. The result is

ln(WAGE) = −0.4002 + 0.1095EDUC
(t) (−2.10) (7.73)

+ 0.0157EXPER R2 = 0.1484 (16.43)
(3.90)

The estimated return to education is about 11%, and the
estimated coefficients of both education and experience are
statistically significant.

The Heckit procedure starts by estimating a probit model
of labor force participation. As explanatory variables we use
the woman’s age, her years of education, an indicator vari-
able for whether she has children, and the marginal tax rate
that she would pay upon earnings if employed. The estimated
probit model is

P(LFP = 1)
⋀

= Φ
(
1.1923 − 0.0206AGE + 0.0838EDUC

(t) (−2.93) (3.61)
− 0.3139KIDS − 1.3939MTR

)
(−2.54) (−2.26)

As expected, the effects of age, the presence of children, and
the prospects of higher taxes significantly reduce the proba-
bility that a woman will join the labor force, while education

increases it. Using the estimated coefficients, we compute the
inverse Mills ratio for the 428 women with market wages

λ̃ = IMR =

ϕ
(
1.1923 − 0.0206AGE + 0.0838EDUC
− 0.3139KIDS − 1.3939MTR

)

Φ
(
1.1923 − 0.0206AGE + 0.0838EDUC
− 0.3139KIDS − 1.3939MTR

)

This is then included in the wage equation, and least squares
estimation applied to obtain

ln(WAGE) = 0.8105 + 0.0585EDUC + 0.0163EXPER
(t) (1.64) (2.45) (4.08)

(t − adj) (1.33) (1.97) (3.88)

− 0.8664IMR
(−2.65)
(−2.17) (16.44)

Two results are of note. First, the estimated coefficient of
the inverse Mills ratio is statistically significant, implying
that there is a selection bias present in the least squares
results (16.43). Second, the estimated return to education
has fallen from approximately 11% to approximately 6%.
The upper row of t-statistics is based on standard errors as
usually computed when using least squares regression. The
usual standard errors do not account for the fact that the
inverse Mills ratio is itself an estimated value. The correct
standard errors,31 which do account for the first stage probit

............................................................................................................................................
31The formulas are very complicated. See William Greene (2018) Econometric Analysis, Eighth edition, Pearson
Prentice Hall, p. 954. There are several software packages, such as Stata and LIMDEP, that report correct standard
errors.
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estimation, are used to construct the “adjusted t-statistics”
reported in (16.44). As you can see the adjusted t-statistics
are slightly smaller, indicating that the adjusted standard
errors are somewhat larger than the usual ones.

In most instances, it is preferable to estimate the full
model, both the selection equation and the equation of inter-
est, jointly by maximum likelihood. While the nature of this
procedure is beyond the scope of this book, it is available in

some software packages. The maximum likelihood estimated
wage equation is

ln(WAGE) = 0.6686 + 0.0658EDUC + 0.0118EXPER
(t) (2.84) (3.96) (2.87)

The standard errors based on the full information maximum
likelihood procedure are smaller than those yielded by the
two-step estimation method.

16.8 Exercises

16.8.1 Problems
16.1 In Examples 16.2 and 16.4, we presented the linear probability and probit model esti-

mates using an example of transportation choice. The logit model for the same example is
P(AUTO = 1) = Λ

(
γ1 + γ2DTIME

)
, where Λ(•) is the logistic cdf in equation (16.7). The logit

model parameter estimates and their standard errors are

γ̃1 + γ̃2DTIME = −0.2376 + 0.5311DTIME
(se) (0.7505) (0.2064)

a. Calculate the estimated probability that a person will choose automobile transportation given that
DTIME = 1.

b. Using the probit model results in Example 16.4, calculate the estimated probability that a person
will choose automobile transportation given that DTIME =1. How does this result compare to the
logit estimate? [Hint: Recall that Statistical Table 1 gives cumulative probabilities for the standard
normal distribution.]

c. Using the logit model results, compute the estimated marginal effect of an increase in travel time
of 10 minutes for an individual whose travel time is currently 30 minutes longer by bus (pub-
lic transportation). Using the linear probability model results, compute the same marginal effect
estimate. How do they compare?

d. Using the logit model results, compute the estimated marginal effect of a decrease in travel time
of 10 minutes for an individual whose travel time is currently 50 minutes longer by driving. Using
the probit results, compute the same marginal effect estimate. How do they compare?

16.2 In Appendix 16A.1, we illustrate the calculation of a standard error for the marginal effect in a probit
model of transportation, Example 16.4. In the appendix, the calculation is for the marginal effect
when it currently takes 20 minutes longer to commute by bus (DTIME = 2).
a. Repeat the calculation for the probit model when DTIME = 1. [Hint: The values of the standard

normal pdf are given in Statistical Table 6.]
b. Using the probit model, construct a 95% interval estimate for the marginal effect of a 10-minute

increase in travel time by bus when DTIME = 1.
c. The logit model estimates and standard errors are

γ̃1 + γ̃2DTIME
(se)

= −0.2376
(0.7505)

+ 0.5311DTIME
(0.2064)

The estimated coefficient covariance is cov
⋀(

γ̃1, γ̃2
)
= −0.025498. Calculate the standard error of

the marginal effect of a 10-minute increase in travel time when DTIME = 1. [Hint: Carry through
the steps in Appendix 16A.1 using equation (16.17) in place ofΦ( • ) and equation (16.16) in place
of ϕ( • ).]

d. Construct a 95% interval estimate for the marginal effect of a 10-minute increase in travel time by
bus, when DTIME = 1 for the logit model.
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16.3 In Example 16.3, we illustrate the calculation of the likelihood function for the probit model in a small
example.
a. Calculate the probability that y = 1 if x = 1.5, given the values of the maximum likelihood

estimates.
b. Using the threshold 0.5 and the result in part (a), predict the value of y if x = 1.5, the first obser-

vation, given the values of the maximum likelihood estimates. Does your prediction agree with
the actual outcome y = 1?

c. Calculate the value of the likelihood function, illustrated in equation (16.14), using the given
N = 3 data pairs, if the parameter values are β1 = −1 and β2 = 0.2. Compare this value to the
value of the likelihood function evaluated at the maximum likelihood estimates, given in Example
16.3. Which is larger?

d. For the probit model, the value of the likelihood function (16.14) will always be between zero and
one. True or false? Explain.

e. For the probit model, the value of the log-likelihood function (16.15) will always be negative.
True or false? Explain.

16.4 In Example 16.3, we illustrate the calculation of the likelihood function for the probit model in a small
example. In this exercise, we will repeat that example using logit instead of probit. The logit model
for the same example is P(y = 1) = Λ(γ1 + γ2x), where Λ(•) is the logistic cdf in equation (16.7).
The maximum likelihood estimates of the parameters are γ̃1 + γ̃2x = −1.836 + 3.021x. The maxi-
mized value of the log-likelihood function is −1.612.
a. Calculate the probability that y = 1 if x = 1.5, given the values of the maximum likelihood

estimates.
b. Using the threshold 0.5 and the result in part (a), predict the value of y if x = 1.5, the first obser-

vation, given the values of the maximum likelihood estimates. Compare your prediction to the
actual outcome y = 1 in the first observation.

c. Calculate the value of the likelihood function, illustrated in equation (16.14) but substituting
equation (16.17) in place of Φ(•) and using the given N = 3 data pairs, if the parameter val-
ues are γ1 = −1 and γ2 = 2. Compare this value to the value of the likelihood function evaluated
at the maximum likelihood estimates. Which is larger?

d. For the logit model, the value of the likelihood function (16.14), with Λ(•) in place of Φ(•), will
always be between zero and one. True or false? Explain.

e. For the logit model, the value of the log-likelihood function (16.15), with Λ(•) in place of Φ(•),
will always be negative. True or false? Explain.

16.5 We are given three observations on binary choice with y1 = 1, y2 = 1, y3 = 0. Consider a logit model
with only an intercept, P(y = 1) = Λ(γ1), where Λ(•) is the logistic cdf .
a. Show that the log-likelihood function is lnL(γ1) = 2lnΛ

(
γ1
)
+ ln

[
1 − Λ

(
γ1
)]

.
b. Show that dlnL

(
γ1
)/

dγ1 = 2λ
(
γ1
)/
Λ
(
γ1
)
− λ

(
γ1
)/[

1 − Λ
(
γ1
)]

, where λ( • ) is the logistic pdf in
(16.14). [Hint: Use Derivative Rules 8 and 9 from Appendix A.3.]

c. The value of γ1 such that dlnL
(
γ1
)/

dγ1 = 0 is the maximum likelihood estimator γ̃1. True, false,
or maybe?

d. It can be shown that for the logit model lnL(γ1) is strictly concave, meaning that the second deriva-
tive is negative for all values of γ1 or d2lnL

(
γ1
)/

dγ1
2 < 0. What is your answer to (c) now? [Hint:

See Appendix A.3.4.]
e. Setting the derivative in (c) to zero and solving, show that Λ

(
γ̃1
)
= 2∕3. [Note: This does not

require you to first solve for γ̃1.]
f. Now, solve the condition in (c) to show that γ̃1 = −ln(1∕2).

16.6 In this exercise, we generalize the results in Exercise 16.5. Consider a logit model with only an inter-
cept, P(y = 1) = Λ

(
γ1
)
, where Λ(•) is the logistic cdf . Suppose in a sample of N observations, there

are N1 values yi = 1 and N0 values yi = 0.
a. Show that the logit log-likelihood function is lnL

(
γ1
)
= N1lnΛ

(
γ1
)
+ N0ln

[
1 − Λ

(
γ1
)]

.
b. Show that dlnL

(
γ1
)/

dγ1 = N1λ
(
γ1
)/
Λ
(
γ1
)
− N0λ

(
γ1
)/[

1 − Λ
(
γ1
)]

, where λ( • ) is given in (16.6).
[Hint: Use Derivative Rules 8 and 9 from Appendix A.3.]

c. Setting the derivative in (b) to zero and solving, show that Λ
(
γ̃1
)
= N1∕N. What is the interpreta-

tion of N1
/
N? [Note: This does not require you to first solve for γ̃1, the MLE.]
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d. Using (c) show that lnL
(
γ̃1
)
= N1ln

(
N1∕N

)
+ N0ln

(
N0∕N

)
.

e. Show that a probit model, P(y = 1) = Φ(γ1), whereΦ(•) is the standard normal cdf , results in the
same value for the log-likelihood as in part (d).

16.7 Exercise 16.5 shows that given the three observations on binary choice with y1 = 1, y2 = 1, y3 = 0 the
maximum likelihood estimator of the logit model P(y = 1) = Λ

(
γ1
)

is γ̃1 = −ln(1∕2) = 0.6931472
and that Λ

(
γ̃1
)
= 2∕3.

a. Using these results show that lnL
(
γ̃1
)
= 2lnΛ

(
γ̃1
)
+ ln

[
1 − Λ

(
γ̃1
)]

= −1.9095425.
b. Using the data in Example 16.3, and the logit model P(y = 1|x) = Λ(γ1 + γ2x

)
, we find that the

maximum likelihood estimates of the parameters are γ̃1 + γ̃2x = −1.836 + 3.021x, and the maxi-
mized value of the log-likelihood function is −1.612. Using these results, and those in (a), carry
out the likelihood ratio test of H0: γ2 = 0 versus H1: γ2 ≠ 0 at the 5% level of significance.

c. Calculate the p-value for the test in (b).
16.8 Consider a probit model designed to explain the choice by homebuyers of fixed versus adjustable rate

mortgages. The explanatory variables, with sample means in parentheses, are FIXRATE (13.25) =
fixed interest rate; MARGIN (2.3) = the variable rate − the fixed rate; and NETWORTH (3.5) =
borrower’s net worth ($100,000 units). The dependent variable is ADJUST (0.41) = 1 if an
adjustable mortgage is chosen. The coefficient estimates, in Table 16.8, use 78 observations over the
period January, 1983 to February, 1984.

T A B L E 16.8 Estimates for Exercise 16.8

C FIXRATE MARGIN NETWORTH lnL(Model) lnL(C)
Model 1 −7.0166 0.5301 −0.2675 0.0864 −42.0625 −52.8022

(se) (3.3922) (0.2531) (0.1304) (0.0354)
Model 2 −9.8200 0.7535 −0.1945 −45.1370 −52.8022

(se) (3.1468) (0.2328) (0.1249)

a. What information is provided by the signs of the estimated coefficients of Model 1? Are the signs
consistent with economic reasoning? Which coefficients are significant at the 5% level?

b. Carry out a likelihood ratio test of the model significance at the 1% level for Model 1. In Table 16.8,
lnL(Model) is the log-likelihood of the full model and lnL(C) is the log-likelihood of the model
including only the constant term.

c. What is the estimated probability of a borrower choosing an adjustable rate mortgage if
FIXRATE = 12, MARGIN = 2, and NETWORTH = 3? What is the estimated probability
of a borrower choosing an adjustable rate mortgage if FIXRATE = 12, MARGIN = 2, and
NETWORTH = 10?

d. Carry out a likelihood ratio test of the hypothesis that NETWORTH has no effect on the choice of
mortgage type, against the alternative that it does, at the 1% level.

e. Using Model 2, what is the marginal effect of MARGIN on the probability of choosing an
adjustable rate mortgage if FIXRATE = 12 and MARGIN = 2?

f. Using Model 2, calculate the discrete change in the probability of choosing an adjustable rate
mortgage if MARGIN increases from 2% to 4%, while FIXRATE remains 12%? Is the value twice
the value found in part (e)?

16.9 Consider a probit model explaining the choice to attend college by high-school graduates. Define
COLLEGE = 1 if a high-school graduate chooses either a 2-year or 4-year college, and zero otherwise.
We use explanatory variables GRADES, 13 point scale with 1 indicating highest grade (A+) and 13
the lowest (F); FAMINC, gross family income in $1000 units; and BLACK = 1 if black. Using a
sample of N = 1000 graduates the estimated model is

P(COLLEGE = 1)
(se)

= Φ
(
2.5757 − 0.3068GRADES

(0.0265)
+ 0.0074FAMINC
(0.0017)

+ 0.6416BLACK
)

(0.2177)
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a. What information is provided by the signs of the estimated coefficients? Which coefficients are
statistically significant at the 5% level?

b. Estimate the probability of attending college for a white student with GRADES = 2 (A) and
FAMINC = 50 ($50,000). Repeat this probability calculation if GRADES = 5 (B).

c. Estimate the probability of attending college for a black student with GRADES = 5 (B) and
FAMINC = 50 ($50,000). Compare this probability to the comparable probability for a white
student calculated in part (b).

d. Calculate the marginal effect of an increase in family income of $1000 on the probability of
attending college for a white student with GRADES = 5 (B).

e. The log-likelihood for the model estimated above is −423.36. Omitting FAMINC and BLACK the
log-likelihood of the estimated probit model is −438.26. Test the joint significance of FAMINC
and BLACK at the 1% level of significance using a likelihood ratio test.

16.10 Consider a probit model explaining the choice to attend a 4-year college rather than a 2-year col-
lege by high-school graduates who chose to attend a postsecondary school. Define FOURYR = 1 if a
high-school graduate chooses 4-year college and FOURYR = 0 if the high school graduate chooses
a 2-year college. We use explanatory variables GRADES, 13 point scale with 1 indicating highest
grade (A+) and 13 the lowest (F); FAMINC, gross family income in $1000 units; and HSCATH = 1
if the student attended a Catholic high school and HSCATH = 0 otherwise. Table 16.9 contains some
probit model estimates.

T A B L E 16.9 Estimates for Exercise 16.10

Model (1) (2) (3) (4) (5)
HSCATH = 0 HSCATH = 1

C 1.6395 1.6299 1.6039 1.6039 2.3143
(23.8658) (23.6925) (22.5893) (22.5893) (8.0379)

GRADES −0.2350 −0.2357 −0.2344 −0.2344 −0.2603
(−25.1058) (−25.1437) (−24.2364) (−24.2364) (−6.7691)

FAMINC 0.0042 0.0040 0.0043 0.0043 0.0015
(8.2798) (7.6633) (7.7604) (7.7604) (1.0620)

HSCATH 0.3645 0.7104
(5.0842) (2.3954)

HSCATH × GRADES −0.0259
(−0.6528)

HSCATH × FAMINC −0.0028
(−1.9050)

N 5254 5254 5254 4784 470
lnL −2967.91 −2954.50 −2952.68 −2735.14 −217.54

t-statistics in parentheses.

a. Using Model (2), how large an effect on the probability of attending a 4-year college does attending
a catholic high school have for a student with GRADES = 5 (B) and family income of $100,000.
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b. Comparing Models (2) and (3), are the interaction variables HSCATH × GRADES and
HSCATH × FAMINC jointly significant at 5% using a likelihood ratio test?

c. Can we interpret the Model (3) results as saying an increase in family income reduces the prob-
ability of attending a 4-year college for someone graduating from a Catholic high school? What
is the marginal effect of an additional $1000 in family income for a Catholic high school student
with GRADES = 5 (B) and family income of $50,000?

d. Using Model (3), compute the probability of attending a 4-year college for someone graduating
from a Catholic high school with GRADES = 5 (B) and family income of $100,000. Compare this
probability to a student who did not attend a Catholic high school but has GRADES = 5 (B) and
family income of $100,000.

e. Using Models (1) and (3), test the null hypothesis that the probit model parameters are the same
for students who attend and do not attend a Catholic high school. Use a likelihood ratio test at the
5% level of significance.

f. Using Models (4) and (5), estimate the probit model separately for HSCATH = 0 and
HSCATH = 1. Compute the sum of the log-likelihood functions values. Compare the sum to the
log-likelihood for Model (3). Algebraically show that this is not an accident.

16.11 Using data on N = 4,642 infant births, we estimate a probit model with dependent variable
LBWEIGHT = 1 if it is a low birthweight baby and 0 otherwise, MAGE is the mother’s age,
PRENATAL1 = 1 if first prenatal visit is in 1 trimester and 0 otherwise, and MBSMOKE = 1 if the
mother smoked and 0 otherwise. The results are in Table 16.10.

T A B L E 16.10 Probit Estimates for Exercise 16.11

C MAGE PRENATAL1 MBSMOKE MAGE2

Model 1 −1.2581 −0.0103 −0.1568 0.3974
(se) (0.1436) (0.0054) (0.0710) (0.0670)

Model 2 −0.1209 −0.1012 −0.1387 0.4061 0.0017
(se) (0.4972) (0.0385) (0.0716) (0.0672) (0.0007)

a. In Model 1, comment on estimated signs and significance of the coefficients on PRENATAL1 and
MBSMOKE.

b. Using Model 1, calculate the marginal effect on the probability of a low birthweight baby given
an increase in the mother’s age by 1 year, for a woman who is 20 years old with PRENATAL1 = 0
and MBSMOKE = 0. Repeat this calculation for a woman who is 50 years old. Do the results
make sense?

c. Using Model 2, calculate the marginal effect on the probability of a low birthweight baby given
an increase in the mother’s age by 1 year, for a woman who is 20 years old with PRENATAL1 = 0
and MBSMOKE = 0. Repeat this calculation for a woman who is 50 years old. Compare these
results to those in part (b).

d. Using Model 2, calculate the impact of a prenatal visit in the first trimester on the probability of
having a low birthweight baby for a woman who is 30 years old and smokes.

e. Using Model 2, calculate the impact of a mother smoking on the probability having a low birth-
weight baby given that she is 30 years old and had a prenatal visit in the first trimester.

f. Using Model 2, calculate the age at which the probability of a low birthweight baby is a
minimum.

16.12 This exercise is an extension of Example 16.12 using the larger data set nels with 6,649 observa-
tions. Two estimated multinomial logit models are reported in Table 16.11. In addition to the variable
GRADES, we have FAMINC = family income ($1000 units) and indicator variables for sex and race.
The baseline group is students who chose not to attend college.
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T A B L E 16.11 Estimates for Exercise 16.12

Model 1 Model 2
PSECHOICE Coefficient t-value Coefficient t-value
2
C 1.7101 9.3293 1.9105 11.1727
GRADES −0.2711 −13.1969 −0.2780 −13.9955
FAMINC 0.0124 8.3072 0.0116 8.0085
FEMALE 0.2284 3.0387
BLACK 0.0554 0.4322
3
C 4.6008 25.7958 4.6111 27.8351
GRADES −0.6895 −32.2723 −0.6628 −32.3721
FAMINC 0.0200 13.5695 0.0183 12.9450
FEMALE 0.0422 0.5594
BLACK 0.9924 8.0766
ln(L) −5699.8023 −5751.5982

a. Which estimated coefficients are significant in Model 1? Based on the t-values, should we consider
dropping FEMALE and BLACK from the model?

b. Compare the results of Model 1 to Model 2 using a likelihood ratio test. Using the α = 0.01 level
of significance, can we reject the null hypothesis that the Model 1 coefficients of FEMALE and
BLACK are zero?

c. Compute the estimated probability that a white male student with GRADES = 5 (B) and FAMINC
of $100,000 will attend a 4-year college.

d. Compute the odds, or probability ratio, that a white male student with GRADES = 5 (B) and
FAMINC of $100,000 will attend a 4-year college rather than not attend any college.

e. Compute the change in probability of attending a 4-year college for a white male student with
median FAMINC =$100,000 whose GRADES change from 5 (B) to 2 (A).

16.13 This exercise is an extension of Example 16.13. It is a conditional logit model of choice among
3 brands of soda: Coke, Pepsi, and 7-Up. The data are in the data file cola. As in the example, we
choose Coke to be the base alternative, setting its alternative specific constant (intercept) to zero. We
add to the model indicator variables FEATURE, indicating whether the product was “featured” at the
time, and DISPLAY for whether there was a store display at the time of purchase. The model estimates
are in Table 16.12.

T A B L E 16.12 Estimates for Exercise 16.13

Model 1 Model 2
Coefficient t-Statistic Coefficient t-Statistic

PRICE −1.7445 −9.6951 −1.8492 −9.8017
FEATURE −0.0106 −0.1327 −0.0409 −0.4918
DISPLAY 0.4624 4.9700 0.4727 5.0530
PEPSI 0.2841 4.5411
7-UP 0.0907 1.4173
ln(L) −1822.2267 −1811.3543
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a. Using Model 1, calculate the probability ratio, or odds, of choosing Coke relative to Pepsi if Coke
costs $1.25, Pepsi costs $1.25, Coke has a display but Pepsi does not, and neither are featured.
Note that the model contains no alternative specific constants.

b. Using Model 1, calculate the probability ratio, or odds, of choosing Coke relative to Pepsi if Coke
costs $1.25, Pepsi costs $1.00, Coke has a display but Pepsi does not, and neither are featured.

c. Compute the change in the probability of purchase of each type of soda if the price of Coke
changes from $1.25 to $1.50, with the prices of Pepsi and 7-Up remaining at $1.25. Assume that
a display is present for Coke, but not for the others, and none of the items is featured.

d. In Model 2, we add the alternative specific “intercept” terms for Pepsi and 7-Up to the Model 1.
Calculate the probability ratio, or odds, of choosing Coke relative to Pepsi if Coke costs $1.25,
Pepsi costs $1.25, Coke has a display but Pepsi does not, and neither are featured.

e. Using Model 2, compute the change in the probability of purchase of each type of soda if the
price of Coke changes from $1.25 to $1.50, with the prices of Pepsi and 7-Up remaining at
$1.25. Assume that a display is present for Coke, but not for the others, and none of the items
is featured.

f. The value of the log-likelihood function for the model in Example 16.13 is −1824.5621. Test
the null hypothesis that the coefficients of the marketing variables, FEATURE and DISPLAY , are
zero, against the alternative that they are not, using a likelihood ratio test with α = 0.01.

16.14 In Example 16.14, we described an ordinal probit model for postsecondary education choice, and
estimated a simple model in which the choice depended simply on the student’s GRADES. Expand
the ordered probit model to include family income (FAMINC, in $1000), family size (FAMSIZ), the
dummy variables BLACK and PARCOLL = 1 if a parent has at least a college degree, and 0 otherwise.
The estimates of this model are Model 2 in Table 16.13.

T A B L E 16.13 Estimates for Exercise 16.14

Model 1 Model 2
PSECHOICE Coefficient Standard Error Coefficient Standard Error
GRADES −0.3066 0.0192 −0.2953 0.0202
FAMINC 0.0053 0.0013
FAMSIZ −0.0241 0.0302
BLACK 0.7131 0.1768
PARCOLL 0.4236 0.1016
μ̂1 −2.9456 0.1468 −2.5958 0.2046
μ̂2 −2.0900 0.1358 −1.6946 0.1971
lnL −875.8217 −839.8647

a. Using the estimates in Table 16.13, Model 1, calculate the probability that a student will choose
no college, a 2-year college, and a 4-year college if the student’s grades are GRADES = 7 (B−).
Recompute these probabilities assuming that GRADES = 3 (A−). Discuss the probability
changes. Are they what you anticipated? Explain.

b. Discuss the Model 2 estimates, their signs and significance. [Hint: recall that the sign indicates
the direction of the effect for the highest category but is opposite for the lowest category].

c. Test the joint significance of the variables added in (b) using a likelihood ratio test at the 1% level
of significance.

d. Compute the probability that a black student from a household of four members with $100,000
income, and with at least one parent having at least a college degree, so that PARCOLL = 1, will
attend a 4-year college if (i) GRADES = 7 and (ii) GRADES = 3.

e. Repeat (d) for a “nonblack” student and discuss the differences in your findings.
16.15 Consider a Poisson regression explaining the number of Olympic Games medals won

using data from 1988 (in Seoul, South Korea) and 1992 (in Barcelona, Spain) by various
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countries as a function of LPOP = ln(POP) = the logarithm of population in millions, and
LGDP = ln(GDP) = the logarithm of gross domestic product (in billions of 1995 dollars). That is,
E(MEDALTOT|X) = exp

[
β1+ β2ln(POP) + β3ln(GDP)

]
. The estimated coefficients, using 316

observations, are in Table 16.14, Model 1.

T A B L E 16.14 Estimates for Exercise 16.15

Model 1 Model 2
Coefficient Standard Error Coefficient Standard Error

C −1.4442 0.0826 −1.4664 0.0835
LPOP 0.2143 0.0217 0.2185 0.0219
LGDP 0.5556 0.0164 0.5536 0.0165
HOST 0.6620 0.1375

a. Using Model 1 results, what is the estimated impact on the number of medals won if GDP
increases by 1%? [Hint: It can be shown (can you?) that β3 is an elasticity.]

b. In 1996, Bulgaria had GDP = 11.8 billion and a population of 8.356 million. Estimate the
expected number of medals that Bulgaria would win in the Olympics, held in Atlanta, USA.
They did win 15 medals.

c. Calculate the probability that Bulgaria in 1996 would win one or fewer medals.
d. In 1996, Switzerland had GDP = 306 billion and a population of 6.875 million. Estimate the

expected number of medals that Switzerland would win. They did win 1 medal.
e. Calculate the probability that Switzerland in 1996 would win one or fewer medals.
f. HOST is an indicator variable = 1 for the country hosting the Olympics. This variable is added in

Model 2. Interpret its coefficient. [Hint: What is the estimated percentage change in the conditional
mean?] Is the estimated effect large or small? Is the coefficient statistically significant at the 1%
level?

g. In 1996, the Olympic games were held in the U.S. city of Atlanta, GA. In that year, the U.S. pop-
ulation was 265 million and its GDP was 7280 billion. Estimate the expected number of medals
the United States would win using Model 1 and again using Model 2. The United States won 101
medals that year. Which model’s estimated value was closer to the true outcome?

16.16 Consider a regression explaining the share of Olympic Games medals won by each country in 1988
(in Seoul, South Korea), 1992 (in Barcelona, Spain), and 1996 (in Atlanta, GA, USA) as a function of
LPOP = ln(POP) = the logarithm of population in millions, LGDP = ln(GDP) = the logarithm of
gross domestic product (in billions of 1995 dollars), and HOST , an indicator variable = 1 for the
country hosting the Olympics. The total number of medals awarded in 1988 was 738; in 1992, there
were 815 medals awarded, and in 1996, 842 medals were awarded. Using the total number of medals
awarded, we compute the percentage share of medals (SHARE) won by each country.
a. The least squares estimates of SHARE = β1 + β2ln(POP) + β3ln(GDP) + β4HOST + e are in

Table 16.15. Are the signs and significance of the coefficient estimates reasonable?

T A B L E 16.15 Estimates for Exercise 16.16

OLS Tobit
Coefficient Standard Error HCE Coefficient Standard Error

C −0.2929 0.1000 0.0789 −4.2547 0.3318
LPOP −0.0058 0.0496 0.0352 0.1707 0.1135
LGDP 0.3656 0.0454 0.0579 0.9605 0.0973
HOST 4.1723 0.9281 2.0770 3.2475 1.4611
σ̃ 2.4841 0.1273
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b. Using the OLS estimates, what is the predicted effect of GDP on the expected share of medals
won? That is, how much do we predict the share of medals won will change if GDP increases by
1%? Construct a 95% interval estimate of this effect.

c. For the model estimated by OLS, the robust Breusch-Pagan LM test statistic for heteroskedasticity
as a function of ln(GDP) is NR2 = 32.80. What can we conclude about the OLS estimator and the
usual standard errors based on this test?

d. We also report the OLS heteroskedasticity robust standard errors (HCE) in Table 16.15. Construct
a 95% interval estimate for the predicted effect of a 1% increase in GDP on the share of medals
won using the robust standard errors.

e. Among the 508 countries competing in these summer Olympics, almost 62% won no medals.
Does this cause any potential problems for the least squares estimator? By using robust standard
errors in part (c), we have solved any problems with the OLS estimator. True or false? Explain
your choice.

f. Compare the Tobit parameter estimates reported in Table 16.15 to the OLS estimates and standard
errors. What are the differences? Is Tobit a reasonable estimator for the share of medals won in
this example? Why?

g. Using the Tobit estimates, what is the estimated effect of GDP on the expected share of medals
won for a nonhost country with GDP = 150 billion and POP = 30 million? That is, how
much do we estimate the expected share of medals won will change if GDP increases by one
percent? [Hint: In equation (16.35), let y = SHARE and x = ln(GDP). Then

∂E(SHARE|X)∕∂ ln(GDP) = β3Φ
[β1 + β2ln(POP) + β3ln(GDP) + β4HOST

σ

]

Also, ∂ln(GDP)∕∂GDP = 1∕GDP. Then refer to the analysis of the linear-log model in
Section 4.3.3.]

16.8.2 Computer Exercises
16.17 In Chapter 7, we examined the Tennessee’s Project STAR. In the experiment, children were ran-

domly assigned within schools into three types of classes: small classes with 13–17 students, regular
sized classes with 22–25 students, and regular sized classes with a full-time teacher aide to assist
the teacher. In Example 7.11, we checked for random assignment of children to the three types of
classes using a linear probability model, regressing the indicator SMALL (small class) on student
characteristics. Let us reconsider this regression using logit rather than the linear probability model.
If there is random assignment of children to types of classes, then we should not find any signif-
icant relationships. Use data file star5_small2 for this exercise. The data file star5 contains more
observations.
a. Estimate a logit model with outcome variable SMALL and explanatory variables BOY and BLACK.

Individually test the coefficients of these variables for significance. What do you find? Test the
coefficients jointly for significance using the likelihood ratio test. What do you find? Can we reject
the null hypothesis that assignment to small classes is done randomly?

b. Repeat the estimation and testing in part (a) using outcome variables AIDE and REGULAR. Do
you find any evidence that students were not randomly assigned?

c. Add the variable FREELUNCH to the models in (a) and (b) and reestimate them. Do you find any
evidence that there is a systematic pattern between class assignment and this variable?

d. Add the two variables TCHWHITE and TCHMASTERS to the models in (c) and reestimate them.
In each, carry out a likelihood ratio test for the joint significance of TCHWHITE and TCHMAS-
TERS. What do you conclude? In the experiment students were randomized within schools but
not across schools. Does this offer any explanation of your findings? If so, how?

16.18 Mortgage lenders are interested in determining borrower and loan characteristics that may lead to
delinquency or foreclosure. In the data file lasvegas are 1000 observations on mortgages for single
family homes in Las Vegas, Nevada during 2008. The variable of interest is DELINQUENT , an
indicator variable = 1 if the borrower missed at least three payments (90 + days late), but 0 other-
wise. Explanatory variables are LVR = the ratio of the loan amount to the value of the property;
REF = 1 if purpose of the loan was a “refinance” and = 0 if loan was for a purchase; INSUR = 1
if mortgage carries mortgage insurance, 0 otherwise; RATE = initial interest rate of the mortgage;
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AMOUNT = dollar value of mortgage (in $100,000); CREDIT = credit score, TERM = number of
years between disbursement of the loan and the date it is expected to be fully repaid, ARM = 1 if
mortgage has an adjustable rate, and = 0 if mortgage has a fixed rate.
a. Estimate the linear probability (regression) model explaining DELINQUENT as a function of the

remaining variables. Use White heteroskedasticity robust standard errors. Are the signs of the
estimated coefficients reasonable?

b. Use logit to estimate the model in (a). Are the signs and significance of the estimated coefficients
the same as for the linear probability model?

c. Compute the predicted value of DELINQENT for the 500th and 1000th observations using both
the linear probability model and the logit model. Interpret the values.

d. Construct a histogram of CREDIT . Using both linear probability and logit models, calculate
the probability of delinquency for CREDIT = 500, 600, and 700 for a loan of $250,000
(AMOUNT = 2.5). For the other variables, let the loan to value ratio (LVR) be 80%, the initial
interest rate is 8%, all indicator variables take the value 0, and TERM = 30. Discuss similarities
and differences among the predicted probabilities from the two models.

e. Using both linear probability and logit models, compute the marginal effect of CREDIT on the
probability of delinquency for CREDIT = 500, 600, and 700, given that the other explanatory
variables take the values in (d). Discuss the interpretation of the marginal effect.

f. Construct a histogram of LVR. Using both linear probability and logit models, calculate the prob-
ability of delinquency for LVR = 20 and LVR = 80, with CREDIT = 600 and other variables set
as they are in (d). Compare and contrast the results.

g. Compare the percentage of correct predictions from the linear probability model and the logit
model using a predicted probability of 0.5 as the threshold.

h. As a loan officer, you wish to provide loans to customers who repay on schedule and are not
delinquent. Suppose you have available to you the first 500 observations in the data on which
to base your loan decision on the second 500 applications (501–1,000). Is using the logit model
with a threshold of 0.5 for the predicted probability the best decision rule for deciding on loan
applications? If not, what is a better rule?

16.19 Mortgage lenders are interested in determining borrower and loan factors that may lead to delin-
quency or foreclosure. In the data file vegas5_small are 1000 observations on mortgages for single
family homes in Las Vegas, Nevada during 2010. (The data file vegas5 contains 10,000 observa-
tions.) The variable of interest is DEFAULT , an indicator variable = 1 if the borrower’s payment
was 90 + days late, but 0 otherwise. Explanatory variables are ARM = 1 if it’s an adjustable rate mort-
gage, 0 if fixed; REFINANCE = 1 if loan is for a refinance of any type, 0 if for purchase; LIEN2 = 1
if there is a second lien mortgage, 0 if it is the first lien; TERM30 = 1 if it is a 30-year mortgage,
0 if 15-year mortgage; UNDERWATER = 1 if borrower estimated to owe more than the property is
worth at time of origination, 0 otherwise; LTV = loan to value ratio of property at origination, per-
cent; RATE = current interest rate on loan, percent; AMOUNT = loan amount in $10,000 units; and
FICO = borrower’s credit score at origination.
a. Estimate the linear probability (regression) model explaining DEFAULT as a function of the

remaining variables. Use White robust standard errors. Are the signs of the estimated coefficients
reasonable?

b. Use probit to estimate the model in (a). Are the signs and significance of the estimated coefficients
the same as for the linear probability model?

c. Compute the predicted value of DEFAULT for the 500th and 1000th observations using both the
linear probability model and the probit model. Interpret the values.

d. Construct a histogram of FICO. Using both linear probability and probit models, calculate the
probability of default for FICO = 500, 600, and 700 for a loan of $250,000 (AMOUNT = 25).
For the other variables, the loan to value ratio (LTV) is 80%, initial interest rate is 8%, indicator
variables take the value 0 except for TERM30 = 1. Discuss similarities and differences among the
predicted probabilities from the two models.

e. Using both linear probability and probit models, compute the marginal effect of FICO on the prob-
ability of delinquency for FICO = 500, 600, and 700, given that the other explanatory variables
take the values in (d). Discuss the interpretation of the marginal effect.

f. Construct a histogram of LTV . Using both linear probability and probit models, calculate the
probability of delinquency for LVR = 20 and LVR = 80, with FICO = 600 and other variables set
as they are in (d). Compare and contrast the results.
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g. Compare the percentage of correct predictions from the linear probability model and the probit
model using a predicted probability of 0.5 as the threshold.

h. As a loan officer, you wish to provide loans to customers who repay on schedule and are not
delinquent. Suppose you have available to you the first 500 observations in the data on which to
base your loan decision on the second 500 applications (501-1,000). Is using the probit model
with a threshold of 0.5 for the predicted probability the best decision rule for deciding on loan
applications? If not, what is a better rule? [Note: for vegas5 use the first 5000 observations for the
estimation sample and the second 5000 observations for prediction.]

16.20 This exercise deals with the loan data in the data file lasvegas described in Exercise 6.18. The
“Chow” test was introduced in Section 7.2.3 for testing the equality of coefficients in two regressions
on subsets of observations. Here we ask a similar question concerning the parameters of the logit
model for delinquency for the two subpopulations of borrowers who either have mortgage insurance
(INSUR = 1) or not (INSUR = 0).
a. Using all observations, estimate the logit model for DELINQUENT using all explanatory variables

except INSUR. Call the value of the log-likelihood function evaluated at the maximum likelihood
estimates lnLR.

b. Reestimate the model in (a) using the sample observations for which INSUR = 0. Call the value
of the log-likelihood function evaluated at the maximum likelihood estimates lnL0.

c. Reestimate the model in (b) using the sample observations for which INSUR = 1. Call the value
of the log-likelihood function evaluated at the maximum likelihood estimates lnL1.

d. Compare the estimates from the models in (a–c). What major differences in coefficient signs,
magnitudes, and significance do you observe?

e. Reestimate the model in (a) including each explanatory variable, as well as INSUR, and its inter-
actions with all the other variables. Compare the value of the log-likelihood function from the
fully interacted model, call it lnLU, to lnL0 + lnL1. If you have done things correctly, then lnLU
should equal lnL0 + lnL1. Can you explain why this must be so?

f. Carry out a likelihood ratio version of the Chow test by computing LR = 2(lnLU − lnLR). What
is the appropriate critical value for a test at the 5% level of significance? What conclusion do you
draw about the subgroups of individuals who do and do not have mortgage insurance? Do the two
groups behave in the same way?

16.21 Data on 1500 purchases of canned lite tuna are in the data file tunafish. There are four brands of
tuna (Starkist – water, Starkist – oil, Chicken of the Sea – water, Chicken of the Sea – oil). The A.C.
Nielsen data were made available through the University of Chicago’s Graduate School of Business.
The data file tunafish_small is a smaller dataset with 250 purchases. The data are in “stacked” for-
mat with four data lines per purchase, one for each tuna brand. The consumer choice is indicated
by the indicator variable CHOICE. Relevant variables are NETPRICE = price minus coupon value,
if used; DISPLAY = 1 if product is on display, FEATURE = 1 if item is featured, and INCOME =
household income.
a. What is the primary variable-type distinction between NETPRICE and INCOME?
b. What is the sample percentage of purchases for each brand? What do you observe about consumer

preferences for these product choices?
c. Using the conditional logit model, write the probability of choosing each brand using as explana-

tory variables NETPRICE, DISPLAY , and FEATURE, plus an alternative specific constant using
Starkist packed in water as the base category.

d. Estimate the model specified in part (c).
e. For the model in (d) find the marginal effect of NETPRICE on the probability of choice of each

brand, using for all brands DISPLAY = FEATURE = 1. Do these marginal effects have the signs
you anticipate? Are the marginal effects statistically significant?

f. Add the variable INCOME to the model specified in (c). Perform a likelihood ratio test of its
significance.

g. For the model in (f) find the marginal effect of NETPRICE on the probability of choice of each
brand, using for all brands DISPLAY = FEATURE = 1 and INCOME = 30.

16.22 How do age, education, and other personal characteristics predict our assessment of our health status?
Use the data file rwm88 to answer the following.
a. Tabulate the values of the variable HSAT3, which is a self-rating of health satisfaction, with 1 be-

ing the lowest and 3 being highest. What percentages fall into each of the health status categories?
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b. Estimate an ordered probit model predicting HSAT3 using AGE, AGE2, EDUC2 = years of
education, FEMALE = 1 if female, MARRIED = 1 if married, HHKIDS =1 if there are children
under age 16 in the household, and WORKING = 1 if employed, 0 otherwise. Which variables
have coefficients that are statistically significant at the 5% level?

c. Estimate the probability that an employed, unmarried male, age 40 with 16 years of education,
and no children, will have health satisfaction HSAT3 = 2.

d. Estimate the probability that an employed, unmarried male, age 50 with 16 years of education,
and no children, will have health satisfaction HSAT3 = 2.

e. Estimate the probability that an employed, unmarried male, age 40 with 16 years of education,
and no children, will have health satisfaction HSAT3 = 3.

f. Estimate the probability that an employed, unmarried male, age 50 with 16 years of education,
and no children, will have health satisfaction HSAT3 = 3.

g. Estimate the probability that an unemployed, unmarried male, age 50 with 16 years of education,
and no children, will have health satisfaction HSAT3 = 2. Compare this probability to the result
in part (d).

h. Estimate the probability that an unemployed, unmarried male, age 50 with 16 years of education,
and no children, will have health satisfaction HSAT3 = 3. Compare this probability to the result
in part (f).

16.23 How well do age, education, and other personal characteristics predict our assessment of our health
status? Use the data file rwm88 to answer the following.
a. Tabulate the variable HSAT3, which is a self-rating of health satisfaction, with 1 being the low-

est and 3 being highest. What percent of the sample assess their health status as HSAT3 = 1, 2,
or 3?

b. Estimate an ordered probit model predicting HSAT3 using AGE, AGE2, EDUC2 = years of
education, and WORKING = 1 if employed, 0 otherwise. Which variables have coefficients that
are statistically significant at the 5% level?

c. Estimate the marginal impact of age on the probabilities of health satisfactions HSAT3 = 1, 2,
or 3 for someone age 40, with 16 years of education, and who is working.

d. Estimate the marginal impact of age on the probabilities of health satisfactions HSAT3 = 1, 2,
or 3 for someone age 70, with 16 years of education, and who is working.

e. Estimate the marginal impact of WORKING on the probabilities of health satisfactions
HSAT3 = 1, 2, or 3 for someone age 40, with 16 years of education.

16.24 Consider household expenditures per person on apparel. Use the data file cex5 for this exercise.
a. What percentage of the households spent nothing on apparel in the previous quarter?
b. Estimate a linear regression with APPAR as dependent variable and use as explanatory vari-

ables INCOME, SMSA (Standard Metropolitan Statistical Area = 1 if household lives in an
urban area, and = 0 otherwise), ADVANCED, COLLEGE, and OLDER (= 1 if someone in the
household is 65 years of age or older). Discuss the signs and significance of the estimated
coefficients. Interpret the coefficient of INCOME. Interpret the coefficient of ADVANCED.

c. Repeat the estimation in (b) using only observations for which APPAR > 0. What are your answers
to the questions in (b) now?

d. Create the variable SHOP = 1 if APPAR > 0, and SHOP = 0 otherwise. Estimate a probit model
with dependent variable SHOP as a function of the variables in (b). What factors significantly
affect the decision to buy clothing?

e. Estimate a Tobit model with dependent variable APPAR. Compare the coefficient estimates signs
and significance to those in (b) and (c). Calculate the marginal effect of income on the expected
amount spent on APPAREL for a household living in an urban area, with income $65,000, con-
taining someone with an advanced degree and no one 65 or older in the household. Repeat the
calculation for a household with $125,000 income.

16.25 Consider using data file mroz to estimate a model explaining a married woman’s hours of work,
HOURS, as a function of her education, EDUC, her experience, EXPER, and her husband’s hours of
work, HHOURS.
a. Use all observations to estimate the regression model

HOURS = β1 + β2EDUC + β3EXPER + β4HHOURS + e

Is OLS a consistent estimator in this case?
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b. Use only the observations for which HOURS > 0 to estimate the regression model in (a). Is OLS
a consistent estimator in this case?

c. Estimate a probit model for the woman’s decision to be in the labor force, LFP = 1,
LFP = Φ

(
γ1 + γ2EXPER + γ3KIDSL6 + γ4KIDS618 + γ5MTR + γ6LARGECITY

)
. Which if any

of the variables help explain the woman’s labor force participation decision?
d. Using the estimates from the probit model, obtain

w̃ = γ̃1 + γ̃2EXPER + γ̃3KIDSL6 + γ̃4KIDS618 + γ̃5MTR + γ̃6LARGECITY

Create the inverse Mills ratio λ̃ = ϕ(w̃)∕Φ(w̃). What are the sample mean and variance of λ̃?
e. Estimate the model HOURS = β1 + β2EDUC + β3EXPER + β4HHOURS + βλλ̃ + e using the

observations for which HOURS > 0. Compare these estimates to those in parts (a) and (b). Are
the standard errors from this estimation correct?

f. Estimate the model in (e) using heteroskedasticity robust standard errors. Use the option HC3 if
it is available. These standard errors are not absolutely correct but an improvement over the ones
in (e).

g. Estimate the model in (e) using bootstrap standard errors, with B = 400 bootstrap replications.
Compare these standard errors to those in (e) and (f).

h. Estimate the model in (e) using proper econometric software for this Heckit model. Compare the
results to those in (e)–(g). Be sure to identify whether your software is using a two-step estimator,
like part (e), or full information maximum likelihood.

16.26 In Example 7.11, we used the linear probability model to check whether students were assigned ran-
domly to small classes in Project STAR. In this exercise, we use multinomial logit and the data file
star to explore the issue.
a. Create the variable CLASS = 1 for a regular sized class, CLASS = 2 for a small class, and

CLASS = 3 for a regular sized class with a teacher aide. What percentage of the students in the
sample were assigned to each type of class?

b. Estimate a multinomial logit model explaining CLASS with explanatory variables BOY ,
WHITE_ASIAN, BLACK, FREELUNCH, SCHURBAN, and SCHRURAL. Use CLASS = 1, the
regular class, as the base group. If students are assigned randomly what values should the model
coefficients take? Are any of the estimated coefficients significantly different from zero at the
5% level?

c. Find the ratio of the probability of being in a small class for a white boy who receives lunch if his
school is in a rural area, relative to the probability of him being in a regular sized class.

d. Find the ratio of the probability of being in a regular sized class with a teacher aide for a white
boy who receives lunch if his school is in a rural area, relative to the probability of him being in
a regular sized class.

e. Carry out a likelihood ratio test that the coefficients of BOY , WHITE_ASIAN, BLACK,
FREELUNCH, and SCHURBAN are zero, against the alternative that they are not, at the 5%
level. What is the 5% critical value for this test?

f. Carry out a likelihood ratio test that the coefficients of BOY , WHITE_ASIAN, BLACK,
FREELUNCH, SCHURBAN, and SCHRURAL are zero, against the alternative that they are not,
at the 5% level. What is the 5% critical value for this test?

g. Based on the outcomes of parts (a)–(f), what do you conclude about random assignment of stu-
dents in Project STAR?

16.27 In Example 16.15, we considered a count data model for the number of doctor visits by an individual
as a function of a few explanatory variables. In this exercise, we expand the analysis using a larger
data set in the data file, rwm88, and more explanatory variables. Adjust the data in the following ways:
(i) omit individuals for whom HHNINC2 = 0; (ii) create the variable LINC = ln(HHNINC2); (iii) cre-
ate AGE2 = AGE2; (iv) create the variable POST = 1 (a postsecondary degree indicator variable) if
FACHHS = 1 or if UNIV = 1, and POST = 0 otherwise.
a. Using the first 3000 observations estimate a Poisson model explaining DOCVIS as a function of

FEMALE, AGE, AGE2, SELF, LINC, POST , and PUBLIC. Discuss the signs and the significance
of the coefficients on FEMALE, SELF, POST , and PUBLIC. Calculate the percentage increase in
the expected number of doctor visits for each factor represented by these indicator variables.

b. Compute the estimated percentage change in the expected number of doctor visits associated with
another year of age for a person who is 30 years old; who is 50 years old; and who is 70 years old.
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c. Interpret the estimated coefficient of LINC.
d. Calculate the expected number of doctor visits for each person, EDOCVIS, and round this value

to the nearest integer to obtain NVISITS, the predicted number of visits for each person. Cre-
ate a variable that indicates a successful prediction. Let SUCCESS = 1 if NVISITS = DOCVIS
and SUCCESS = 0 otherwise. What is the percentage of successful predictions for observations
1–3000? What is the percentage of successful predictions for the remaining 979 observations?

e. Create SUCCESS1 which indicates a successful prediction of more than one doctor visit.
That is, create a variable DOCVIS1 = 1 if an individual has more than one doctor visit, and
PREDICT1 = 1 if the model has predicted more than one doctor visit. Let SUCCESS1 = 1 if
DOCVIS1 = PREDICT1 and SUCCESS1 = 0 otherwise. What is the percentage of successful
predictions of more than one doctor visit for observations 1–3000? What is the percentage of
successful predictions of more than one doctor visit for the remaining 979 observations?

16.28 We have used Ray Fair’s voting data, (data file fair5, throughout the book to predict presidential
election outcomes with the linear regression model. Here we apply probit to predict the outcome of the
2016 U.S. Presidential election. Create the variable DEMWIN = 1 if VOTE ≥ 50.0 and DEMWIN = 0
otherwise. As of October 28, 2016, the values for the key economic variables were GROWTH = 0.97,
INFLAT = 1.42, and GOODNEWS = 2.
a. Estimate a probit model for DEMWIN as a function of GROWTH, INFLAT , GOODNEWS

using data for years prior to 2016. Comment on the signs and significance of the estimated
coefficients.

b. Using the probit model in part (a), and the given values of GROWTH, INFLAT , and
GOODNEWS, predict the election outcome in 2016. What is the estimated probability that a
democrat will win?

c. Add DPER, DUR, WAR, and INCUMB to the model used in (a). Reestimate the probit model.
What happens to the signs and significance of the estimated coefficients?

d. Using the model in (c), obtain the estimated probability, PHAT , of a democrat winning for the
sample period 1916–2012. Are any of the predicted values very close to 1.0 or 0.0? For how many
observations is PHAT > 0.99999? For how many observations is PHAT < 0.00001?

e. Examine the values of DEMWIN when the following four-variable pattern exists in the data:
DPER = −1, DUR = 0, WAR = 0, INCUMB = −1. How many such observations are there?
[Note: Some software will indicate probit failure when the dependent variable does not vary for
a value of an independent variable, or in this case a particular combination of values. You may
think of this as something like “perfect collinearity.” When this happens maximum likelihood
estimation including the particular pattern of observations fails.]

16.29 In this exercise, we illustrate some features of instrumental variables estimation, and two-stage least
squares, when the potential endogenous variable is binary. Use the data file rwm88 for this problem,
and do not worry too much about the economic reasoning behind the model.
a. Estimate by OLS the regression of DOCVIS on AGE, FEMALE, WORKING, HHNINC2, and

ADDON. Use heteroskedasticity robust standard errors. Does it appear that having add-on insur-
ance is a significant factor affecting the number of doctor visits?

b. ADDON might be endogenous. Estimate a first stage equation using OLS with ADDON as depen-
dent variable and AGE, FEMALE, WORKING, HHNINC2, WHITEC, and SELF as explanatory
variables. Since the dependent variable is binary use heteroskedasticity robust standard errors.
Are WHITEC and SELF jointly significant? Why does this matter if our objective is two-stage
least squares estimation?

c. Obtain the fitted value from part (b), ADDON
⋀

, and reestimate the model in (a) using ADDON
⋀

in place of ADDON. Use heteroskedasticity robust standard errors. Does it appear that having
add-on insurance is a significant factor affecting the number of doctor visits?

d. Use your software command designed for two-stage least squares and estimate the model in (a)
using external instruments WHITEC and SELF. Use heteroskedasticity robust standard errors.
How do these estimates compare to those in part (c)? Has two-stage least squares performed as
expected?

e. Since ADDON is binary, estimate the first stage equation in (b) using probit. Compute the esti-
mated probability that ADDON = 1, PHAT . Reestimate the model in (a) using PHAT in place of
ADDON. Use heteroskedasticity robust standard errors. Are the results the same as in part (d)?
Why not?
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f. Use your software command designed for two-stage least squares and estimate the model in (a)
using external instrument PHAT . Use heteroskedasticity robust standard errors. How do these
estimates compare to those in part (e)? Has two-stage least squares performed as expected?

16.30 In this exercise, we use multinomial logit to describe factors leading an individual to fall into one of
three categories. Use data file rwm88 for this exercise.
a. Create a variable called INSURED = 1, if a person does not have public insurance or add-on insur-

ance (PUBLIC = 0 and ADDON = 0). Let INSURED = 2 if (PUBLIC = 1 and ADDON = 0).
Let INSURED = 3 if (PUBLIC = 1 and ADDON = 1). Tabulate the number of individuals falling
into each category. How many individuals are accounted for?

b. Estimate a multinomial logit model with outcome variable INSURED and explanatory variables
AGE, FEMALE, WORKING, and HHNINC2. Use INSURED = 1 as the base category. What infor-
mation is provided by the signs and significance of the estimated coefficients?

c. Obtain the predicted probabilities of falling into each category for each person in the sample,
calling them P1, P2, and P3. Find the sample averages of P1, P2, and P3 and compare these to
the percentages of the sample for whom INSURED = 1, 2, and 3, respectfully.

d. Obtain the predicted probabilities of falling into each category for a person who is 50 years old,
female, working and with a household income, HHNINC2 = 2400.

e. Repeat the calculations in (d) for HHNINC2 = 4200.
f. Calculate the 25th and 75th percentiles of HHNINC2. Comment on the changes in probabilities

computed in parts (d) and (e).

Appendix 16A Probit Marginal Effects: Details
16A.1 Standard Error of Marginal Effect at a Given Point

Consider the probit model p = Φ
(
β1 + β2x

)
. The marginal effect of a continuous x, evaluated at

a specific point x = x0, is
dp
dx

||||x=x0

= ϕ
(
β1 + β2x0

)
β2 = g

(
β1, β2

)

The estimator of the marginal effect is g
(
β̃1, β̃2

)
, where β̃1 and β̃2 are the maximum likelihood

estimators of the unknown parameters. The variance of this estimator was developed in Appendix
5B.2, in (5B.4), and is given by

var
[
g
(
β̃1, β̃2

)]
≅
[
∂g
(
β1, β2

)

∂β1

]2

var
(
β̃1
)
+
[
∂g
(
β1, β2

)

∂β2

]2

var
(
β̃2
)

+ 2
[
∂g
(
β1, β2

)

∂β1

][
∂g
(
β1, β2

)

∂β2

]
cov

(
β̃1, β̃2

)
(16A.1)

The variances and covariances of the estimators come from maximum likelihood estimation. The
essence of these calculations is given in Appendix C.8.2. To implement the delta method, we
require the derivative

∂g
(
β1, β2

)

∂β1
=
∂
[
ϕ
(
β1 + β2x0

)
β2
]

∂β1

=
{
∂ϕ

(
β1 + β2x0

)

∂β1
× β2

}
+ ϕ

(
β1 + β2x0

)
×
∂β2
∂β1

= −ϕ
(
β1 + β2x0

)
×
(
β1 + β2x0

)
× β2
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The second line above uses the product rule, Derivative Rule 6. To obtain the final result, we used
∂β2∕∂β1 = 0 and

∂ϕ
(
β1 + β2x0

)

∂β1
= ∂
∂β1

[
1√
2π

e−
1
2(β1+β2x0)2

]

= 1√
2π

e−
1
2(β1+β2x0)2(

2 × −1
2 ×

(
β1 + β2x0

))

= −ϕ
(
β1 + β2x0

)
×
(
β1 + β2x0

)

The second step uses Derivative Rule 7 for exponential functions. Using similar steps, we obtain
the other key derivative,

∂g
(
β1, β2

)

∂β2
= ϕ

(
β1 + β2x0

)[
1 −

(
β1 + β2x0

)
× β2x0

]

From the maximum likelihood estimation results using the transportation data example, we obtain
the estimator variances and covariances32

⎡
⎢
⎢⎣

var
⋀(

β̃1
)

cov
⋀(

β̃1, β̃2
)

cov
⋀(

β̃1, β̃2
)
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β̃2
)

⎤
⎥
⎥⎦
=
⎡
⎢
⎢⎣

0.1593956 0.0003261

0.0003261 0.0105817

⎤
⎥
⎥⎦

The derivatives must be evaluated at the maximum likelihood estimates. For the transportation
data used in Examples 16.4 and 16.5 for DTIME = 2 (x0 = 2), the calculated values of the deriva-
tives are

∂g
(
β1, β2

)

∂β1

⋀

= −0.055531 and
∂g
(
β1, β2

)

∂β2

⋀

= 0.2345835

Using (16A.1), and carrying out the required multiplication, we obtain the estimated variance and
standard error of the marginal effect

var
⋀

[
g
(
β̃1, β̃2

)]
= 0.0010653 and se

[
g
(
β̃1, β̃2

)]
= 0.0326394

16A.2 Standard Error of Average Marginal Effect
Consider the probit model p = Φ

(
β1 + β2x

)
. For the transportation data example, the explanatory

variable x = DTIME. The average marginal effect of this continuous variable is

AME = 1
N

N∑
i=1
ϕ
(
β1 + β2DTIMEi

)
β2 = g2

(
β1, β2

)

The estimator of the average marginal effect is g2
(
β̃1, β̃2

)
. To apply the delta method to find

var
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............................................................................................................................................
32Using minus the inverse matrix of second derivatives.
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The term
∂g
(
β1, β2

)

∂β1
we evaluated in the previous section. Similarly, the derivative

∂g2
(
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)

∂β2
= ∂
∂β2

[
1
N
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(
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For the transportation data, we compute

∂g2
(
β1, β2

)

∂β1

⋀

= −0.00185 and
∂g2

(
β1, β2

)

∂β2

⋀

= −0.032366

Using (16A.1) with g replaced by g2, and carrying out the required multiplication, we obtain the
estimated variance and standard error of the average marginal effect

var
⋀

[
g2
(
β̃1, β̃2

)]
= 0.0000117 and se

[
g2
(
β̃1, β̃2

)]
= 0.003416

Appendix 16B Random Utility Models
Economics is a general theory of choice behavior. Individuals make choices that maximize
their wellbeing, or welfare, or, as economists term it, “utility.” Observers cannot measure utility
directly, and we cannot compare the utility, or satisfaction, that Jane enjoys while eating ice
cream to Bill’s satisfaction. But when a person is confronted with two or more choices, we
assume that they make the choice that maximizes their welfare, however that might be defined.
If a person must choose between taking a bus to work or driving to work, then, after considering
the various costs and benefits, the person’s choice reveals their utility maximizing outcome.
We can imagine that the utility they receive depends on the attributes of the alternatives. As
modelers we can select some such attributes as explanatory variables, but we must recognize that
we will never truly understand choices completely; there is a random unexplained component, or
random error, in any model.

Choice models, both binary and multinomial, as well as other limited dependent variable
models, are often developed using a random utility model framework. Utility, or satisfaction, is
unobservable and consequently it is called a latent variable, one that must be present but which
is unseen. We will illustrate this approach to modeling by developing the probit model of binary
choice in the random utility framework.

16B.1 Binary Choice Model
Assume that an individual must choose between two alternatives. Let Ui1 be the utility derived
from alternative one and let Ui0 be the utility derived from alternative two. Let zi1 be the attributes
of alternative one as perceived by the ith individual, and let zi0 be the attributes of alternative two
as perceived by the ith individual. Let wi represent the attributes of the ith individual. There may
be several attributes of the alternatives that are relevant, and several individual characteristics that
matter as well, but for simplicity, we will assume that there is but one attribute of each alternative
and one individual characteristic. Then, a linear random utility model for each alternative is

Ui1 = α1 + zi1δ + wiγ1 + ei1
Ui0 = α0 + zi0δ + wiγ0 + ei0

(16B.1)
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In each model, there is a random error component, ei1 and ei0. Assuming strict exogeneity,
E
(
ei1|zi1, zi0,wi

)
= 0 and the same for ei0, we can write

Ui1 = E
(
Ui1| •

)
+ ei1 and Ui0 = E

(
Ui0| •

)
+ ei0

so that the utility from each part consists of a systematic part and a random part, as we are used
to. Each of the expected utility terms is conditional, but we suppress the notation for convenience.
Also, note that the individual characteristics wi have coefficients that are unique to each alternative
but that the attributes of alternatives, zi1 and zi0, have a common parameter, δ. The logic of this
specification will become clear soon.

As in equation (16.1), let the outcome variable be

yi =
{

1 if alternative one is chosen
0 if alternative two is chosen (16B.2)

Based on our model of random utility, alternative one will be chosen, and yi = 1, if Ui1 ≥ Ui0, or
if Ui1 – Ui0 ≥ 0, where

Ui1 − Ui0 = E
(
Ui1| •

)
+ ei1 −

[
E
(
Ui0| •

)
+ ei0

]

=
(
α1 − α0

)
+
(
zi1 − zi0

)
δ + wi

(
γ1 − γ0

)
+
(
ei1 − ei0

) (16B.3)

The left-hand side variable Ui1 – Ui0 is unobservable, but we know the difference in utilities
determines an individual’s choice. Let y∗i = Ui1 − Ui0 denote the latent variable which is the dif-
ference in utilities. Observe what would happen if the characteristics of the individual had the
same coefficient in the random utility models (16B.1). Then the individual characteristics would
fall out of (16B.3) and would have no effect on the choice. Equation (16B.3) becomes a regression
specification by writing it as

y∗i =
(
α1 − α0

)
+
(
zi1 − zi0

)
δ + wi

(
γ1 − γ0

)
+
(
ei1 − ei0

)

= β1 + β2
(
zi1 − zi0

)
+ β3wi + ei

= β1 + β2xi2 + β3xi3 + ei

(16B.4)

We observe yi = 1 if y∗i = Ui1 − Ui0 ≥ 0. The probability of an individual choosing alternative
one is

p
(xi

)
= P

(
yi = 1| •

)
= P

(
y∗i ≥ 0| •

)
= P

[(
Ui1 ≥ Ui0

)|| •

]

= P
[
E
(
Ui1| •

)
+ ei1 ≥ E

(
Ui0| •

)
+ ei0

]

= P
[
ei0 − ei1 ≤ E

(
Ui1| •

)
− E

(
Ui0| •

)]

= P
[
ei0 − ei1 ≤ β1 + β2xi2 + β3xi3

]

= F
(
β1 + β2xi2 + β3xi3

)

(16B.5)

In the last line of (16B.5), F
(
β1 + β2xi2 + β3xi3

)
is the cumulative distribution function of the

random variable ei0 – ei1. In Section 16.2, we used the cdf as a convenient device for keeping
the probabilities between zero and one, but here it arises quite naturally from the random utility
framework.

16B.2 Probit or Logit?
In binary choice problems, economists tend to use probit over logit. The reason follows from
assumptions about the random utility models. Suppose that ei1 ∼ N

(
0, σ2

1
)
, ei0 ∼ N

(
0, σ2

0
)
, and

cov
(
ei1, ei0

)
= σ10. Then

(
ei0 − ei1

)
∼ N

(
0, σ2 = σ2

0 + σ
2
1 − 2σ10

)
. Then
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p
(xi

)
= P

(
yi = 1| •

)

= P
[
ei0 − ei1 ≤ β1 + β2xi2 + β3xi3

]

= P
[ei0 − ei1

σ ≤ β1
σ +

β2
σ xi2 +

β3
σ xi3

]

= Φ
(
β∗1 + β

∗
2xi2 + β∗3xi3

)

The parameters in the probit model are actually β∗k = βk∕σ. The parameter scaling is usually
ignored in notation with the explanation that we choose σ = 1 as a normalization.33 Then the
probit model is p

(
!i
)
= Φ

(
β1 + β2xi2 + β3xi3

)
.

On the other hand, to obtain a logit model, the random errors ei1 and ei0 must be statisti-
cally independent and identically distributed with an extreme value distribution.34 In this case,(
ei0 − ei1

)
= v1 has a logistic distribution. The details are a fun exercise (see Example B.7 for

part of it) and outlined in Dhrymes (1986, page 1574).35

The bottom line is that there is no reason to assume that the random utility errors are statisti-
cally independent, nor to have the asymmetrical extreme value distribution. It is a mathematically
convenient assumption because the end result, the logistic distribution, has a cdf of convenient
form. Assuming that the random utility errors are normally distributed, and correlated, is not at
all a stretch of the imagination.

Appendix 16C Using Latent Variables
Using latent variables, we can develop a variety of models that involve observed and partially
observed variables. We will illustrate a few using simple models. Others can be found in Amemiya
(1984, “Tobit Models: A Survey,” Journal of Econometrics, 24, pages 3–61).

16C.1 Tobit (Tobit Type I)
Amemiya called the standard Tobit model “Type I Tobit.” Let y∗i = β1 + β2xi + ei be a latent
variable with ei ∼ N

(
0, σ2). The Tobit model then arises by specifying the observed outcome

value yi to be,

yi =
{

y∗i = β1 + β2xi + ei if y∗i > 0
0 if y∗i ≤ 0

Three possible regression functions are then

E
(
y∗i |xi

)
= β1 + β2xi

E
(
yi|xi, yi > 0

)
= β1 + β2xi +

ϕ
[(
β1 + β2xi

)
∕σ

]

Φ
[(
β1 + β2xi

)
∕σ

]

E
(
yi|xi

)
= Φ

[(
β1 + β2xi

)
∕σ

]
E
(
yi|xi, yi > 0

)

............................................................................................................................................
33The issue of this normalization comes into play in the discussion of Heckman’s two-step estimator, discussed in
Section 16.7.5.
34https://en.wikipedia.org/wiki/Gumbel_distribution
35http://www.sciencedirect.com/science/handbooks/15734412/3
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The marginal effects for a continuous variable xi are

∂E
(
y∗i |xi

)
∕∂xi = β2

∂E
(
yi|xi, yi > 0

)
∕∂xi =

{
1 − αiλ

(
αi
)
−
[
λ
(
αi
)]2}β2

∂E
(
yi|xi

)
∕∂xi = Φ

(
αi
)
β2

where αi =
(
β1 + β2xi

)
∕σ and λ

(
αi
)
= ϕ

(
αi
)
∕Φ

(
αi
)
.

16C.2 Heckit (Tobit Type II)
The famous model of self-selection (Tobit Type II) developed by James Heckman is called
“Heckit.” In this model, there are two equations. The selection equation, that describes a person’s
participation decision, and an intensity, or amount, equation, which is the equation of interest. In
the latent variable formulation, the equations are

z∗i = γ1 + γ2wi + ui selection equation
y∗i = β1 + β2xi + ei amount equation, the equation of interest

The equations are connected through their error terms. Let ui ∼ N
(
0, σ2

u
)

and ei ∼ N
(
0, σ2

e
)
, with

the covariance between these two random errors being σue. The latent variables z∗i and y∗i are not
observed. We do observe the binary variable

zi =
{

1 z∗i > 0
0 otherwise

and

yi =
{

y∗i = β1 + β2xi + ei if z∗i > 0 or zi = 1
0 if z∗i ≤ 0 or zi = 0

Using a theorem about bivariate normal random variables, similar to Appendix B.3.5, it can be
shown that

E
(
yi|xi,wi, yi > 0

)
= β1 + β2xi + σue

ϕ
[(
γ1 + γ2wi

)
∕σu

]

Φ
[(
γ1 + γ2wi

)
∕σu

] = β1 + β2xi + σue
ϕ
(
γ∗1 + γ

∗
2wi

)

Φ
(
γ∗1 + γ

∗
2wi

)

Heckman’s two-step estimator first estimates the selection model’s scaled parameters γ∗1 = γ1∕σu
and γ∗2 = γ2∕σu by probit using all observations. Then, using only positive observations, estimates
by OLS the equation of interest

yi = β1 + β2xi + σue
ϕ
(
γ̃∗1 + γ̃

∗
2wi

)

Φ
(
γ̃∗1 + γ̃

∗
2wi

) + vi

The two-step estimator is consistent and asymptotically normally distributed, but the usual OLS
standard errors are incorrect. The corrected ones are complicated but available in econometric
software. An alternative is to estimate by maximum likelihood the two equations jointly, which
is a more efficient estimation option. The MLE is often the default in econometric software, so
check your documentation.
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Appendix 16D A Tobit Monte Carlo Experiment
Let the latent variable be

y∗i = β1 + β2xi + ei = −9 + xi + ei (16D.1)

with the error term assumed to have a normal distribution, ei ∼ N
(
0, σ2 = 16

)
. The observable

outcome yi takes the value zero if y∗i ≤ 0, but yi = y∗i if y∗i > 0. In the simulation, we

• Create N = 200 random values of xi that are spread evenly (or uniformly) over the interval
[0, 20].

• Obtain N = 200 random values ei from a normal distribution with mean 0 and variance 16.
• Create N = 200 values of the latent variable y∗i = −9 + xi + ei.
• Obtain N = 200 values of the observed yi using

yi =
{

0 if y∗i ≤ 0
y∗i if y∗i > 0

The 200 observations obtained this way constitute a sample that is censored with a lower limit
of zero. The latent data are plotted in Figure 16D.1. In this figure, the line labeled E

(
y∗i |xi

)
has

intercept −9 and slope 1. The values of the latent variable y∗i (triangle and hollow circle, △ and
⚬) are scattered along this regression function; if we observed these data we could estimate the
parameters using the least squares principle, by fitting a line through the center of the data.

However, we do not observe all the latent data. When the values of y∗i are zero or less then
we observe yi = 0 (•). We observe the y∗i when they are positive. These observable data, along
with the fitted least squares regression, are shown in Figure 16D.2.

The least squares principle will fail to estimate β1 = −9 and β2 = 1 because the observed
data do not fall along the underlying regression function E

(
y∗|x) = β1 + β2x = −9 + x.

To illustrate, the results from the first Monte Carlo sample, data file tobit5, are contained in
Table 16D.1. In the first column

(
y∗
)

are the OLS estimates using the simulated latent data. In
the second column (y > 0) are the OLS estimates using only the 118 observations for which the

–20

–10

10

20

0y

0 5 10 15 20

x

y > 0 y* < 0
y = 0 E(y* x)

FIGURE 16D.1 Latent and censored data.
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y > 0 y = 0
OLS fittedE(y* x)

FIGURE 16D.2 Observed data and OLS fitted line.

T A B L E 16D.1 Simulated Censored Data (tobit5)

y∗ y > 0 y Tobit
C −8.6611 −1.1891 −1.6515 −8.0007

(0.5842) (1.1777) (0.4290) (0.9802)
x 0.9690 0.5176 0.5075 0.9215

(0.0499) (0.0823) (0.0366) (0.0722)
σ̂ 4.1050 3.4340 3.0146 3.9884

(0.2670)
N 200 118 200 200

(Standard errors in parentheses)

observed value of y is positive; in the third column (y), are the OLS estimates on the 200 observed
values of y, and in the fourth column are the Tobit estimates. The Tobit estimates are relatively
close to the true value, while the estimates based only on the positive y values, or on all the y
values, are far from the mark. An added benefit of the ML method is that there is a standard error
for the estimated value of σ.

In the Monte Carlo simulation, we repeat this process of creating N = 200 observations,
and applying least squares estimation, many times. This is analogous to “repeated sampling” in
the context of experimental statistics. In this case, we repeat the process NSAM = 1000 times,
drawing new x-values and error values e, recording each time the values of the estimates we
obtain. At the end, we can compute the average values of the estimates which is the Monte Carlo
“expected value,”

EMC
(
bk
)
= 1

NSAM

NSAM∑
m=1

bk(m)

where bk(m) is the estimate of βk in the mth Monte Carlo sample. We also compute the Monte Carlo
average of the usual, or “nominal” standard error, and the standard deviation of the estimates. The
standard deviation measures the true sampling variability of the estimates. It is our hope that the
usual standard error captures the actual sampling variation so that the average nominal standard
error and the standard deviation of the estimates are close. The results are in Table 16D.2.
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T A B L E 16D.2 Monte Carlo Simulation Results

Intercept = − 9 Slope = 1

Mean
Standard

Error
Standard
Deviation Mean

Standard
Error

Standard
Deviation

y∗ −9.0021 0.5759 0.5685 1.0000 0.0498 0.0492
y > 0 −2.1706 0.9518 1.1241 0.6087 0.0729 0.0779
y −2.2113 0.2928 0.4185 0.5632 0.0389 0.0362
Tobit −9.0571 1.0116 0.9994 1.0039 0.0740 0.0733

The results of applying OLS to the latent data
(
y∗
)

produce estimates that are on average very
close to the true values for both the intercept and the slope. The average of the nominal standard
error is close to the standard deviation of the estimates. If we discard the y = 0 observations
and apply least squares to just the positive y observations, y > 0, these averages are −2.1706
and 0.6087, respectively. If we apply the least squares estimation procedure to all the observed
censored data (y, including observations y = 0), the average value of the estimated intercept is
−2.2113, and the average value of the estimated slope is 0.5632. The least squares estimates are
biased by a substantial amount, compared to the true values β1 = −9 and β2 = 1. This bias will not
disappear no matter how large the sample size we consider because the least squares estimators
are inconsistent when data are censored or truncated. On the other hand, the Tobit estimates on
average are very close to the true values.

A word of caution is in order about commercial software packages. There are many algo-
rithms available for obtaining maximum likelihood estimates, and different packages use different
ones, which may lead to slight differences (in perhaps the 3rd or 4th decimal) in the parameter
estimates and their standard errors. When carrying out important research, it is a good tip to con-
firm empirical results with a second software package, just to be sure that they give essentially
the same numbers.
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