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CHAPTER 15

Panel Data Models

L E A R N I N G O B J E C T I V E S

Based on the material in this chapter, you should be able to

1. Explain how a data panel differs from either a
cross section or a time series of data.

2. Explain the different ways in which individual
heterogeneity can be modeled using panel data,
and the assumptions underlying each approach.

3. Explain how the fixed effects model allows for
differences in the parameter values for each
individual cross section in a data panel.

4. Compare and contrast the least squares dummy
variable estimator and the fixed effects
estimator.

5. Compare and contrast the fixed effects model and
the random effects model. Explain what leads us
to consider individual differences to be random.

6. Explain the error assumptions in the random
effects model, and what characteristic leads us
to consider generalized least squares estimation.

7. Describe the steps required to obtain
generalized least squares estimates for the
random effects estimator.

8. Explain the meaning of cluster-robust standard
errors, and describe how they can be used with
pooled least squares, fixed effects, and random
effects estimators.

9. Explain why endogeneity is a potential problem
in random effects models, and how it affects our
choice of estimator.

10. Test for the existence of fixed and/or random
effects, and use the Hausman test to assess
whether the random effects estimator is
inconsistent.

11. Explain how the Hausman–Taylor estimator can
be used to obtain consistent estimates of
coefficients of time-invariant variables in a
random effects model.

12. Use your software to estimate fixed effects
models and random effects models for panel
data.

K E Y W O R D S
Balanced panel
Cluster-robust standard errors
Deviations about the individual mean
Difference estimator
Endogeneity
Error components model
Fixed effects estimator
Fixed effects model

Hausman test
Hausman–Taylor estimator
Heterogeneity
Instrumental variables
Least squares dummy variable model
LM test
Pooled least squares
Pooled model

Random effects estimator
Random effects model
Time-invariant variables
Time-varying variables
Unbalanced panel
Within estimator
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CHAPTER 15 Panel Data Models 635

A panel of data consists of a group of cross-sectional units (people, households, firms, states,
and countries) who are observed over time. We will often refer to such units as individuals, with
the term “individual” being used generically, even when the unit of interest is not a person. Let
us denote the number of cross-sectional units (individuals) by N, and number of time periods
in which we observe them as T . Panel data come in several different “flavors,” each of which
introduces new challenges and opportunities. Peter Kennedy1 describes the different types of
panel data sets as

• “Long and narrow,” with “long” describing the time dimension and “narrow” implying a
relatively small number of cross-sectional units

• “Short and wide,” indicating that there are many individuals observed over a relatively short
period of time

• “Long and wide,” indicating that both N and T are relatively large

A “long and narrow” panel may consist of data on several firms over a period of time. A classic
example is a data set analyzed by Grunfeld and used subsequently by many authors.2 These data
track investment in plant and equipment by N = 11 large firms for T = 20 years. This panel is
narrow because it consists of only N = 11 firms. It is relatively “long” because T > N.

Many microeconomic analyses are performed on panel data sets with thousands of individ-
uals who are followed through time. For example, the Panel Study of Income Dynamics (PSID)
has followed approximately 8,000 families since 1968.3 The U.S. Department of Labor conducts
National Longitudinal Surveys (NLS) such as NLSY79, “a nationally representative sample
of 12,686 young men and women who were 14–22 years old when they were first surveyed in
1979.4 These individuals were interviewed annually through 1994 and are currently interviewed
on a biennial basis.” Such data sets are “wide” and “short,” because N is much, much larger
than T . Using panel data sets of this kind we can account for unobserved individual differences,
or heterogeneity. Furthermore, these data panels are becoming long enough so that dynamic
factors, such as spells of employment and unemployment, can be studied. These very large data
sets are rich in information, and require the use of considerable computing power.

Macroeconomists who study economic growth across nations employ data that is “long” and
“wide.” The Penn World Table5 provides purchasing power parity and national income accounts
converted to international prices for 182 countries for some or all of the years 1950–2014, which
we may roughly characterize as having both large N and large T .

Finally, it is possible to have data that combines cross-sectional and time-series data which
do not constitute a panel. We may collect a sample of data on individuals from a population at
several points in time, but the individuals are not the same in each time period. Such data can
be used to analyze a “natural experiment,” for example, when a law affecting some individuals
changes, such as a change in unemployment insurance in a particular state. Using data before
and after the policy change, and on groups of affected and unaffected people, the effects of the
policy change can be measured. Methods for estimating effects of this type were introduced in
Section 7.5.

Our interest in this chapter is how to use all available data to estimate econometric models
describing the behavior of the individual cross-sectional units over time. Such data allow us to
control for individual differences and study dynamic adjustment, and to measure the effects of
policy changes. For each type of data, we must take care not only with error assumptions, but also

............................................................................................................................................
1A Guide to Econometrics, 6th ed., Chapter 18, MIT Press, 2008.
2See Kleiber and Zeileis, “The Grunfeld Data at 50,” German Economic Review, 2010, 11(4), pp. 404–417 and
http://statmath.wu-wien.ac.at/∼zeileis/grunfeld/.
3See http://psidonline.isr.umich.edu/.
4See www.bls.gov/nls/.
5See http://cid.econ.ucdavis.edu/.
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with our assumptions about whether, how, and when parameters may change across individuals
and/or time.

E X A M P L E 15.1 A Microeconometric Panel

Our first example is of a data set that is short and wide.
It is typical of many microeconometric analyses that use
large data sets with many individuals, coming from the NLS
conducted by the U.S. Department of Labor, which has a
database on women who were between 14 and 24 in 1968.
To illustrate, we use a subsample of N = 716 women who
were interviewed in 1982, 1983, 1985, 1987, and 1988. The
sample consists of women who were employed, and whose
schooling was completed, when interviewed. The data file
is named nls_panel and contains 3,580 lines of data. Panel
data observations are usually stacked, with all the time-
series observations for one individual on top of the next.
The observations on a few variables for the first three women
in the NLS panel are shown in Table 15.1. The first column
ID identifies the individual and YEAR represents the year

T A B L E 15.1 Representative Observations from NLS Panel Data

ID YEAR LWAGE EDUC SOUTH BLACK UNION EXPER TENURE
1 82 1.8083 12 0 1 1 7.6667 7.6667
1 83 1.8634 12 0 1 1 8.5833 8.5833
1 85 1.7894 12 0 1 1 10.1795 1.8333
1 87 1.8465 12 0 1 1 12.1795 3.7500
1 88 1.8564 12 0 1 1 13.6218 5.2500
2 82 1.2809 17 0 0 0 7.5769 2.4167
2 83 1.5159 17 0 0 0 8.3846 3.4167
2 85 1.9302 17 0 0 0 10.3846 5.4167
2 87 1.9190 17 0 0 1 12.0385 0.3333
2 88 2.2010 17 0 0 1 13.2115 1.7500
3 82 1.8148 12 0 0 0 11.4167 11.4167
3 83 1.9199 12 0 0 1 12.4167 12.4167
3 85 1.9584 12 0 0 0 14.4167 14.4167
3 87 2.0071 12 0 0 0 16.4167 16.4167
3 88 2.0899 12 0 0 0 17.8205 17.7500

in which the information was collected. These identifying
variables must be present so that your software will properly
identify the cross-section and time-series units. Then there
are observations on each of the variables. In a typical
panel, there are some observations with missing values,
usually denoted as “ • ” or “NA.” We have removed all the
missing values in the data file nls_panel. In microeconomic
panels, the individuals are not always interviewed the same
number of times, leading to an unbalanced panel in which
the number of time-series observations is different across
individuals. The data file nls_panel is, however, a balanced
panel; for each individual, we observe five time-series
observations. A larger, unbalanced panel, is in the data
file nls. Most modern software packages can handle both
balanced and unbalanced panels.

15.1 The Panel Data Regression Function
A panel of data consists of a group of cross-sectional units (people, households, firms, states, or
countries) who are observed over time. The sampling process we imagine is that (i) i = 1,… ,N
individuals are randomly selected from the population and (ii) each individual is observed for
t = 1,… ,T time periods. In the sampling process, we collect values yit on an outcome, or
dependent, variable of interest. Other characteristics concerning the individual will be used as
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explanatory variables. Let x1it = 1 be the intercept variable with x2it, …, xKit being observations
on K − 1 factors that vary across individual and time. Let w1i, w2i, …, wMi be observed data on
M factors that do not change over time. Note that these variables do not have a time subscript
and are said to be time-invariant. We cannot stress enough how important it is when using panel
data to examine the subscripts closely, and recall that i is the indicator of the individual and t is
the indicator of time.

In addition to the observed variables, there will be unobserved, omitted factors in each
time period for each individual that will compose the regression’s random error term. In panel
data models, we can identify several types of unobserved effects. First, consider unobserved
and/or unmeasurable, time-invariant individual characteristics. Let us denote these as u1i,
u2i, …, uSi. Because we cannot observe them, we will simply refer to their combined effect as ui,
an unobserved, individual-specific random error component. Economists say that ui represents
unobserved heterogeneity, summarizing the unobserved factors leading to individual differ-
ences. Second, there are many, unobserved, and/or unmeasurable individual and time-varying
factors e1it, e2it, … constituting the usual type of random errors in regression, and we refer to their
combined effect as eit. Econometricians call the random error eit that varies across individual and
time, an idiosyncratic6 error. A third type of random error is time specific, an effect that varies
over time but not individual. These factors m1t, m2t … have combined effect mt and represent a
third error component.

E X A M P L E 15.1 Revisited

For example, in Table 15.1, the outcome variable of interest is
yit = LWAGEit = ln

(
WAGEit

)
. Explanatory variables include

x2it = EXPERit, x3it = TENUREit, x4it = SOUTHit, and
x5it = UNIONit. These explanatory variables vary across
both individual and time. For the indicator variables
SOUTH and UNION, it means that at least some indi-
viduals moved into or out of the SOUTH during the
1982–1988 period, and at least some workers joined or quit
a UNION over those years. The variables w1i = EDUCi

and w2i = BLACKi do not change for the 716 individuals
in our sample over the years 1982–1988. Two unob-
served time-invariant variables are u1i = ABILITYi
and u2i = PERSEVERANCEi. Unobserved time-specific
variables might be m1t = UNEMPLOYMENT RATEt or
m2t = INFLATION RATEt. Note that it is possible to have
observable variables that change over time but not across
individuals, like an indicator variable D82t = 1 if the year is
1982 and D82t = 0 otherwise.

A simple but representative panel data regression model is
yit = β1 + β2x2it + α1w1i +

(
ui + eit

)
= β1 + β2x2it + α1w1i + vit (15.1)

In (15.1), the observable outcome variable of interest is yit. On the right-hand side, we have a con-
stant term, x1it = 1. We include one observable variable, x2it, that has variation across individuals
and time. The variable w1i is time-invariant and varies only across individuals. The population
parameters β1, β2, and α1 have no subscripts and are fixed in all time periods for all individuals.
We have included only one x-variable and one w-variable to keep things simple, but there can
be more of each type. In parentheses, we have the two random error components, one associated
with the individual

(
ui
)

and one associated with the individual and time
(
eit
)
. For simplicity, we

are omitting the random time-specific error component. We define the combined error
vit = ui + eit (15.2)

Because the regression error in (15.2) has two components, one for the individual and one for the
regression, it is often called an error components model.

............................................................................................................................................
6Jeffrey M. Wooldridge, Econometric Analysis of Cross Section and Panel Data, 2nd ed., MIT Press, 2010, p. 285.
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The complicating factor in panel data modeling is that we observe each cross-sectional unit,
individual i, for more than one time-period, t. If individuals are randomly sampled, then obser-
vations on the ith individual are statistically independent of observations on the jth individual.
However, using panel data, we must consider dynamic, time-related effects, and model assump-
tions should take them into account, just as we did in Chapter 9. The regression function of interest
in a panel data model is

E
⎡
⎢
⎢
⎢⎣
yit
||||

T terms
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
x2i1, x2i2,… , x2iT,w1i, ui

⎤
⎥
⎥
⎥⎦
= E

(
yit
|| x2i,w1i, ui

)
= β1 + β2x2it + α1w1i + ui (15.3)

where x2i =
(
x2i1, x2i2,… , x2iT

)
represents the values x2it in all time periods. Equation (15.3) says

that the population average value of the outcome variable is β1 + β2x2it + α1w1i + ui, given (i) the
values of x2it in all time periods, past, present, and future; (ii) the observable individual-specific
variable w1i; and (iii) the unobservable individual heterogeneity term ui. Our econometric chal-
lenge is to find a consistent and, if possible, efficient estimator for the parameters β1, β2, and α1.

Equation (15.3) has several interesting features:

i. The model states that once we have controlled for x2it in all time periods, and the
individual-specific factors w1i and ui, only the current, contemporaneous value of x2it has an
effect on the expected outcome. The parameter β2 measures the partial, or causal, effect of
a change in x2it on E

(
yit|!2i,w1i, ui

)
, holding all else constant. Similarly, the causal effect of

a change in w1i on E
(
yit|!2i,w1i, ui

)
is α1.

ii. The model conditions on the unobservable time-invariant error ui. In Example 15.2, below,
we examine the sales of chemical firms in China over several years using panel data. The
observed explanatory variables include, for example, the amount of labor used by the firm in
each year. A time-invariant variable is their location. The unobserved heterogeneity ui might
represent the ability of firm managers. The expected firm sales depend quite naturally on the
unobserved managerial ability, as well as current production which depends on current labor
input. However, what we are imagining is that, given managerial ability, the labor inputs of
past years, or future years, have no impact on current sales.7

15.1.1 Further Discussion of Unobserved Heterogeneity
Every individual has unique characteristics. This is true for each of us as human beings and also for
individual firms, farms, and geographic regions such as states, shires, or nations. Some individual
characteristics can be observed and measured, such as an individual’s height and weight, or the
number of employees a firm has. Some characteristics of individuals are unmeasurable or unob-
servable, such as a person’s ability, beauty, or fortitude. The ability of a firm’s managers contributes
to their revenues and profits, but just like individual ability, managerial skill is difficult or impossi-
ble to measure. Thus in a regression using cross-sectional data, these unobservable characteristics
are by necessity excluded from the set of explanatory variables, and hence are included in the
random error term. These unobservable individual differences are called unobservable hetero-
geneity in the economics and econometrics literature. When using panel data, it is important to
separate out this component of the random error term from other components if we can argue that
the factors causing the individual differences are unchanging over time. Such an argument is more
feasible when the panel data set is wide and short, with large N and small T , as in many microe-
conomic panels. In a wage equation, for example, we would have to assume that unobservable
factors such as ability and perseverance are constant over the period of the sample. If the panel

............................................................................................................................................
7For more discussion on this assumption, see Wooldridge (2010), p. 288.
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data sample covers three or four years, we might be very comfortable with this assumption, but if
the sample period covers 25 years, then we may worry about the validity of such an assumption.

Our concern with unobserved heterogeneity is exactly the same as with omitted variables
discussed in Section 6.3.2. If omitted variables are correlated with any explanatory variables
in the regression model, then the ordinary least squares (OLS) estimator suffers from omitted
variables bias. And unfortunately, this bias does not disappear even in large samples so that
the OLS estimator is inconsistent. In Chapter 10, we addressed this problem by finding a new
estimator, the instrumental variables (IV), two-stage least squares (2SLS) estimator. As we
will see, the beauty of having panel data is that we can control for the omitted variables bias,
caused by time-invariant omitted variables, without having to find and use instrumental variables.

15.1.2 The Panel Data Regression Exogeneity Assumption
For the regression model (15.1), yit = β1 + β2x2it + α1w1i +

(
ui + eit

)
, to have the conditional

expectation in (15.3), what must be true about the random error? A new exogeneity assumption
takes into account the presence of the unobserved heterogeneity term. It is

E
(
eit|x2i,wi1, ui

)
= 0 (15.4)

The meaning of this strict exogeneity assumption is that given the values of the explanatory
variable x2it in all time periods, given wi1 and given the unobserved heterogeneity term ui, the
best prediction of the idiosyncratic errors is zero. Another way to say this is that there is no
information in these factors about the value of the idiosyncratic random error eit. One subtle but
extremely important point about assumption (15.4) is that it does not require that the unobservable
heterogeneity ui be uncorrelated with the values of the explanatory variables. We will have much
more discussion about this point as we go along. Two of the implications of assumption (15.4)
are that

cov
(
eit, x2is

)
= 0, and cov

(
eit,w1i

)
= 0 (15.5a)

The first part, cov
(
eit, x2is

)
= 0, is much stronger than the usual sort of exogeneity assumption. It

is stronger because it is more than just contemporaneous exogeneity cov
(
eit, x2it

)
= 0; it says eit

is uncorrelated with all the values x2i1, x2i2, …, x2iT . In thinking about whether (15.4) is valid in
a specific application, ask yourself whether (15.5a) holds. If (15.5a) is not true, and if eit is corre-
lated with any x2i1, x2i2, …, x2iT or w1i, then assumption (15.4) fails and the regression function
of interest (15.3) is not correct.

While we are being a bit lax about it, (15.4) should properly include the intercept variable
x1it = 1, so that really E

(
eit|x1i, x2i,w1i, ui

)
= 0. This is important because it means that (15.5a)

holds also for the intercept,
cov

(
eit, x1is = 1

)
= E

(
eitx1is

)
= E

(
eit
)
= 0 (15.5b)

Thus, the expected value of the idiosyncratic error is zero.
We are postponing new assumptions about error variances and covariances until Section 15.3.

15.1.3 Using OLS to Estimate the Panel Data Regression
Using our panel of data, can we consistently estimate the panel data regression function param-
eters in (15.3) using OLS? As we learned in Section 5.7.3 the answer is yes, if in (15.1) the
combined error vit is uncorrelated with the explanatory variable x2it and with w1i. That is, if

cov
(
x2it, vit

)
= E

(
x2itvit

)
= E

(
x2itui

)
+ E

(
x2iteit

)
= 0

and
cov

(
w1i, vit

)
= E

(
w1ivit

)
= E

(
w1iui

)
+ E

(
w1ieit

)
= 0
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These equations say that the two random error components must be contemporaneously uncor-
related with the time-varying explanatory variables, and uncorrelated with the time-invariant
explanatory variables. They in turn require

E
(
x2iteit

)
= 0, E

(
w1ieit

)
= 0 (15.6a)

E
(
x2itui

)
= 0, E

(
w1iui

)
= 0 (15.6b)

Equation (15.6a) says that the idiosyncratic error eit is uncorrelated with the explanatory variables
at time t. This is ensured by the key exogeneity assumption (15.4). On the other hand, (15.4) does
not imply that (15.6b) is true, which requires the unobserved heterogeneity to be uncorrelated with
the explanatory variables. The familiar example of ABILITY being absent from a wage equation is
one case where this assumption is violated, as ABILITY is correlated with years of education. We
should remember that if any explanatory variable is correlated with the random errors then the
estimators of all model parameters are inconsistent. In the next section, we will introduce panel
data estimation strategies that yield consistent estimators even when (15.6b) fails.

We note in passing that the model intercept variable x1it = 1, which is exogenous, satisfies
(15.6a) and (15.6b), implying that

E
(
eit
)
= E

(
ui
)
= E

(
vit
)
= 0 (15.6c)

Each of the random errors has mean zero. Finally, even if equations (15.6a) to (15.6c) hold,
using the OLS estimator will require using a type of robust standard error which we explore in
Section 15.3.

15.2 The Fixed Effects Estimator
In this section, we consider estimation procedures that employ a transformation to eliminate the
individual heterogeneity from the estimation equation and thus solve the common endogeneity
problem caused by correlation between unobservable individual characteristics and the explana-
tory variables. The methods achieve the same outcome using similar but different strategies. The
estimators we will consider are (i) the difference estimator, (ii) the within estimator, and (iii) the
fixed effects estimator. For each of the estimators to be consistent, the strict exogeneity assump-
tion (15.4) must hold, but we do not require the unobserved heterogeneity ui to be uncorrelated
with the explanatory variables, that is, equation (15.6b) does not need to hold. The estimators
successfully estimate parameters of variables that vary over time but they cannot estimate param-
eters of time-invariant variables. In equation (15.1), yit = β1 + β2x2it + α1w1i + vit, using these
methods, we can consistently estimate β2, but we cannot estimate β1 or α1.

15.2.1 The Difference Estimator: T = 2
It is easy to illustrate the power of having panel data with as few as T = 2 observations per indi-
vidual, that is, when we observe each individual in two different time periods, t = 1 and t = 2.
The two observations written out as in (15.1) are

yi1 = β1 + β2x2i1 + α1w1i + ui + ei1 (15.7a)
yi2 = β1 + β2x2i2 + α1w1i + ui + ei2 (15.7b)

Subtracting (15.7a) from (15.7b) creates a new equation
(
yi2 − yi1

)
= β2

(
x2i2 − x2i1

)
+
(
ei2 − ei1

)
(15.8)

Note that (15.8) has no intercept, β1, because it has been subtracted out. Also, α1w1i subtracts
out meaning that we cannot estimate the coefficient α1 using this approach. Importantly, the
unobservable individual differences ui have dropped out due to the subtraction. Why? Because
the terms β1, α1w1i, and ui are not different for time periods one and two; they are time-invariant
and the subtraction removes them. We discussed variables such as

(
yi2 − yi1

)
in Chapter 9. It is

the change in the outcome variable’s value for individual i from time period t = 1 to time period
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t = 2. In the notation of Chapter 9, let “Δ” stand for “the change in,” so that Δyi =
(
yi2 − yi1

)
.

Similarly, let Δxi2 =
(
x2i2 − x2i1

)
and Δei =

(
ei2 − ei1

)
. Then, equation (15.8) becomes

Δyi = β2Δxi2 + Δei (15.9)
Note that a parameter of interest, β2, is present in the transformed model (15.9). Do not
be concerned about complicated data manipulations as econometric software has automatic
commands to handle the differencing process.

The OLS estimator of β2 in (15.9) is called the first-difference estimator, or simply the
difference estimator. It is a consistent estimator if (i) Δei has zero mean and is uncorrelated
with Δxi2, and (ii) Δxi2 takes more than two values. The first condition holds if strict exogeneity,
equation (15.4), holds. Recall that (15.4) implies that equations (15.5a) and (15.5b) are true. Then,
Δei has zero mean using (15.5b). Also Δei is uncorrelated with Δxi2 because of (15.5a); the
idiosyncratic error eit is uncorrelated with x2is in all time periods. In equation (15.8), this means
that Δxi2 =

(
x2i2 − x2i1

)
will be uncorrelated with Δei =

(
ei2 − ei1

)
.

In basic panel data analysis, the difference estimator is usually not used. We introduce it to
illustrate that we can eliminate the unobserved heterogeneity through a transformation. In prac-
tice, we usually use the equivalent, but more flexible, fixed effects estimator, which we explain in
Section 15.2.2.

E X A M P L E 15.2 Using T = 2 Differenced Observations
for a Production Function

The data file chemical2 contains data on N = 200 chemical
firms’ sales in China for the years 2004–2006. We wish to
estimate the log-log model

ln
(
SALESit

)
= β1 + β2ln

(
CAPITALit

)

+ β3ln
(
LABORit

)
+ ui + eit

Using only data from 2005 and 2006, the OLS estimates with
conventional, nonrobust, standard errors are

ln
(
SALESit

)⋀

= 5.8745 + 0.2536 ln
(
CAPITALit

)

(se) (0.2107) (0.0354)
+ 0.4264 ln

(
LABORit

)

(0.0577)
We may be concerned that there are unobserved individual
differences among the firms that are correlated with their

usage of capital and labor in the production and sales
process. The estimated first-difference model is

Δ ln
(
SALESit

)⋀

= 0.0384Δln
(
CAPITALit

)

(se) (0.0507)
+ 0.3097Δln

(
LABORit

)

(0.0755)

There is a remarkable reduction in the estimated effect of the
capital stock, which is no longer statistically significant. The
estimated effect of labor is smaller but still significantly dif-
ferent from zero. The difference estimator is consistent when
unobserved heterogeneity is correlated with the explanatory
variables, but the OLS estimator is not. Given the substan-
tial difference in the estimates we might suspect that the OLS
estimates are unreliable.

E X A M P L E 15.3 Using T = 2 Differenced Observations for a Wage Equation

Table 15.1 illustrates a panel data set with 5 years of data
on 716 women. Consider only the final 2 years of data, 1987
and 1988, so that we have N × T = 716 × 2 = 1,432 obser-
vations. We wish to estimate

ln
(
WAGEit

)
= β1 + β2EDUCi + β3EXPERit + ui + eit

for i = 1,… ,N = 716. Note that EDUCi has no time sub-
script. In this sample, all the women had completed their edu-
cation by the time they were first interviewed, and therefore

EDUCi is time-invariant. As usual we are concerned about
omitted variable bias in this model because a person’s ability
is unobservable. In this panel, data model ability is captured
in the individual heterogeneity term ui. Subtracting the 1987
observation from the 1988 observation, we have

Δln
(
WAGEi

)
= β3ΔEXPERi + Δei

The variable EDUC falls out of the model because it does
not take at least two values. Using the first-difference
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estimator eliminates any time-invariant variables and the
intercept. The change in the log of wage is attributed to
the change in experience. There is no omitted variable bias
because the individual heterogeneity term, which includes
ability, has subtracted out. It does not matter that ability

might be correlated with years of education! Using data file
nls_panel2, the OLS estimated first difference model is

Δln
(
WAGEi

)⋀

= 0.0218ΔEXPERi
(se) (0.007141)

15.2.2 The Within Estimator: T = 2
An alternative subtraction strategy is similar in spirit to that in equation (15.8). The advantage
of the within transformation is that it generalizes nicely to situations when we have more than
T = 2 time observations on each individual. We begin with the models for the two time periods
in (15.7a) and (15.7b), then we find the time-average of the equations, that is,

1
2

2∑
t=1

(
yit = β1 + β2x2it + α1w1i + ui + eit

)

On the left-hand side, we obtain yi • =
(
yi1 + yi2

)
∕2. The “ • ” is in the place of the second

subscript t to remind us that it is an average over the time dimension. On the right-hand side,
we obtain β1 + β2x2i • + α1w1i + ui + ei •, where the averaged variables are similarly defined:
x2i • =

(
x2i1 + x2i2

)
∕2 and ei • =

(
ei1 + ei2

)
∕2. Note that the averaging does not affect the model

parameters or the time-invariant terms β1, w1i, and ui. The time-averaged model for i = 1,… ,N is
yi • = β1 + β2x2i • + α1w1i + ui + ei • (15.10)

The within transformation subtracts (15.10) from the original observations to obtain
yit − yi • = β2

(
x2it − x2i •

)
+
(
eit − ei •

)
(15.11)

Instead of first-differenced variables, we have differences from the variable means. The
time-invariant terms subtract out, including the unobservable heterogeneity term. Again do not
be concerned about complicated data manipulations as econometric software has automatic
commands to handle the process.

Let the transformed variables be denoted ỹit = yit − yi •, x̃2it =
(
x2it − x2i •

)
, with transformed

error ẽit =
(
eit − ei •

)
. The within-transformed model is

ỹit = β2x̃2it + ẽit (15.12)
The OLS estimator of β2 using (15.12) is called the within estimator. It is a consistent estimator
if (i) ẽit has zero mean and is uncorrelated with x̃2it, and (ii) if x̃2it takes more than two values. The
first condition is satisfied if (15.4) holds. Note that the variable x̃2it =

(
x2it − x2i •

)
incorporates the

values of x2it in all time periods because of the average term. Similarly ẽit =
(
eit − ei •

)
depends

on the values of the idiosyncratic error in all time periods because of its average. Thus, strict
exogeneity, equation (15.4) is required for consistent estimation of (15.12) by OLS. Once again
there is no requirement that the unobserved heterogeneity ui be uncorrelated with the explanatory
variables.

E X A M P L E 15.4 Using the Within Transformation with T = 2 Observations for
a Production Function

Consider using the within transformation to the T = 2 sales
observations in Example 15.2, to estimate the effect of
changes in the capital stock and labor inputs on sales. To

understand the within transformation precisely, examine
the transformed data on SALES for the first two firms in
Table 15.2. For 2005 the first difference of ln(SALES)
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is missing, which is represented by a period, “ • ”. The
time-average of the 2 year ln(SALES) is ln

(
SALESit

)
, and

the within transformation is ln
(
SALESit

)∼
. The within

estimator uses only variation for each individual (within each
individual) about the individual mean in order to estimate
the parameters; it does not use variation across or between
individuals in the estimation process.

There is no omitted variable bias using the within-
transformed data because the time-invariant individual
heterogeneity term, which includes any unmeasured charac-
teristics of the firm, has subtracted out. Using the N × T =
200 × 2 = 400 observations the within estimates are

ln
(
SALESit

)∼
= 0.0384ln

(
CAPITALit

)∼

(se) (0.0358)
(se) (0.0507)

+ 0.3097ln
(
LABORit

)∼

(0.0532) (incorrect)
(0.0755) (correct)

T A B L E 15.2 Example 15.4: Transformed Sales Data

FIRM YEAR ln(SALESit
)

"ln(SALESit
)

ln(SALESit
) ln(SALESit

)∼

1 2005 10.87933 • 11.08103 −0.2017047
1 2006 11.28274 0.40341 11.08103 0.2017053
2 2005 9.313799 • 9.444391 −0.1305923
2 2006 9.574984 0.261185 9.444391 0.1305927

Notice that the within estimates are exactly the same as the
first-difference estimates in Example 15.1. When T = 2, they
will always be the same. Using OLS estimation software
yields incorrect standard errors for the within estimator.
The difference arises because the estimate of the error
variance used by the OLS software uses the degrees of
freedom NT − 2 = 400 − 2 = 398. The calculation ignores
the loss of N = 200 degrees of freedom that occurs when the
variables are corrected by their sample means. The correct
divisor is NT − N − 2 = 400 − 200 − 2 = 198. Multiply the
“incorrect” standard errors from the within estimates by the
correction factor

√
(NT − 2) ∕(NT − N − 2) =

√
398∕198 = 1.41778

The resulting “correct” standard errors are in fact identical
to the standard errors from the first-difference estimator
in Example 15.2. When using proper “within estimator”
software this correction will automatically be done. In
Section 15.2.4, we explain that most often software “within”
estimator commands are called fixed effects estimation. The
equality of the difference estimator and within estimator, and
the correct standard errors, holds when T = 2, but not when
T > 2.

Remark
In practice, there is no need to use the difference estimator, which was introduced as a ped-
agogical device to illustrate that it is possible to eliminate unobserved heterogeneity when
panel data are available. Use the software option for “fixed effects” estimation.

15.2.3 The Within Estimator: T > 2
The advantage of the within transformation and use of the within estimator is that they gen-
eralize nicely to situations when we have more than T = 2 time observations on each individual.
Suppose that we have T observations on each individual. So that

yit = β1 + β2x2it + α1w1i + ui + eit, i = 1,… ,N, t = 1,… ,T

Averaging over all time observations we have

1
T

T∑
t=1

(
yit = β1 + β2x2it + α1w1i + ui + eit

)
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On the left-hand side, we obtain yi • =
(
yi1 + yi2 + · · · + yiT

)
∕T . On the right-hand side, we

obtain β1 + β2x2i •+ α1w1i + ui + ei • , where the averaged variables are similarly defined:
x2i • =

(
x2i1 + · · · + x2iT

)
∕T and ei • =

(
ei1 + · · · + eiT

)
∕T . Note that averaging does not affect

the model parameters or the time-invariant terms w1i and ui. The time-averaged model, for
i = 1,… ,N, is

yi • = β1 + β2x2i • + α1w1i + ui + ei • (15.13)

The within transformation subtracts (15.13) from the original observations to obtain

yit − yi • = β2
(
x2it − x2i •

)
+
(
eit − ei •

)
(15.14)

Instead of first-differenced variables, we have differences from the variable means. The
time-invariant variables subtract out, including the unobservable heterogeneity term.

Let the transformed variables be denoted ỹit = yit − yi • , x̃2it =
(
x2it − x2i •

)
, with transformed

error ẽit =
(
eit − ei •

)
. The within-transformed model is

ỹit = β2x̃2i + ẽit (15.15)

The OLS estimator of β2 in (15.15) is a consistent estimator if (i) ẽit has zero mean and is uncor-
related with x̃2it, and (ii) if x̃2it takes more than two values. These conditions hold if the strict
exogeneity assumption (15.4) holds. The usual OLS standard errors for (15.15) are not quite right
but are easily corrected, as we explained in Example 15.4.

E X A M P L E 15.5 Using the Within Transformation with T = 3 Observations for a
Production Function

Consider using the within transformation to the T = 3 sales
observations in the data file chemical2, from 2004 to 2006,
for the 200 firms in Example 15.2, to estimate the effect of
changes in the capital stock and labor inputs on sales. The
within estimates are

ln
(
SALESit

)∼
= 0.0889ln

(
CAPITALit

)∼

(se) (0.0271)
(se) (0.0332)

+ 0.3522ln
(
LABORit

)∼

(0.0413) (incorrect)
(0.0507) (correct)

The incorrect standard errors are produced by OLS software
using NT − 2 = 598 degrees of freedom when it should be
NT − N − 2 = 398. Multiplying the incorrect standard errors
by the correction factor

√
(NT − 2)∕(NT − N − 2) =

√
598∕398 = 1.22577

yields correct standard errors.

15.2.4 The Least Squares Dummy Variable Model
It turns out that the within estimator is numerically equivalent to another estimator that has long
been used in empirical work and that is logically appealing. To be as general as possible, we
expand our equation of interest to include more variables,

yit = β1 + β2x2it + · · · + βKxKit + α1w1i + · · · + αMwMi +
(
ui + eit

)
(15.16)

In this regression, there is a constant term, x1it = 1, and (K − 1) = KS variables that vary across
individuals and time, and also M variables that are time invariant. There is a new symbol, KS, that
can be thought of as the number of “slope” coefficients. This will be important below when we
carry out a test for the existence of individual differences.
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Unobserved heterogeneity is also controlled for by including in the panel data regression
(15.16) an individual-specific indicator variable for each individual. That is, let

D1i =
{

1 i = 1
0 otherwise , D2i =

{
1 i = 2
0 otherwise ,…… , DNi =

{
1 i = N
0 otherwise

Include these N indicator variables in the regression equation (15.16) to obtain

yit = β11D1i + β12D2i + · · · + β1NDNi + β1 + β2x2it + · · · + βKxKit + α1w1i

+ · · · + αMwMi +
(
ui + eit

)

In this equation there is exact collinearity. The time-invariant indicator variables sum to one,
D1i + D2i + · · · + DNi = 1. Including the indicator variables requires us to drop the now redun-
dant constant term, x1it = 1, the time-invariant variables, w1i, w2i, …, wMi, and the unobserved
heterogeneity ui. Doing so we are left with

yit = β11D1i + β12D2i + · · · + β1NDNi + β2x2it + · · · + βKxKit + eit (15.17)

Equation (15.17) is called the fixed effects model, or sometimes the least squares dummy vari-
able model. The terminology fixed effects estimator, which is the most commonly used name in
empirical work, arises because it is as if we are treating individual differences u1, u2, …, uN , as
fixed parameters, β11, β12, …, β1N , that we can estimate. The fixed effects estimator is the OLS
estimator of (15.17) using all NT observations.

Equation (15.17) is not estimated in practice unless N is small. Using the Frisch–Waugh–
Lovell Theorem, Section 5.2.5 and Exercise 15.11, it can be shown that the OLS estimates of
β2, …, βK in (15.17), and the sum of squared residuals, are identical to the within estimates
of (15.16) and thus have the same consistency property under the same assumption (15.4). We
remind you again that assumption (15.4) does not require that the unobserved heterogeneity term
ui be uncorrelated with Xi or wi, where Xi denotes all observations on the time-varying variables
and wi the observations on the time-invariant observations.

Remark
To summarize, the within estimator, the fixed effects estimator and the least squares dummy
variable estimator are all names for the same estimators of β2, …, βK in (15.17). In practice,
no choice is required. Use the computer software option for “fixed effects” estimation.

Because the fixed effects estimator is simply an OLS estimator, it has the usual OLS estimator
variances and covariances. Including N indicator, dummy, variables means that the number of
parameters is N + KS, where KS =(K − 1) is the number of slope coefficients. The usual estimator
of σ2

e is

σ̂2
e =

N∑
i=1

T∑
t=1

ê2
it

NT − N − KS
(15.18)

Testing for Unobserved Heterogeneity Testing for individual differences in the
fixed effects model is a test of the joint hypothesis

H0∶β11 = β12, β12 = β13,… , β1,N−1 = β1N

H1∶ the β1i are not all equal (15.19)
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If the null hypothesis is true, then β11 = β12 = β13 = · · · = β1N = β1, where β1 denotes the com-
mon value, and there are no individual differences and no unobserved heterogeneity. The null
hypothesis is J = N − 1 separate equalities, β11 = β12, β12 = β13, and so on. If the null hypothesis
is true, then the “restricted model” is

yit = β1 + β2x2it + · · · + βKxKit + eit

Under the standard OLS assumptions, the F-test statistic is

F =
(
SSER − SSEU

)/
(N − 1)

SSEU∕
(
NT − N − KS

) (15.20)

where SSEU is the sum of squared residuals from the fixed effects model, and SSER is the sum of
squared errors from the OLS regression that pools all the data, yit = β1 + β2x2it + · · · + βKxKit +
eit. If the null hypothesis is true, the test statistic has the F-distribution with J = N − 1 numera-
tor degrees of freedom and NT − N − KS denominator degrees of freedom. Using the α level of
significance, we reject the null hypothesis if the test statistic value is greater than, or equal to, the
1 − α percentile of the F-distribution, F ≥ F(1−α, N−1, NT−N−KS). The test can be made “robust” to
heteroskedasticity and serial correlation, topics that we consider in Section 15.3.

E X A M P L E 15.6 Using the Fixed Effects Estimator with T = 3 Observations for
a Production Function

For the Chinese chemical firm data file chemical2, the indi-
cator variable model in (15.21) becomes

ln
(
SALESit

)
= β11D1i + · · · + β1,200D200,i + β2ln

(
CAPITALit

)

+ β3ln
(
LABORit

)
+ eit

The fixed effects estimates of β2 and β3 will be identical to the
within estimates in Example 15.4, and the standard errors will
be the correct ones because in this indicator variable model
the degrees of freedom are the correct NT − N − (K − 1) =
600 − 200 − 2 = 398.

The N = 200 estimated indicator variable coefficients,
b11, b12, …, b1N , may or may not be of specific interest. We
include the indicator variables primarily to control for unob-
served heterogeneity. If, however, we are interested in pre-
dicting the sales of a specific firm then the indicator variables
become crucial. Given the estimates of β2 and β3, b11, b12, …,
b1N can be recovered using the fact that the fitted regression
passes through the point of the means, just as it did in the
simple regression model, that is, yi• = b1i + b2x2i• + b3x3i•,
i = 1,… ,N. Reporting the estimates and their standard
errors is inconvenient because N may be large. Software
companies cope with this in different ways. Two popular
econometric software programs, EViews and Stata, report
a constant term C that is the average of the estimated

coefficients on the cross-section indicator variables. For the
Chinese chemical firm data, C = N−1∑N

i=1 b1i = 7.5782.
To test the null hypothesis H0∶β11 = β12, β12 = β13,… ,

β1,N−1 = β1N , we use the sum of squared residuals from the
fixed effects estimator, SSEU = 34.451469, and from the
pooled OLS regression

ln
(
SALESit

)⋀

= 5.8797 + 0.2732 ln
(
CAPITALit

)
(se) (0.1711) (0.0291)

+ 0.3815ln
(
LABORit

)
(0.0467)

with SSER = 425.636557. The F-statistic value is

F =
(
SSER − SSEU

)
∕(N − 1)

SSEU∕(NT − N −(K − 1))

= (425.636557 − 34.451469)∕199
34.451469∕(600 − 200 − 2)

= 22.71

Using the α = 0.01 level of significance, F(0.99, 199, 398) = 1.32.
We reject the null hypothesis and conclude that there are indi-
vidual differences in the fixed effects constant terms for these
N = 200 firms.

15.3 Panel Data Regression Error Assumptions
In Section 15.2, we considered estimation strategies that eliminate unobservable heterogeneity,
ui, so that when it is correlated with the explanatory variables we can still consistently estimate the
coefficients of variables, xkit, that vary across individuals and time. In this section and the next, we
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propose estimation methods for the cases in which unobservable heterogeneity, ui, is not corre-
lated with the explanatory variables, either the time-varying variables, xkit, or the time-invariant
variables, wmi, so that we can use OLS estimation, or a more efficient generalized least squares
estimator, GLS, called the random effects (RE) estimator. Because these estimators do not elimi-
nate unobservable heterogeneity, ui, from the estimation equation we must make a more complete
set of assumptions than we did in Section 15.2.

Panel data model estimation and inference for the model yit = β1 + β2x2it + α1w1i +
(
ui + eit

)
are complicated by the presence of two random errors. The first, ui, accounts for time invariant
unobserved heterogeneity across individuals. The second, eit, is the “usual” regression error that
varies across individuals and time. To be as general as possible, we return to equation (15.16),
which we repeat here for your convenience,

yit = β1 + β2x2it + · · · + βKxKit + α1w1i + · · · + αMwMi +
(
ui + eit

)
(15.16)

As we have done in earlier chapters, let xit =
(
1, x2it,… , xKit

)
represent the tth observation on all

time-varying variables, plus the intercept, for an individual, and let Xi represent all T observations
on these variables for the ith individual. Let wi =

(
w1i,… ,wMi

)
represent all the time-invariant

variables for the ith individual. We discussed the important exogeneity assumption (15.4) that
leads to the panel data regression function in (15.3). With the more complete model specification,
assumption (15.4) becomes

E
(
eit|Xi,wi, ui

)
= 0 (15.21)

Recall that the strict exogeneity assumption in (15.21) means that neither Xi, nor wi, nor ui contain
any information about the possible value of the idiosyncratic random error eit.

The idiosyncratic random errors eit and the unobservable heterogeneity random error ui cap-
ture quite different effects and it is plausible to treat them as statistically independent, so that
there is no correlation between them. In order for the OLS estimator of (15.16) to be unbiased a
strong assumption, similar to (15.21), must hold for the unobserved heterogeneity term, ui. If the
explanatory variables Xi and wi carry no information about random error component ui then its
best prediction is zero, meaning that

E
(
ui|Xi,wi

)
= 0 (15.22)

Using the law of iterated expectations, it follows that
E
(
ui
)
= 0, cov

(
ui, xkit

)
= E

(
uixkit

)
= 0, cov

(
ui,wmi

)
= E

(
uiwmi

)
= 0 (15.23)

The two assumptions (15.21) and (15.22) are sufficient to ensure that the OLS estimator is unbi-
ased and consistent.

Remark
The verb “pool” means to combine or merge things. Consequently, econometricians talk
about the combined data of all individuals in all time periods as a pooled sample. Then the
regression equation (15.16) is a pooled model and if we apply OLS to this pooled model it
is called pooled least squares, or pooled OLS. However, pooled OLS is nothing new; it is
simply the OLS estimator applied to the combined data.

Now we ask about other assumptions, namely the random error conditional variances and
covariances.

Conditional Homoskedasticity The usual homoskedasticity assumption for the
idiosyncratic error eit is that the conditional and unconditional variances are constant,

var
(
eit|Xi,wi, ui

)
= σ2

e (15.24a)
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Using the variance decomposition discussed in Appendix B.1.8, and the law of iterated expecta-
tions, it also follows that

var
(
eit
)
= E

(
e2

it
)
= σ2

e (15.24b)

Similarly, the unobserved heterogeneity random component ui is conditionally and uncondition-
ally homoskedastic,

var
(
ui
)
= E

(
u2

i
)
= σ2

u (15.25)

If all individuals are drawn from one population, then homoskedasticity of ui seems quite reason-
able. However, the homoskedasticity of eit is less likely to be true, for the usual reasons.

The variance of the combined error, vit = ui + eit, is then

var
(
vit|Xi,wi

)
= var

(
ui|Xi,wi

)
+ var

(
eit|Xi,wi

)
+ 2cov

(
ui, eit|Xi,wi

)

Combining the two homoskedasticity assumptions and the statistical independence of ui and eit,
we have

var
(
vit
)
= E

(
v2

it
)
= σ2

v = σ2
u + σ

2
e (15.26)

Conditionally Correlated When unobservable heterogeneity is recognized, the usual
assumption that the errors are uncorrelated does not hold. To see this, find the covariance between
the combined random errors in any two time periods,

cov
(
vit, vis

)
= E

(
vitvis

)
= E

[(
ui + eit

)(
ui + eis

)]

= E
(
u2

i + uieit + uieis + eiteis
)

= E
(
u2

i
)
+ E

(
uieit

)
+ E

(
uieis

)
+ E

(
eiteis

)

= σ2
u (15.27)

There is a covariance between the random errors for the ith individual for observations in any two
different time periods. The correlation between the errors is

ρ = corr
(
vit, vis

)
=

σ2
u

σ2
u + σ

2
e

(15.28)

Interestingly, the covariance and correlation are constant and take the same value whether we are
considering errors one period apart, or two periods apart, or more. As long as we have a random
sample of individuals, we do not need to worry about any correlation between individuals, so that
vit, and vjs are uncorrelated for i ≠ j.

Because of the intra individual error correlation, caused by the unobservable heterogeneity,
the OLS estimator is not BLUE, and the usual standard errors are not correct. We will address
how “robust” standard errors are calculated in Section 15.3.1 and how to carry out GLS in
Section 15.4.

15.3.1 OLS Estimation with Cluster-Robust Standard Errors
In the panel data, multiple regression model (15.16), under the conventional homoskedasticity
and serial correlation assumptions, equations (15.24a), (15.24b), (15.25), and (15.26), we have

var
(
vit
)
= σ2

u + σ
2
e

and
cov

(
vit, vis

)
= σ2

u
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It is possible, however, that var
(
eit
)

changes from individual to individual and perhaps also across
time. In that case, var

(
eit
)
= σ2

it. We will introduce a new notation to handle this new possibility.
Let

var
(
vit
)
= σ2

u + σ
2
it = ψ

2
it (15.29)

The variance ψ2
it (ψ is the Greek letter “psi”) is potentially different for each individual in each

time period. This might be true even if there is no unobserved heterogeneity, σ2
u = 0, or if the unob-

served heterogeneity has a different variance for each individual. Assumption (15.29) is perfectly
general and fits all possibilities.

Next, what about possible correlations among the error terms? The covariance between the
random errors vit and vis is

cov
(
vit, vis

)
= E

(
vitvis

)
= E

[(
ui + eit

)(
ui + eis

)]

= E
(
u2

i
)
+ E

(
eiteis

)

= σ2
u + cov

(
eit, eis

)
(15.30)

where we have assumed ui and eit are statistically independent, or at least uncorrelated. The term
cov

(
eit, eis

)
is the covariance between the usual random error, the idiosyncratic part, for the ith

individual in time period t and time period s. If there is serial correlation, or autocorrelation, in
this component of error then cov

(
eit, eis

) ≠ 0. The serial correlation may be of the AR(1) form
we studied in Section 9.5.3, but it could be some other pattern as well. For now, we will make the
most general possible assumption, that it may differ across individuals, and may differ for each
pair of time periods as well, so that cov

(
eit, eis

)
= σits. Then (15.26) becomes

cov
(
vit, vis

)
= σ2

u + σits = ψits (15.31)

Note that (15.31) is still valid even if there is no unobserved heterogeneity, so that σ2
u = 0.

What are the consequences of using pooled least squares in the presence of the heteroskedas-
ticity and correlation described by (15.29) and (15.31)? The least squares estimator is still
consistent, but its standard errors are incorrect, implying hypothesis tests and interval estimates
based on these standard errors will be invalid. Typically, the standard errors will be too small,
overstating the reliability of the least squares estimator. Fortunately, there is a way of correcting
the standard errors. We had a similar situation in Chapters 8 and 9. In Chapter 8, we saw how
White’s heteroskedasticity-consistent standard errors could be used for assessing the reliability
of least squares estimates in a regression model with heteroskedasticity of unknown form. Least
squares is not efficient in these circumstances—the GLS estimator has lower variance—but using
least squares avoids the need to specify the nature of the heteroskedasticity, and if the sample is
large then using least squares with White standard errors provide a valid basis for interval esti-
mation and hypothesis testing. The Newey-West standard errors introduced in Chapter 9 served a
similar function in an autocorrelated-error model. They provide a valid basis for inference using
least squares estimates without the need to specify the nature of the autocorrelated-error process.

In a similar way, standard errors that are valid for the pooled least squares estimator under
the assumptions in (15.29) and (15.31) can be computed. These standard errors have various
names, being referred to as panel-robust standard errors or cluster-robust standard errors.
The T time-series observations on individuals form the clusters of data. Deriving cluster-robust
standard errors requires some difficult and tedious algebra, which we briefly describe in
Appendix 15A.

Two Important Notes Now for some good news and then some not so good news. First,
the good news is that cluster-robust standard errors can be used in many contexts other than with
panel data. Any data containing groups of observations can be treated as clusters if there are
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within-group correlations but no across-group correlations. If we have a large sample of firms,
then the firms within the same industry might define a cluster. If we have a survey of households,
we may treat geographical neighborhoods as clusters. Second, the not so good news, is that while
now easily obtained, using cluster-robust standard errors is not always appropriate. In order for
them to be reliable, the number of individuals N must be large relative to T , so that the panel is
“short and wide.” For example, if there are N = 1000 individuals (cross sections) and we observed
each for T = 3 time periods, then cluster-robust standard errors should work well. In situations
with few individuals (few clusters) using cluster-robust standard errors may lead to inaccurate
inferences. Naturally there is a great deal of discussion about what is meant by “few.” In the
U.S. there are N = 50 states. According to Cameron and Miller8 (page 341), “Current consensus
appears to be that … 50 is enough for state-year panel data.” However, when carrying out tests,
the number of clusters should be treated as the sample size.

E X A M P L E 15.7 Using Pooled OLS with Cluster-Robust Standard Errors
for a Production Function

In Example 15.6, we found that there is strong evidence
in favor of using the fixed effects estimator rather than the
pooled OLS estimator using the Chinese chemical firm data.
However, for the purpose of giving a numerical illustration
of pooled OLS with and without clustering, we examine the
baseline model in Example 15.2 using N = 1000 firms using
data file chemical3. Table 15.3 shows the OLS estimates

T A B L E 15.3 Example 15.7: OLS Estimates with Alternative Standard Errors

Conventional Heteroskedastic Cluster-Robust
Coefficient Std. Error t-Value Std. Error t-value Std. Error t-Value

C 5.5408 0.0828 66.94 0.0890 62.24 0.1424 38.90
ln(CAPITAL) 0.3202 0.0153 20.90 0.0179 17.87 0.0273 11.72
ln(LABOR) 0.3948 0.0225 17.56 0.0258 15.33 0.0390 10.12

with conventional, heteroskedasticity robust, and cluster-
robust standard errors, and t-statistic values.

Note that while the heteroskedasticity-corrected stan-
dard errors are larger than the conventional standard errors,
the cluster-corrected standard errors are larger yet. Of
course, the t-values become smaller with the increased stan-
dard errors.

15.3.2 Fixed Effects Estimation with Cluster-Robust
Standard Errors

Consider now the fixed effects estimation procedure that employs the “within” transformation
shown in (15.14). The within transformation removes the unobserved heterogeneity so that only
the idiosyncratic error eit remains. It is possible that within the cluster of observations defin-
ing each individual cross-sectional unit there remains serial correlation and/or heteroskedasticity.
Cluster-robust standard errors9 can be applied to the data in “deviation from the cluster-mean
form,” as in (15.14), or the least squares dummy variable model in (15.17).

............................................................................................................................................
8Cameron, A. C., and Miller, D. L., “A Practitioner’s Guide to Cluster-Robust Inference,” Journal of Human Resources,
2015, 50(2), 317–373.
9Interestingly, the usual White heteroskedasticity robust standard errors are not valid when T > 2 (Cameron and Miller,
2015, p. 352). Some panel data software will automatically use cluster-robust standard errors when any kind of robust
standard errors are requested.
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E X A M P L E 15.8 Using Fixed Effects and Cluster-Robust Standard Errors
for a Production Function

In Example 15.7, we estimated the production function
by OLS with alternative standard errors. Here using data
file chemical3, we obtain the fixed effects estimates using
N = 1000 firms with conventional standard errors and
cluster-robust standard errors. The cluster-robust standard

T A B L E 15.4 Example 15.8: Fixed Effects Estimates with Alternative Standard Errors

Conventional Cluster-Robust
Coefficient Std. Error t-Value Std. Error t-Value

C 7.9463 0.2143 37.07 0.3027 26.25
ln(CAPITAL) 0.1160 0.0195 5.94 0.0273 4.24
ln(LABOR) 0.2689 0.0307 8.77 0.0458 5.87

errors are substantially larger than the usual standard errors.
When this is the case, using the cluster-robust standard errors
is recommended if N is large and T is small, like they are in
this case (Table 15.4).

15.4 The Random Effects Estimator
Panel data applications fall into one of two types. The first type of application is when the unob-
served heterogeneity term ui is correlated with one or more of the explanatory variables. In this
case, we use the fixed effects (within) or difference estimators because these estimators are con-
sistent and converge in probability to the true population parameter values as the sample size
increases. These estimators deal with unobserved heterogeneity by eliminating it through a trans-
formation, eliminating the potential endogeneity problem arising from a correlation between the
unobserved heterogeneity and the explanatory variables.

The second type of application is when the unobserved heterogeneity term ui is not correlated
with any of the explanatory variables. In this case, we can simply use pooled OLS estimation, with
robust-cluster standard errors. If for our purposes the OLS estimator is sufficiently precise, then
we are done. Subsequent hypothesis tests and interval estimates are valid in large samples. If the
OLS estimator is not sufficiently precise, then, providing the other assumptions hold, we can use
an asymptotically more efficient feasible generalized least squares (FGLS) estimator.

The panel data regression model (15.1) with unobserved heterogeneity is sometimes called
the random effects model because individual differences are random from the point of view of the
researcher. The unobservable heterogeneity terms ui are the random effects. The FGLS estimator
is called the random effects estimator. It takes into account equation (15.27), the error covariance
within the observations for each individual that arises from the unobserved heterogeneity. The
use of this estimator also presumes the zero conditional mean assumptions, equations (15.4), and
homoskedasticity, equation (15.26).

The minimum variance, efficient, estimator for the model is a GLS estimator. As was the
case when we had heteroskedasticity or autocorrelation, we can obtain the GLS estimator in the
random effects model by applying OLS to a transformed model. The transformed model, using
K = 2 and M = 1 in (15.16), is

y∗it = β1x∗1it + β2x∗2it + α1w∗1i + v∗it (15.32)

where the transformed variables are

y∗it = yit − αyi •, x∗1it = 1 − α, x∗2it = x2it − αx2i •, w∗1i = w1i(1 − α) (15.33)
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The transformation parameter α is between zero and one, 0 < α < 1, and is given by

α = 1 − σe√
Tσ2

u + σ
2
e

(15.34)

The variables yi • and x2i • are the individual time-averaged means (15.13), and w∗1i is a fraction of
w1i. A key feature of the random effects model is that time-invariant variables are not eliminated.
The transformed error term is v∗it = vit − αvi. It can be shown that the transformed error v∗it has
constant variance σ2

e and is serially uncorrelated. The proof is long and tedious, so we will not
inflict it on you.10 Because the transformation parameter α depends on the unknown variances σ2

e
and σ2

u, these variances need to be estimated before OLS can be applied to (15.32). Some details
of how the estimates σ̂2

e and σ̂2
u are obtained can be found in Appendix 15B. The random effects,

feasible GLS, estimates are obtained by applying least squares to (15.32) with σ2
e and σ2

u replaced
by σ̂2

e and σ̂2
u in (15.34). From (15.33) we can see that if α = 1 the random effects estimator is

identical to the fixed effects estimator and if α = 0 the random effects estimator is identical to the
OLS estimator. When 0 < α̂ < 1 the random effects estimates may be closer to the OLS estimates
or the fixed effects estimates depending on the magnitude of α̂.

E X A M P L E 15.9 Random Effects Estimation of a Production Function

To illustrate the random effects estimator, we use the data
file chemical3 from N = 1,000 Chinese chemical firms using
T = 3 time periods. The random effects estimates of the pro-
duction function are

ln
(
SALESit

)⋀

= 6.1718 + 0.2393ln
(
CAPITALit

)

(se_fgls) (0.1142) (0.0147)
(se_clus) (0.1428) (0.0221)

+ 0.4140ln
(
LABORit

)

(0.0220)
(0.0327)

These random effects estimates are obtained using the esti-
mated “partial-demeaning coefficient”

α̂ = 1 − σ̂e√
Tσ̂2

u + σ̂
2
e

= 1 − 0.3722√
3(0.6127) + 0.1385

= 0.7353

Because α̂ = 0.7353 is not close to zero or one, we see
that the random effects estimates are quite different from
the fixed effects estimates in Example 15.8 and also quite
different from the OLS estimates in Example 15.7. Note
that the cluster-robust standard errors for the random effects
estimates are slightly larger than the conventional FGLS stan-
dard errors, suggesting that there may be serial correlation
and/or heteroskedasticity in the overall error component eit.

E X A M P L E 15.10 Random Effects Estimation of a Wage Equation

In Table 15.1, we introduced panel data using observations
from a typical microeconomic data source, the National
Longitudinal Surveys (NLS). In Example 15.3, we intro-
duced a simple wage equation and noted that in the data
file nls_panel, all the women when first surveyed had
completed their education, so that the variable EDUC, years
of education, did not vary. This resulted in it dropping out

when we applied the difference estimator. All time-invariant
variables are eliminated when using the difference estimator
or the fixed effects estimator. In this example, we extend the
model used in Example 15.3.

Because the women in our microeconomic data panel
were randomly selected from a larger population, it seems
sensible to treat individual differences between the 716

............................................................................................................................................
10The details can be found in Wooldridge (2010), pp. 326–328.
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women as random effects. Let us specify the wage equation
to have dependent variable ln(WAGE) and explanatory
variables years of education (EDUC); total labor force
experience (EXPER) and its square; tenure in current job
(TENURE) and its square; and indicator variables BLACK,
SOUTH, and UNION.

The fixed and random effects estimates are given in
Table 15.5 along with conventional, nonrobust standard
errors and t-values. For the random effects estimates, we use
the estimated transformation parameter

α̂ = 1 − σ̂e√
Tσ̂2

u + σ̂
2
e

= 1 − 0.1951√
5 × 0.1083 + 0.0381

= 0.7437

T A B L E 15.5 Example 15.10: Fixed and Random Effects Estimates of a Wage Equation

Fixed Effects Random Effects
Variable Coefficient Std. Error∗ t-Value Coefficient Std. Error∗ t-Value
C 1.4500 0.0401 36.12 0.5339 0.0799 6.68
EDUC 0.0733 0.0053 13.74
EXPER 0.0411 0.0066 6.21 0.0436 0.0064 6.86
EXPER2 −0.0004 0.0003 −1.50 −0.0006 0.0003 −2.14
TENURE 0.0139 0.0033 4.24 0.0142 0.0032 4.47
TENURE2 −0.0009 0.0002 −4.35 −0.0008 0.0002 −3.88
BLACK −0.1167 0.0302 −3.86
SOUTH −0.0163 0.0361 −0.45 −0.0818 0.0224 −3.65
UNION 0.0637 0.0143 4.47 0.0802 0.0132 6.07

∗Conventional standard errors.

Using this value to transform the data as in (15.33), then
applying least squares to the transformed regression model
in (15.32) yields the random effects estimates. Because the
random effects estimator only partially de-means the data
the time-invariant variables, EDUC and BLACK, are not
eliminated. We are able to estimate the effects of years of
education and race on ln(WAGE). We estimate that the return
to education is about 7.3%, and that blacks have wages about
12% lower than whites, everything else held constant. Living
in the South leads to wages about 8% lower, and union
membership leads to wages about 8% higher, everything else
held constant.

15.4.1 Testing for Random Effects
The magnitude of the correlation ρ in (15.28) is an important feature of the random effects model.
If ui = 0 for every individual, then there are no individual differences and no heterogeneity to
account for. In such a case, the pooled OLS linear regression model is appropriate, and there is
no need for either a fixed or a random effects model. We are assuming the error component ui
has expectation zero, E

(
ui|Xi,wi

)
= 0. If in addition ui has a conditional variance of zero, then it

is said to be a degenerate random variable; it is a constant with value equal to zero. In this case,
if σ2

u = 0, then the correlation ρ = 0 and there is no random individual heterogeneity present in
the data. We can test for the presence of heterogeneity by testing the null hypothesis H0∶σ2

u = 0
against the alternative hypothesis H1∶σ2

u > 0. If the null hypothesis is rejected, then we conclude
that there are random individual differences among sample members, and that the random effects
model might be appropriate. On the other hand, if we fail to reject the null hypothesis, then we
have no evidence to conclude that random effects are present.

The Lagrange multiplier (LM) principle for test construction is very convenient in this case,
because LM tests require estimation of only the restricted model that assumes that the null
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hypothesis is true. If the null hypothesis is true, then ui = 0 and the random effects model reduces
to the usual linear regression model

yit = β1 + β2x2it + α1w1i + eit

The test statistic is based on the OLS residuals

êit = yit − b1 − b2x2it − a1w1i

The test statistic for balanced panels is

LM =
√

NT
2(T − 1)

⎧
⎪
⎪
⎪
⎨
⎪
⎪
⎪⎩

N∑
i=1

(
T∑

t=1
êit

)2

N∑
i=1

T∑
t=1

ê2
it

− 1

⎫
⎪
⎪
⎪
⎬
⎪
⎪
⎪⎭

(15.35)

The numerator of the first term in curly brackets differs from the denominator because it contains
terms like 2êi1êi2 + 2êi1êi3 + 2êi2êi3 + · · · whose sum will not be significantly different from zero
if there is no correlation over time for each individual and will reflect a positive correlation if there
is one. If the sum of the cross product terms is not significant, the first term in the curly brackets is
not significantly different from one, and the term in the curly brackets is not significantly different
from zero. If the sum of the cross product terms is significant, then the first term in the curly
brackets will be significantly greater than one and LM will be positive.

If the null hypothesis H0∶σ2
u = 0 is true, that is, there are no random effects, then LM ∼

N(0, 1) in large samples. Thus, we reject H0 at significance level α and accept the alternative
H1∶σ2

u > 0 if LM > z(1−α), where z(1−α) is the 100(1 − α) percentile of the standard normal N(0,
1) distribution.11 This critical value is 1.645 if α = 0.05 and 2.326 if α = 0.01. Rejecting the null
hypothesis leads us to conclude that random effects are present.

E X A M P L E 15.11 Testing for Random Effects in a Production Function

Using the N = 1000 Chinese chemical firms data from chemi-
cal3, the value of the test statistic in (15.35) is LM = 44.0637.
This is far greater than the α = 0.01 critical value 2.326, so

we reject the null hypothesis H0∶σ2
u = 0 and conclude that

σ2
u > 0; there is evidence of unobserved heterogeneity, or ran-

dom effects, in the data.

15.4.2 A Hausman Test for Endogeneity in the Random
Effects Model

The random effects model has one critical assumption that is often violated. If the random error
vit = ui + eit is correlated with any of the right-hand side explanatory variables in a random effects
model, then the least squares and GLS estimators of the parameters are biased and inconsistent.

............................................................................................................................................
11The original LM test due to Breusch and Pagan used LM2 with the distribution under H0 as χ2

(1). Subsequent authors
pointed out that the alternative hypothesis for using LM2 is H1∶σ2

u ≠ 0, and that we can do better by using LM as a
one-sided N(0, 1) test with alternative hypothesis H1∶σ2

u > 0. Some software, for example Stata, reports LM2. The
danger from using LM2 is that LM < 0 is possible and should not be taken as evidence that σ2

u > 0. The adjustment for a
chi-square test at significance α is to use the 100(1 − 2α) percentile of the χ2-distribution. This critical value for an
α = 0.05 test is 2.706 which is 1.6452. It should only be used for LM > 0.
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The problem of endogenous regressors was first considered in a general context in Chapter 10.
The problem is common in random effects models because the individual-specific error compo-
nent ui may well be correlated with some of the explanatory variables. Such a correlation will
cause the random effects estimator to be inconsistent. Recall that a wonderful feature of having
panel data is that we can consistently estimate the model parameters using fixed effects, within, or
difference estimators, without having to find instrumental variables as we did in Chapter 10. The
ability to test whether the random effect ui is correlated with some of the explanatory variables
is important.

To check for any correlation between the error component ui and the regressors in a random
effects model, we can use a Hausman test. While the basic concept underlying the test is the same,
the mechanics of this Hausman test are different from the Hausman test introduced in Chapter 10.
In this case, the test compares the coefficient estimates from the random effects model to those
from the fixed effects model. The idea underlying Hausman’s test is that both the random effects
and fixed effects estimators are consistent if there is no correlation between ui and the explanatory
variables xkit. If both estimators are consistent, then they should converge to the true parameter
values βk in large samples. That is, in large samples, the random effects and fixed effects estimates
should be similar. On the other hand, if ui is correlated with any of the explanatory variables, then
the random effects estimator is inconsistent for all the model coefficients, while the fixed effects
estimator remains consistent. Thus in large samples, the fixed effects estimator converges to the
true parameter values, but the random effects estimator converges to some other values that are
not the values of the true parameters. In this case, we expect to see differences between the fixed
and random effects estimates.

The test can be carried out coefficient by coefficient using a t-test, or jointly, using a
chi-square test. Let us consider the t-test first. Denote the fixed effects estimate of βk as bFE,k, and
let the random effects estimate be bRE,k. Then the t-statistic for testing that there is no difference
between the estimators, and thus that there is no correlation between ui and any of the explanatory
variables, is

t =
bFE,k − bRE,k

[
var
⋀(

bFE,k
)
− var
⋀(

bRE,k
)]1∕2 =

bFE,k − bRE,k
[
se
(
bFE,k

)2 − se
(
bRE,k

)2]1∕2 (15.36)

The test can be carried out for each coefficient, and if any of the t-values are statistically different
from zero, then we conclude that one or more of the explanatory variables are correlated with
the unobserved heterogeneity term ui. In this t-statistic, it is important that the denominator
is the estimated variance of the fixed effects estimator minus the estimated variance of the
random effects estimator. The reason is that under the null hypothesis that ui is uncorrelated
with any of the explanatory variables, the random effects estimator will have a smaller variance
than the fixed effects estimator, at least in large samples. Consequently, we expect to find
var
⋀(

bFE,k
)
− var
⋀(

bRE,k
)
> 0, which is necessary for a valid test. A second interesting feature of

this test statistic is that

var
(
bFE,k − bRE,k

)
= var

(
bFE,k

)
+ var

(
bRE,k

)
− 2cov

(
bFE,k, bRE,k

)

= var
(
bFE,k

)
− var

(
bRE,k

)
(15.37)

The unexpected result in the last line occurs because Hausman proved that, in this particular
case, cov

(
bFE,k, bRE,k

)
= var

(
bRE,k

)
.

More commonly, the Hausman test is automated by software packages to contrast the
complete set of estimates. That is, we carry out a test of a joint hypothesis comparing all the
coefficients. The Hausman contrast12 test jointly checks how close the differences between

............................................................................................................................................
12Details of the joint test are beyond the scope of this book. A reference that contains a careful exposition of the t-test,
and the chi-square test, is Wooldridge (2010), pp. 328–334.
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the pairs of coefficients are to zero. When testing all the coefficients except the intercept the
resulting test statistic has the χ2

(KS)-distribution, where KS is the number of coefficients of
variables that vary across time and individuals, if the null hypothesis of no endogeneity is true.
The form of the Hausman test in (15.36) and its χ2-distribution equivalent are not valid for
cluster-robust standard errors because under these more general assumptions it is no longer true
that var

(
bFE,k − bRE,k

)
= var

(
bFE,k

)
− var

(
bRE,k

)
.

E X A M P L E 15.12 Testing for Endogenous Random Effects
in a Production Function

Intuitively it would seem quite likely that there are unob-
served characteristics of the Chinese chemical firms that
might be correlated with the amount of labor and capital
they use to produce their products. Let us test the differences
in the coefficient β2 of ln(CAPITAL) using the fixed effects
estimates in Example 15.8 and the random effects estimates
in Example 15.9 with conventional, nonrobust standard
errors.

t =
bFE,2 − bRE,2[

se
(
bFE,2

)2 − se
(
bRE,2

)2]1∕2 = 0.1160 − 0.2393
[
(0.0195)2 − (0.0147)

]1∕2

= −0.1233
0.0129 = −9.55

We reject the null hypothesis that the difference in the
estimators is zero, and conclude that there is endogeneity in
the random effects model. Using the joint hypothesis test on
the KS = K − 1 = 2 coefficients yields a Hausman contrast
test statistic of 98.82, which is greater than χ2

(0.95,2) = 5.991,
leading us to conclude that there is correlation between the
unobserved heterogeneity term and some of the explanatory
variables. Both of these tests support the notion that in this
example the random effects estimator is inconsistent, so that
we should choose the fixed effects estimator for the empirical
analysis.

E X A M P L E 15.13 Testing for Endogenous Random Effects in a Wage Equation

Using the Hausman contrast test to compare the fixed
and random effects estimates of the wage equation in
Table 15.5 is limited to the six common coefficients. Using
the individual coefficient t-tests you will find significant
differences at the 5% level for the coefficients of TENURE2,
SOUTH, and UNION. The joint test for the equality of the

common coefficients yields a χ2-statistic value of 20.73 while
χ2
(0.95,6) = 12.592. Thus both approaches lead us to conclude

that there is correlation between the individual heterogeneity
term and one or more of the explanatory variables and
therefore the random effects estimator should not be used.

15.4.3 A Regression-Based Hausman Test
The Hausman test described in Section 15.4.2 is based on assumptions of homoskedasticity and
no serial correlation. In particular, it is not robust to heteroskedasticity and/or serial correlation.
A second annoying problem is that the calculated χ2-statistic can come out to be a negative number
in samples that are not large. Such a result makes no sense theoretically and is due to features of
a particular sample. These problems can be avoided by using a “regression-based” Hausman test.

The test is based on an idea by Yair Mundlak, so that it is sometimes called the Mundlak
approach. Mundlak’s notion was that if the unobservable heterogeneity is correlated with the
explanatory variables then perhaps the random effects are correlated with the time averages of
the explanatory variables. Consider the general model in (15.16) with K = 3 and M = 2,

yit = β1 + β2x2it + β3x3it + α1w1i + α2w2i + ui + eit
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Mundlak’s suggestion is that we consider
ui = γ1 + γ2x2i • + γ3x3i • + ci (15.38)

where E
(
ci|Xi

)
= 0. Just as in the omitted variables problem, the solution is to take the relation-

ship out of the error term and put it into the model, leaving the error with conditional expectation
zero, that is, specify the panel data model

yit = β1 + β2x2it + β3x3it + α1w1i + α2w2i + ui + eit

= β1 + β2x2it + β3x3it + α1w1i + α2w2i +
(
γ1 + γ2x2i • + γ3x3i • + ci

)
+ eit

=
(
β1 + γ1

)
+ β2x2it + β3x3it + α1w1i + α2w2i + γ2x2i • + γ3x3i • + ci + eit

= δ1 + β2x2it + β3x3it + α1w1i + α2w2i + γ2x2i • + γ3x3i • +
(
ci + eit

)
(15.39)

Mundlak suggested testing H0∶γ2 = 0, γ3 = 0 against the alternative H1∶γ2 ≠ 0 or γ3 ≠ 0. The
null hypothesis is that there is no endogeneity arising from a correlation between the unobserved
heterogeneity and the explanatory variables. The asymptotically valid Wald test statistic has a
χ2
(2) distribution in this case. This test statistic will never be negative, and it can be made robust

to heteroskedasticity and/or serial correlation using cluster-robust standard errors.
Equation (15.39) can be estimated by OLS, with cluster-robust standard errors, or by random

effects, which should be more efficient. Interestingly, both OLS and random effects estimation of
(15.39) yield fixed effects estimates of β2 and β3. Furthermore OLS and random effects estimates
of γ2 and γ3 are identical. These outcomes are illustrated in the next two examples.

E X A M P L E 15.14 The Mundlak Approach for a Production Function

For the production function data file chemical3, with
N = 1000 firms, we create the time averages of ln(CAPITAL)
and ln(LABOR) denoting them by adding a “BAR” over the
name. The results are reported in Table 15.6. We give the
estimates and standard errors to many decimal places to make
the points in the previous paragraph. First, compare the OLS
coefficient estimates to the random effects (RE) estimates.
They are identical. Second, compare the coefficients of
ln(CAPITAL) and ln(LABOR) to the fixed effects estimates

T A B L E 15.6 Mundlak Regressions for a Production Function

OLS Cluster RE Conventional RE Cluster
Coefficient Std. Error Coefficient Std. Error Coefficient Std. Error

C 5.45532814 0.14841700 5.45532814 0.13713197 5.45532814 0.14841700
ln(CAPITAL) 0.11603986 0.02735145 0.11603988 0.01954950 0.11603988 0.02735146
ln(LABOR) 0.26888033 0.04582462 0.26888041 0.03067342 0.26888041 0.04582462
ln(CAPITAL) 0.22232028 0.04125492 0.22232026 0.03338482 0.22232026 0.04125492
ln(LABOR) 0.10949491 0.06220441 0.10949483 0.05009737 0.10949483 0.06220441
Mundlak test 56.59 97.00 56.59

in Example 15.8 and see that they are the same. Finally, note
that the cluster-robust standard errors for OLS are identical to
the random effects cluster-robust standard errors. The Wald
test statistic value for the null hypothesis H0∶γ2 = 0, γ3 = 0
is 56.59 using cluster-robust standard errors and is 97.0
using the conventional RE standard errors. The test critical
value is χ2

(0.99,2) = 9.210, thus using either test we reject
the null hypothesis and conclude that the unobserved firm
effects are correlated with the capital and/or labor inputs.
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E X A M P L E 15.15 The Mundlak Approach for a Wage Equation

For the wage equation add the time averages of EXPER and
its square, TENURE and its square, SOUTH and UNION.
Note that we cannot use time averages of EDUC and
BLACK because these variables do not change over time
and are already in the model. In Table 15.7, we report
the random effects estimates and both conventional and
cluster-robust standard errors. The Mundlak test statistic
of joint significance of the time average coefficients using

T A B L E 15.7 Mundlak Regressions for a Wage Equation

Random Effects Fixed Effects
Conventional Cluster Cluster

Coefficient Std. Error Std. Error Coefficient Std. Error
C 0.4167 0.1358 0.1101 1.4500 0.0550
EDUC 0.0708 0.0054 0.0056
EXPER 0.0411 0.0066 0.0082 0.0411 0.0082
EXPER2 −0.0004 0.0003 0.0003 −0.0004 0.0003
TENURE 0.0139 0.0033 0.0042 0.0139 0.0042
TENURE2 −0.0009 0.0002 0.0002 −0.0009 0.0002
BLACK −0.1216 0.0317 0.0284
SOUTH −0.0163 0.0361 0.0585 −0.0163 0.0585
UNION 0.0637 0.0143 0.0169 0.0637 0.0169
EXPER 0.0251 0.0244 0.0223
EXPER2 −0.0012 0.0010 0.0010
TENURE 0.0026 0.0126 0.0137
TENURE2 0.0004 0.0007 0.0008
SOUTH −0.0890 0.0464 0.0652
UNION 0.0920 0.0382 0.0415
Mundlak test 20.44 17.26

the former is 20.44 and for the latter is 17.26. There are
six coefficients being tested, and the test critical value is
χ2
(0.99,6) = 16.812. Thus, we reject the null hypothesis and

conclude that a woman’s unobserved characteristics are
correlated with some of the explanatory variables. We also
for convenience provide the fixed effects (FE) estimates with
cluster-robust standard errors. Note that for the time-varying
variables the RE and FE coefficients are identical.

15.4.4 The Hausman–Taylor Estimator
The outcome from our comparison of the fixed and random effects estimates of the wage equation
in Example 15.10 poses a dilemma. Correlation between the explanatory variables and the random
effects means the random effects estimator will be inconsistent. We can overcome the inconsis-
tency problem by using the fixed effects estimator, but doing so means we can no longer estimate
the effects of the time-invariant variables EDUC and BLACK. The wage return for an extra year
of education, and whether or not there is wage discrimination on the basis of race, might be two
important questions that we would like to answer.

To solve this dilemma, we ask: How did we cope with the endogeneity problem in
Chapter 10? We did so by using instrumental variable estimation. Variables known as instru-
ments that are correlated with the endogenous variables but uncorrelated with the equation error
were introduced, leading to an instrumental variables estimator which has the desirable property
of consistency. The Hausman–Taylor estimator is an instrumental variables estimator applied
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to the random effects model, to overcome the problem of inconsistency caused by correlation
between the random effects and some of the explanatory variables. To explain how it works
consider the regression model

yit = β1 + β2xit,exog + β3xit,endog + β3wi,exog + β4wi,endog + ui + eit (15.40)
We have divided the explanatory variables into four categories:
xit,exog: exogenous variables that vary over time and individuals
xit,endog: endogenous variables that vary over time and individuals
wi,exog: time-invariant exogenous variables
wi,endog: time-invariant endogenous variables
Equation (15.40) is written as if there is one variable of each type, but in practice, there could be
more than one. For the Hausman–Taylor estimator to work the number of exogenous time-varying
variables

(
xit,exog

)
must be at least as great as the number of endogenous time-invariant variables(

wi,endog
)
. This is the necessary condition for there to be enough instrumental variables.

Following Chapter 10, we need instruments for xit,endog and wi,endog. Since the fixed effects
transformation x̃it,endog = xit,endog − xi,endog eliminates correlation with ui, we have x̃it,endog as a
suitable instrument for xit,endog. Also, the variables xi,exog are suitable instruments for wi,endog.
The exogenous variables in (15.40) can be viewed as instruments for themselves, making the
complete instrument set xit,exog, x̃it,endog, wi,exog, xi,exog. Hausman and Taylor modify this set
slightly using x̃it,exog, x̃it,endog, wi,exog, xi,exog, which can be shown to yield the same results. Their
estimator is applied to the transformed GLS model

y∗it = β1 + β2x∗it,exog + β3x∗it,endog + β3w∗i,exog + β4w∗i,endog + v∗it

where, for example, y∗it = yit − α̂yi, and α̂ = 1 − σ̂e

/√
Tσ̂2

u + σ̂
2
e . The estimate σ̂2

e is obtained from
fixed effects residuals; an auxiliary instrumental variables regression13 is needed to find σ̂2

u.

E X A M P L E 15.16 The Hausman–Taylor Estimator for a Wage Equation

For the wage equation used in Example 15.10, we will make
the following assumptions
xit,exog ={EXPER, EXPER2, TENURE, TENURE2, UNION}

xit,endog ={SOUTH}
wi,exog ={BLACK}

wi,endog ={EDUC}

The variable EDUC is chosen as an endogenous variable on
the grounds that it will be correlated with personal attributes
such as ability and perseverance. It is less clear why SOUTH
should be endogenous, but we include it as endogenous
because its fixed and random effects estimates were vastly
different. Perhaps those living in the South have special
attributes. The remaining variables, experience, tenure,
UNION, and BLACK, are assumed uncorrelated with the
random effects.

Estimates for the wage equation are presented in
Table 15.8. Compared to the random effects estimates, there

T A B L E 15.8
Hausman–Taylor Estimates of Wage
Equation

Variable Coefficient Std. Error t-Value p-Value
C −0.75077 0.58624 −1.28 0.200
EDUC 0.17051 0.04446 3.83 0.000
EXPER 0.03991 0.00647 6.16 0.000
EXPER2 −0.00039 0.00027 −1.46 0.144
TENURE 0.01433 0.00316 4.53 0.000
TENURE2 −0.00085 0.00020 −4.32 0.000
BLACK −0.03591 0.06007 −0.60 0.550
SOUTH −0.03171 0.03485 −0.91 0.363
UNION 0.07197 0.01345 5.35 0.000

............................................................................................................................................
13Details can be found in book, Jeffrey Wooldridge (2010), pp. 358–361.
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has been a dramatic increase in the estimated wage returns
to education from 7.3% to 17%. The estimated effects for
experience and tenure are similar. The wage reduction for
BLACK is estimated as 3.6% rather than 11.7%, and the
penalty for being in the SOUTH is also less, 3.1% instead of
8.2%. The instrumental-variable standard errors are mostly
larger, particularly for EDUC and BLACK where the biggest

changes in estimates have been observed. Which set of
estimates is better will depend on how successful we have
been at making the partition into exogenous and endogenous
variables in (15.40) and whether the gain from having
consistent estimates is sufficiently large to compensate
for the increased variance of the instrumental variables
estimators.

15.4.5 Summarizing Panel Data Assumptions
It will be convenient to have a summary of the assumptions under which the random effects and
the fixed effects estimators are appropriate.

Random Effects Estimation Assumptions

RE1. yit = β1 + β2x2it + · · · + βKxKit + α1w1i + · · · + αMwMi +
(
ui + eit

)
. This is the popu-

lation regression function. It may include (i) variables xkit that vary across both time and
individuals, (ii) time-invariant variables

(
wmi

)
, and (iii) variables that vary only across time,

such as zgt, although we have not included them explicitly. It includes unobserved idiosyn-
cratic random errors, eit, that vary across both time and individuals, and (ii) unobserved
individual heterogeneity, ui, that varies across individuals but not time.
RE2. (i) E

(
eit|Xi,wi, ui

)
= 0 and (ii) E

(
ui|Xi,wi

)
= E

(
ui
)
= 0. These are the exogeneity

assumptions. Condition (i) says there is no information in the values of the explanatory vari-
ables or the unobserved heterogeneity that can be used to predict the values of eit. Condition
(ii) says there is no information in the values of the explanatory variables that can be used
to predict ui.
RE3. (i) var

(
eit|Xi,wi, ui

)
= var

(
eit
)
= σ2

e and (ii) var
(
ui|Xi,wi

)
= var

(
ui
)
= σ2

u. These
are the homoskedasticity assumptions.
RE4. (i) Individuals are drawn randomly from the population, so that eit is statistically
independent of ejs; (ii) the random errors eit and ui are statistically independent; and
(iii) cov

(
eit, eis|Xi,wi, ui

)
= 0 if t ≠ s, the random errors eit are serially uncorrelated.

RE5. There is no exact collinearity and all observable variables exhibit some variation.

Random Effects Estimator Notes
1. Under the assumptions RE1–RE5 the random effects (GLS) estimator is BLUE, assuming

σ2
e and σ2

u are known.
2. Implementation of the random effects estimator requires the variance parameters to be esti-

mated. The FGLS estimator is not BLUE, but it is consistent and asymptotically normal as
N grows large if T is fixed, and it is asymptotically equivalent to the GLS estimator.

3. If the random errors are either heteroskedastic (RE3 fails) and/or serially correlated (RE4
(iii) fails), then the random effects estimator is consistent and asymptotically normal, but the
usual standard errors are incorrect. Using cluster-robust standard errors provides a basis for
valid asymptotic inference, including hypothesis tests and interval estimation.

4. Under RE1–RE5 the pooled OLS estimator is consistent and asymptotically normal.
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5. Under RE1–RE5 the random effects, FGLS, estimator is more efficient asymptotically than
the pooled OLS estimator with corrected cluster-robust standard errors.

6. The random effects estimator is more efficient in large samples than the fixed effects estima-
tor for the coefficients of the variables that vary across individuals and time, xkit.

7. The fixed effects estimator is, however, consistent for the coefficients of the variables that
vary across individuals and time, xkit, even if RE2 (ii) fails, and E

(
ui|Xi,wi

) ≠ 0.

Fixed Effects Estimation Assumptions

FE1. yit = β1 + β2x2it + · · · + βKxKit +
(
ui + eit

)
. This is the population regression function.

It may include (i) variables xkit that vary across both time and individuals and (ii) variables
that vary only across time, such as zgt, although we have not included them explicitly. It
includes unobserved idiosyncratic random errors eit that vary across both time and individ-
uals, (ii) unobserved individual heterogeneity ui that varies across individuals but not time.
Note that we cannot include time-invariant variables.
FE2. E

(
eit|Xi, ui

)
= 0. This is the (strict) exogeneity assumptions. There is no information

in the values of the explanatory variables or the unobserved heterogeneity that can be used
to predict the values of eit. Note that we do not have to make any assumption about the
relationship between the unobserved heterogeneity and the explanatory variables.
FE3. var

(
eit|Xi, ui

)
= var

(
eit
)
= σ2

e . The random errors eit are homoskedastic.
FE4. (i) Individuals are drawn randomly from the population, so that eit is statistically inde-
pendent of ejs, and (ii) cov

(
eit, eis|Xi, ui

)
= 0 if t ≠ s, the random errors eit are serially uncor-

related.
FE5. There is no exact collinearity and all observable variables exhibit some variation.

Fixed Effects Estimation Notes
1. Under FE1–FE5 the fixed effects estimator is BLUE.
2. The fixed effects estimator is consistent and asymptotically normal if N grows large and

T is fixed.
3. If the random errors are either heteroskedastic (FE3 fails) and/or serially correlated (FE4

(ii) fails), then the fixed effects estimator is consistent and asymptotically normal, but the
usual standard errors are incorrect. Using cluster-robust standard errors provides a basis for
valid asymptotic inference, including hypothesis tests and interval estimation.

15.4.6 Summarizing and Extending Panel Data
Model Estimation

The most common problem facing researchers using panel data is that unobservable characteris-
tics of the cross-sectional unit, the “individual,” are correlated with one or more of the explanatory
variables. In this case, one or more of the explanatory variables are endogenous, so that OLS
and the more efficient random effects estimator are inconsistent. Most of the time empirical
researchers will use the fixed effects estimator because it eliminates the time-invariant unob-
served heterogeneity term that causes the endogeneity problem. The fixed effects estimator is a
consistent, but inefficient, estimator. Because of the major differences in the estimators, in each
application using panel data, it is important to check for endogeneity using a Hausman or Mundlak
test. Similarly, it is important to test for the presence of individual differences across individuals
using the F-test with fixed effects estimation or the LM test for random effects.
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Each of the estimators is subject to the usual problems of serial correlation and heteroskedas-
ticity, but these problems are easily accounted for by using cluster-robust standard errors if the
number of cross-sectional units N is much bigger than the time dimension T . A more perplexing
problem for users of the fixed effects estimator is that time-invariant variables are eliminated
from the model. In many applications, variables such as race and sex are vitally important. Using
the Hausman–Taylor estimator solves the endogeneity problem by using instrumental variables
estimation and does not eliminate the time-invariant variables. It can be a good choice if the
IV are strong, and if there are enough time-varying exogenous variables. Another option is to
use the Mundlak approach as a compromise, that is, assume that the unobserved heterogeneity
depends on the time-averages of the variables varying over individual and time, as in (15.38).
Once the time-averages are included in the model, if the remaining unobserved heterogeneity is
not correlated with the included variables, then estimate an augmented model, like (15.39) by
random effects.

Now, we briefly touch some other panel data issues.14

1. While we have not discussed it, panel data methods have been extended to unbalanced
panels. These are cases when the number of time-series observations Ti differs across indi-
viduals.

2. In addition to unobserved heterogeneity associated with individuals, there can also be
unobserved heterogeneity associated with time. Let mt be a random time-specific error
component. Note that the subscript is “t” only, so that it does not vary across individuals,
only time. The combined error term has three terms, vit = ui + mt + eit. It is possible to
carry out random effects estimation in this case with “two-way” error components models.
A more common approach is to include a time-indicator variable in any model with
relatively small T .

3. When T = 2, first-difference estimation is perfectly equivalent to fixed effects estimation.
When T > 2, the first-difference random errors Δvit = Δeit are serially correlated unless the
idiosyncratic random errors eit follow a random walk. This is diametrically opposite the
usual fixed effects assumption that the idiosyncratic errors are serially uncorrelated. Using
cluster-robust standard errors resolves the issue in both cases.

4. Dynamic panel data models that include a lagged dependent variable on the right-hand side
have an endogeneity problem. To see this, let

yit = β1 + β2x2it + β3yi,t−1 +
(
ui + eit

)

Note that yit depends directly on ui, and ui is present in every time period including time
t − 1. Therefore, yi,t−1 also depends directly on ui, causing a positive correlation, making
yi,t−1 endogenous. There is large literature on this difficult problem and many innovative IV
estimators have been suggested. When T is large the dynamic, time-series data characteris-
tics, must be taken into account. Using a difference estimator in this context is very common.

5. While we have focused on endogeneity resulting from the unobserved heterogeneity term,
there can be endogeneity caused by simultaneous equations, such as supply and demand
equations. There are IV/2SLS methods for estimating fixed effects, RE, and first-difference
models.

6. In this edition, we have chosen to omit the section on “sets of regression equations” and
“seemingly unrelated regressions.” These topics arise when T is large and N is small, so that
each cross-sectional unit, perhaps a firm, is modeled with its own equation.15

............................................................................................................................................
14You are encouraged to see Badi H. Baltagi (2013) Econometric Analysis of Panel Data, Fifth Edition, Wiley, along
with previously cited textbooks by Greene (2018) and Wooldridge (2010) for more on these topics.
15See Greene, pp. 328–339, or the previous edition of this book, Principles of Econometrics, 4th ed., 2012, Chapter 15.7.
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7. Unobserved heterogeneity can affect slope coefficients, that is, it is possible that each indi-
vidual’s response βki to a change in xk is different. Random coefficient models recognize
individual-specific slopes as a possibility.16

8. We have mentioned the linear probability model for situations in which individuals face
binary choices. The panel data methods we have discussed can be used with linear prob-
ability models with the usual caveats. Looking forward to Chapter 16, we introduce new
estimators, probit and logit, for handing binary outcome models. These too can be adapted
for panel data methods.

15.5 Exercises

15.5.1 Problems
15.1 Consider the model

yit = β1i + β2xit + eit

a. Show that the fixed effects estimator for β2 can be written as

β̂2,FE =

N∑
i=1

T∑
t=1

(
xit − xi

)(
yit − yi

)

N∑
i=1

T∑
t=1

(
xit − xi

)2

b. Show that the random effects estimator for β2 can be written as

β̂2,RE =

N∑
i=1

T∑
t=1

[
xit − α̂

(
xi − x

)
− x

][
yit − α̂

(
yi − y

)
− y

]

N∑
i=1

T∑
t=1

[
xit − α̂

(
xi − x

)
− x

]2

where y and x are the overall means.
c. Write down an expression for the pooled least squares estimator of β2. Discuss the differences

between the three estimators.
15.2 Consider the panel data regression model with unobserved heterogeneity, yit = β1 + β2xit + vit = β1 +

β2xit + ui + eit. Given that assumptions RE1–RE5 hold, answer each of the following questions.
a. For the purpose of estimating the regression parameters precisely by OLS, the variance of the

idiosyncratic error is more important than the variance of the unobserved heterogeneity error.
True or False? Explain your choice.

b. For the purpose of estimating the regression parameters precisely by GLS, the variance of the
idiosyncratic error is more important than the variance of the unobserved heterogeneity error.
True or False? Explain your choice.

c. For the purpose of estimating the regression parameters precisely by fixed effects, the variance of
the idiosyncratic error is more important than the variance of the unobserved heterogeneity error.
True or False? Explain your choice.

15.3 In the random effects model, under assumptions RE1–RE5, suppose that the variance of the idiosyn-
cratic error is σ2

e = var
(
eit
)
= 1.

a. If the variance of the individual heterogeneity is σ2
u = 1, what is the correlation ρ between

vit = ui + eit and vis = ui + eis?
b. If the variance of the individual heterogeneity is σ2

u = 1, what is the value of the GLS transforma-
tion parameter α if T = 2? What is the value of the GLS transformation parameter α if T = 5?

............................................................................................................................................................
16See, for example, Greene (2018), pp. 450–459, and Wooldridge (2010), pp. 374–387.
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c. In general, for any given values of σ2
u and σ2

e , as the time dimension T of the panel becomes larger,
the transformation parameter α becomes smaller. Is this true, false, or are you uncertain? If you
are uncertain, explain.

d. If T = 2 and σ2
e = var

(
eit
)
= 1, what value of σ2

u will give the GLS transformation parameter
α = 1∕4? What value of σ2

u will give the GLS transformation parameter α = 1∕2? What value of
σ2

u will give the GLS transformation parameter α = 9∕10?
e. If we think of the random errors ui and eit as noise in the regression relationship, summarize how

the relative variation of these noise components, the variances of error components, affects our
ability to estimate the regression parameters.

15.4 Consider the regression model yit = β1 + β2x2it + α1w1i + ui + eit, i = 1,… ,N, t = 1,… , T , where
x2it and w1i are explanatory variables. The time-averaged model is given in equation (15.13),
yi• = β1 + β2x2i• + α1w1i + vi• where vi• = ui + ei• . The OLS estimator of the parameters in (15.13) is
called the between estimator, because it uses variation between, or among, individuals to estimate
the regression parameters.
a. Under assumptions RE1–RE5, derive the variance of the random error vi• = ui + ei• .
b. Under assumptions RE1–RE5, find the covariance between vi• and vj• , where i ≠ j.
c. Under assumptions RE1–RE5, the between estimator is unbiased. Is this true or false? Explain

the basis of your answer.
d. If assumptions RE1–RE5 hold except for RE2, part (ii), then the between estimator is biased and

inconsistent. Is this true or false? Explain the basis of your answer.
15.5 Table 15.9 contains some simulated panel data, where id is the individual cross-section identifier, t is

the time period, x is an explanatory variable, e is the idiosyncratic error, y is the outcome value. The
data generating process is yit = 10 + 5xit + ui + eit, i = 1, 2, 3, t = 1, 2. The OLS residuals are ê,
which we have rounded to two decimal places for convenience.

T A B L E 15.9 Simulated Data for Exercises 15.5 and 15.10

id t x e y ê

1 1 −0.51 −0.69 4.43 −3.21
1 2 −0.45 −1.70 1.70 −6.31
2 1 −2.44 −0.20 −2.29 2.20
2 2 −1.26 −0.41 2.98 0.06
3 1 −0.68 0.90 11.05 4.48
3 2 1.44 1.24 22.67 2.78

a. Using the true data generating process, calculate ui, i = 1, 2, 3.
b. Calculate the value of the LM statistic in equation (15.35) and carry out a test for the presence of

random effects at the 5% level of significance.
c. The fixed effects estimate of the coefficient of xit is bFE = 5.21 with standard error 0.94, while the

random effects estimate is bRE = 5.31 with standard error 0.81. Test for the presence of correlation
between the unobserved heterogeneity ui and the explanatory variable xit. (Note: The sample is
actually too small for this test to be valid.)

d. If estimates of the variance components are σ̂2
u = 34.84 and σ̂2

e = 2.59, calculate an estimated
value of the GLS transformation parameter α. Based on its magnitude, would you expect the
random effects estimates to be closer to the OLS estimates or the fixed effects estimates.

e. Using the estimates in (d), compute an estimate of the correlation between vi1 = ui + ei1 and
vi2 = ui + ei2. Is this correlation relatively high, or relatively low?

15.6 Using the NLS panel data on N = 716 young women, we consider only years 1987 and 1988. We are
interested in the relationship between ln(WAGE) and experience, its square, and indicator variables
for living in the south and union membership. Some estimation results are in Table 15.10.
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T A B L E 15.10 Estimation Results for Exercise 15.6

(1) (2) (3) (4) (5)
OLS 1987 OLS 1988 FE FE Robust RE

C 0.9348 0.8993 1.5468 1.5468 1.1497
(0.2010) (0.2407) (0.2522) (0.2688) (0.1597)

EXPER 0.1270 0.1265 0.0575 0.0575 0.0986
(0.0295) (0.0323) (0.0330) (0.0328) (0.0220)

EXPER2 −0.0033 −0.0031 −0.0012 −0.0012 −0.0023
(0.0011) (0.0011) (0.0011) (0.0011) (0.0007)

SOUTH −0.2128 −0.2384 −0.3261 −0.3261 −0.2326
(0.0338) (0.0344) (0.1258) (0.2495) (0.0317)

UNION 0.1445 0.1102 0.0822 0.0822 0.1027
(0.0382) (0.0387) (0.0312) (0.0367) (0.0245)

N 716 716 1432 1432 1432

(standard errors in parentheses)

a. The OLS estimates of the ln(WAGE) model for each of the years 1987 and 1988 are reported in
columns (1) and (2). How do the results compare? For these individual year estimations, what are
you assuming about the regression parameter values across individuals (heterogeneity)?

b. The ln(WAGE) equation specified as a panel data regression model is

ln
(
WAGEit

)
= β1 + β2EXPERit + β3EXPER2

it + β4SOUTHit

+ β5UNIONit +
(
ui + eit

)
(XR15.6)

Explain any differences in assumptions between this model and the models in part (a).
c. Column (3) contains the estimated fixed effects model specified in part (b). Compare these esti-

mates with the OLS estimates. Which coefficients, apart from the intercepts, show the most
difference?

d. The F-statistic for the null hypothesis that there are no individual differences, equation (15.20),
is 11.68. What are the degrees of freedom of the F-distribution if the null hypothesis (15.19) is
true? What is the 1% level of significance critical value for the test? What do you conclude about
the null hypothesis.

e. Column (4) contains the fixed effects estimates with cluster-robust standard errors. In the context
of this sample, explain the different assumptions you are making when you estimate with and
without cluster-robust standard errors. Compare the standard errors with those in column (3).
Which ones are substantially different? Are the robust ones larger or smaller?

f. Column (5) contains the random effects estimates. Which coefficients, apart from the intercepts,
show the most difference from the fixed effects estimates? Use the Hausman test statistic (15.36)
to test whether there are significant differences between the random effects estimates and the
fixed effects estimates in column (3) (Why that one?). Based on the test results, is random effects
estimation in this model appropriate?

15.7 Using the NLS panel data on N = 716 young women, we consider only years 1987 and 1988. We are
interested in the relationship between ln(WAGE) and experience, its square, and indicator variables
for living in the south and union membership. We form first differences of the variables, such as
Δln(WAGE) = ln

(
WAGEi,1988

)
– ln

(
WAGEi,1987

)
, and specify the regression

Δln(WAGE) = β2ΔEXPER + β3ΔEXPER2 + β4ΔSOUTH + β5ΔUNION + Δe (XR15.7)

Table 15.11 reports OLS estimates of equation (XR15.7) as Model (1), with conventional standard
errors in parentheses.
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T A B L E 15.11 Estimates for Exercise 15.7

Model C "EXPER "EXPER2 "SOUTH "UNION SOUTHi,1988 UNIONi,1988

(1) 0.0575 −0.0012 −0.3261 0.0822
(0.0330) (0.0011) (0.1258) (0.0312)

(2) −0.0774 0.1187 −0.0014 −0.3453 0.0814
(0.0524) (0.0530) (0.0011) (0.1264) (0.0312)

(3) 0.0668 −0.0012 −0.3157 0.0887 −0.0220 −0.0131
(0.0338) (0.0011) (0.1261) (0.0333) (0.0185) (0.0231)

a. The ability of first differencing to eliminate unobservable time-invariant heterogeneity is illus-
trated in equation (15.8). Explain why the strict form of exogeneity, FE2, is required for the
difference estimator to be consistent. You may wish to reread the start of Section 15.1.2 to help
clarify the assumption.

b. Equation (XR15.6) is the panel data regression specification at the base of the difference model.
Suppose we define the indicator variable D88t = 1 if the year is 1988 and D88t = 0 otherwise,
and add it to the specification in equation (XR15.6). What would its coefficient measure?

c. Model (2) in Table 15.11 is the difference model including an intercept term. Algebraically show
that the constant term added to the difference model is the coefficient of the indicator variable
discussed in part (b). Is the estimated coefficient statistically significant at the 5% level? What
does this imply about the intercept parameter in equation (XR15.6) in 1987 versus 1988?

d. In the difference model, the assumption of strict exogeneity can be checked. Model (3) in
Table 15.11 adds the variables SOUTH and UNION for year 1988 to the difference equation.
As noted in equation (15.5a), the strict exogeneity assumption fails if the random error is
correlated with the explanatory variables in any time period. We can check for such a correlation
by including some, or all, of the explanatory variables for year t, or t − 1 into the difference
equation. If strict exogeneity holds these additional variables should not be significant. Based on
the Model (3) result is there any evidence that the strict exogeneity assumption does not hold?

e. The F-test value for the joint significance of SOUTH and UNION from part (d), in Model (3), is
0.81. Are the variables jointly significant? What are the test degrees of freedom? What is the 5%
critical value?

15.8 Using the NLS panel data on N = 716 young women, we are interested in the relationship between
ln(WAGE) and experience, its square, and indicator variables for living in the south and union
membership. The equation of interest is (XR15.6) in Exercise 15.6. Some estimation results are in
Table 15.12. The estimates are based on 2864 observations covering the years 1982, 1983, 1985, and
1987. Standard errors are in parentheses.

T A B L E 15.12 Estimates for Exercise 15.8

Model C EXPER EXPER2 SOUTH UNION SOUTH1988 UNION1988

(1) 1.3843 0.0565 −0.0011 0.0384 0.0459
(0.0487) (0.0076) (0.0003) (0.0422) (0.0160)

(2) 1.3791 0.0564 −0.0011 0.0389 0.0478 0.0021 0.0160
(0.0505) (0.0076) (0.0003) (0.0451) (0.0162) (0.0481) (0.0166)

robust (0.0611) (0.0084) (0.0003) (0.0636) (0.0169) (0.0581) (0.0143)

a. Explain why the strict form of exogeneity, FE2, is required for the fixed effects estimator to be
consistent. You may wish to reread the start of Section 15.1.2 to help clarify the assumption.

b. The fixed effects estimates of the regression coefficients and conventional standard errors are
reported as Model (1). Are the coefficients significantly different from zero at the 5% level? What
do the signs of the coefficients on experience and its square indicate about returns to experience?
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c. In the fixed effects model, the assumption of strict exogeneity can be checked. Model (2) in
Table 15.12 adds the variables SOUTH and UNION for year 1988 to the fixed effects equation and
we report conventional standard and cluster-robust standard errors. As noted in equation (15.5a),
the strict exogeneity assumption fails if the random error is correlated with the explanatory vari-
ables in any time period. We can check for such a correlation by including some, or all, of the
explanatory variables for year t + 1 into the fixed effects model equation. If strict exogeneity holds
these additional variables should not be significant. Based on the Model (2) result is there any
evidence that the strict exogeneity assumption does not hold?

d. The joint F-test of SOUTH1988 and UNION1988 with conventional standard errors is 0.47. What
are the degrees of freedom for the F-test? What is the 5% critical value? What do we conclude
about strict exogeneity based on the joint test?

e. The joint F-test of SOUTH1988 and UNION1988 with robust-cluster standard errors is 0.63.
When using a cluster-corrected covariance matrix the F-statistic used by some software has
M − 1 denominator degrees of freedom, where M is the number of clusters. In this case, what
is the 5% critical value? What do we conclude about strict exogeneity based on the robust
joint test?

15.9 Examples 15.7 and 15.8 estimate a production function by OLS and fixed effects, respectively, with
both conventional nonrobust standard errors and cluster-robust standard errors for N = 1000 Chinese
chemical firms for 2004–2006.
a. Review the examples. What is the percent difference between the cluster-robust standard errors

and the conventional standard errors?
b. Let v̂it denote the OLS residuals from Example 15.7 and let v̂i,t−1 be the lagged residuals. Con-

sider the regression v̂it = ρv̂i,t−1 + rit, where rit is an error term. Regressing the 2006 residuals on
the 2005 residuals, we obtain ρ̂ = 0.948 with conventional OLS standard error 0.017 and White
heteroskedasticity-consistent standard error 0.020. Do these results establish a time-series serial
correlation in the idiosyncratic error component eit? If not, what is the source of the strong cor-
relation between v̂it and v̂i,t−1?

c. Let ̂̃eit be the residuals from the within estimation, similar to Example 15.5, but using all
1000 firms. Let ̂̃ei,t−1 be the lagged residuals. As noted in Exercise 15.10, part (e), we
expect the errors in the “within” transformed model to be serially correlated with correlation
corr

(
ẽitẽis

)
= −1∕(T − 1) under FE1-FE5. Here T = 3, thus we should find corr

(
ẽitẽis

)
= −1∕2.

Consider the regression ̂̃eit = ρ ̂̃ei,t−1 + rit, where rit is an error term. Using the 2006 data and
N = 1000 observations, we estimate the value of ρ to be −0.233 with conventional standard
error 0.046, and White heteroskedasticity robust standard error of 0.089. Test the null hypothesis
ρ = −1∕2 against the alternative ρ ≠ −1∕2 using a t-test at the 5% level, first with the conven-
tional standard error and again with the heteroskedasticity robust standard error. Rejecting the
null hypothesis implies that FE4, part (ii), does not hold, and time-series serial correlation exists
in the idiosyncratic errors eit. Such a finding justifies the use of cluster-robust standard errors in
the fixed effects model regardless of any heteroskedasticity considerations.

d. Using the N = 2000 observations for 2005–2006, and the estimated regression ̂̃eit = ρ ̂̃ei,t−1 +
rit, we estimate the value of ρ to be −0.270 with cluster-robust standard error, suggested by
Wooldridge (2010, p. 311), of 0.017. Test the null hypothesis ρ = −1∕2 against the alternative
ρ ≠ −1∕2 using a t-test at the 5% level. Rejecting the null hypothesis implies that FE4, part (ii),
does not hold, and time-series serial correlation exists in the idiosyncratic errors eit.

15.10 This exercise uses the simulated data
(
yit, xit

)
in Table 15.9.

a. The fitted least squares dummy variable model, given in equation (15.17), is ŷit = 5.57D1i +
9.98D2i + 14.88D3i + 5.21xit. Compute the residuals from this estimated model for id = 1 and
id = 2. What pattern do you observe in these residuals?

b. The same residual pattern occurs for id = 3. What is the correlation between the residuals for time
periods t = 1 and t = 2?

c. The “within” model is given in equation (15.12). The transformed error is ẽit =
(
eit − ei•

)
. If the

assumptions FE1–FE5 hold, then var
(
ẽit
)
= E

[(
eit − ei•

)2], where ei• =
(
ei1 + ei2

)
∕2 because

T = 2. Show that var
(
ẽit
)
= σ2

e∕2.
d. Using the same approach, as in part (c), show that cov

(
ẽi1, ẽi2

)
= E

[(
ei1 − ei•

)(
ei2 − ei•

)]
= −σ2

e∕2.
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e. Using the results in parts (c) and (d), it follows that corr
(
ẽi1, ẽi2

)
= −1. Relate this result to your

answer in (b). In fact for T > 1, and assuming FE1-FE5 hold, corr
(
ẽit, ẽis

)
= −1∕(T − 1) if t ≠ s.

We anticipate the within-transformed errors to be serially correlated.
15.11 Several software companies report fixed effects estimates with an estimated intercept. As explained

in Example 15.6, the value they report is the average of the coefficients of the indicator variables in
the least squares dummy variable model, given in equation (15.17). Using the data in Table 15.9, the
fitted dummy variable model is ŷit = 5.57D1i + 9.98D2i + 14.88D3i + 5.21xit.
a. Compute the average of the dummy variable coefficients, calling it C.
b. The fitted fixed effects model, using the device from part (a), is ŷit = C + 5.21xit. Calculate

yi•− b2x2i• for id = 1 and id = 2. For your convenience, to two decimals, y1• = 3.07, y2• = 0.34
and x1• = −0.48, x2• = −1.85. Round the calculated values to two decimals and compare them
to the dummy variable coefficients.

c. Given the fitted model ŷit = C + 5.21xit, compute the residuals for id = 1 and id = 2.
d. What is the fitted within-model equation (15.17)?
e. Calculate the within-model residuals for id = 1 and id = 2.
f. Explain the relationship between the within model residuals in part (e) and the residuals calculated

in part (c), apart from any error caused by the two decimal rounding.
15.12 Do larger universities have lower cost per student or a higher cost per student? A univer-

sity is many things and here we only focus on the effect of undergraduate full-time student
enrollment (FTESTU) on average total cost per student (ACA). Consider the regression model
ACAit = β1 + β2FTESTUit + eit where the subscripts i denote the university and t refers to the time
period, and eit is the usual random error term.
a. Using the 2010–2011 data on 141 public universities, we estimate the model above. The estimate

of β2 is b2 = 0.28. The 95% interval estimate is [0.169, 0.392]. What is the estimated effect of
increasing enrollment on average cost per student? Is there a statistically significant relationship?

b. There are many other factors affecting average cost per student besides enrollment. Some of them
can be characterized as the university “identity” or “image.” Let us denote these largely unob-
servable individual characteristics attributes as ui. If we add this feature to the model, it becomes
ACAit = β1 + β2FTESTUit + (ui + eit) = β1 + β2FTESTUit + vit. As long as vit is statistically inde-
pendent of full-time student enrollment, then the least squares estimator is BLUE. Is that true or
false? Explain your answer.

c. The combined error is vit = ui + eit. Let v̂it be the least squares residual from the regression in
(a). We then estimate a simple regression with dependent variable v̂i,2011 and explanatory variable
v̂i,2010. The estimated coefficient is 0.93 and very significant. Is this evidence in support of the
presence of unobservable individual attributes ui, or against them? Explain your logic.

d. With our 2 years of data, we can take “first differences” of the model in (b). Subtracting the model
in 2010 from the model in 2011, we have ΔACAi = β2ΔFTESTUi + Δvi, where

ΔACAi = ACAi,2011 − ACAi,2010,

ΔFTESTUi = FTESTUi,2011 − FTESTUi,2010

and Δvi = vi,2011 − vi,2010

Using the first-difference model, and given the results in (c), will there be serial correlation in the
error Δvi? Explain your reasoning.

e. Using OLS, we estimate the model in (d) and the resulting estimate of β2 is bFD = −0.574 with
standard error se(bFD) = 0.107. What now is the estimated effect of increasing enrollment on
average cost per student? Explain why the result of this regression is so different from the pooled
regression result in (a). Which set of estimates do you believe are more plausible? Why?

15.13 Consider the panel data regression in equation (15.1) for N cross-sectional units with T = 3
time-series observations. Assume that FE1–FE5 hold.
a. Apply the first-difference transformation to model (15.1). What is the resulting specification? Is

there unobserved heterogeneity in this model? Explain.
b. Let Δeit =

(
eit – ei,t−1

)
. Find the variance of Δeit for t = 2 and t = 3.
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c. Assuming that the idiosyncratic error eit is serially uncorrelated, show that the correlation between
Δei3 and Δei2 is −1/2.

d. What must the serial correlation for eit be in order for Δei3 and Δei2 to be uncorrelated?
15.14 Using the NLS panel data on N = 716 young women for years 1982, 1983, 1985, 1987, and 1988,

we are interested in the relationship between ln(WAGE) and education, experience, its square, usual
hours worked per week, and an indicator variable for black women. The equation is

ln
(
WAGEit

)
= β1 + β2EDUCi + β3EXPERit + β4EXPER2

it + β5HOURSit + β6BLACKi + ui + eit

Table 15.13 contains OLS, random effects, and Hausman–Taylor model estimates for this model and
includes conventional and cluster-robust standard errors for each. The Hausman–Taylor estimator
treats EDUC and HOURS as endogenous and correlated with the unobserved heterogeneity.

T A B L E 15.13 Estimates for Exercise 15.14

C EDUC EXPER EXPER2 HOURS BLACK

OLS 0.4509 0.0748 0.0631 −0.0012 −0.0008 −0.1347
(se) (0.0617) (0.0028) (0.0080) (0.0003) (0.0008) (0.0149)
(robust) (0.1030) (0.0055) (0.0100) (0.0004) (0.0019) (0.0290)
RE 0.6294 0.0769 0.0591 −0.0011 −0.0054 −0.1271
(se) (0.0833) (0.0055) (0.0056) (0.0002) (0.0007) (0.0298)
(robust) (0.0999) (0.0054) (0.0069) (0.0003) (0.0017) (0.0294)
HT 0.2153 0.1109 0.0583 −0.0011 −0.0063 −0.0910
(se) (0.5536) (0.0422) (0.0057) (0.0002) (0.0007) (0.0529)
(robust) (0.4897) (0.0381) (0.0075) (0.0003) (0.0018) (0.0494)

a. What is the interpretation of β2? How much difference is there among the OLS, random effects,
and Hausman–Taylor estimates of β2? Construct a 95% interval estimate for β2 using each esti-
mator and cluster-robust standard errors. What differences do you observe?

b. For the Hausman–Taylor estimator, how many instrumental variables are required? How many
instruments do we have? What are they?

c. For this model, why might we prefer the Hausman–Taylor estimator to the fixed effects estimator?
d. The fixed effects estimates of the coefficients of EXPER, EXPER2, and HOURS and their conven-

tional standard errors are 0.0584 (0.00574), −0.0011 (0.00023), and −0.0063 (0.00074), respec-
tively. Comparing these estimates to the random effects estimates, with conventional standard
errors, are we justified in worrying about endogeneity in this model?

e. By using cluster-robust standard errors for the random effects estimator, which of the assumptions
RE1–RE5 are we relaxing?

f. Using the Hausman–Taylor model, σ̂u = 0.35747 and σ̂e = 0.19384. Given these estimates, which
source of error variation is more important in this model? The variation in unobserved heterogene-
ity or the variation in the idiosyncratic error? What is the proportion of the combined variation
that is accounted for by the unobserved heterogeneity?

15.15 Using 352 observations on 44 rice farmers in the Tarlac region of the Phillipines for 8 years from 1990
to 1997, we estimated the relationship between tonnes of freshly threshed rice produced (PROD),
hectares planted (AREA), person-days of hired and family labor (LABOR), and kilograms of fertilizer
(FERT). The log–log specification of the model, including the unobserved heterogeneity term, is

ln
(
PRODit

)
= β1 + β2ln

(
AREAit

)
+ β3ln

(
LABORit

)
+ β4ln

(
FERTit

)
+ ui + eit

Table 15.14 contains various estimates of the model. Model (1) contains OLS estimates. Model (2)
contains OLS estimates of the model including year dummy variables, which are not shown, such
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as D91 = 1 for year 1991, D91 = 0 otherwise. Model (3) contains fixed effects estimates. Model (4)
contains fixed effects estimates of the model including year dummy variables. In each case, conven-
tional standard errors are reported, (se), and for Model (4), we also report cluster-robust standard
errors (robust). For each model, we report the sum of squared residuals and the number of model
parameters, apart from the intercept. The p-values are reported for the t-statistics computed using the
conventional standard errors.

T A B L E 15.14 Estimates for Exercise 15.15

Model C ln(AREA) ln(LABOR) ln(FERT) SSE K− 1

(1) OLS −1.5468∗∗∗ 0.3617∗∗∗ 0.4328∗∗∗ 0.2095∗∗∗ 40.5654 3
(se) (0.2557) (0.0640) (0.0669) (0.0383)

(2) OLS −1.5549∗∗∗ 0.3759∗∗∗ 0.4221∗∗∗ 0.2075∗∗∗ 36.2031 10
(se) (0.2524) (0.0618) (0.0663) (0.0380)

(3) FE −0.3352 0.5841∗∗∗ 0.2586∗∗∗ 0.0952∗ 27.6623 46
(se) (0.3263) (0.0802) (0.0703) (0.0432)

(4) FE −0.3122 0.6243∗∗∗ 0.2412∗∗∗ 0.0890∗ 23.0824 53
(se) (0.3107) (0.0755) (0.0682) (0.0415)

(robust) (0.5748) (0.0971) (0.0968) (0.0881)
∗p < 0.05
∗∗p < 0.01
∗∗∗p < 0.001

a. Comment on the sensitivity of the estimates of the input elasticities to the various models.
b. Which of the estimated models do you prefer? Perform a series of hypothesis tests to help you

make your decision.
c. For Model (4), find 95% interval estimates for the input elasticities using (i) conventional standard

errors and (ii) cluster-robust standard errors. Comment on any differences.
d. Calculate the p-value for the coefficient of ln(FERT) using the robust standard error.

15.5.2 Computer Exercises
15.16 The data file liquor contains observations on annual expenditure on liquor (LIQUOR) and annual

income (INCOME), (both in thousands of dollars) for 40 randomly selected households for three
consecutive years.
a. Using the data on INCOME for the first household, calculate the time average, within and dif-

ferenced observations for INCOME. What is the sum of the within-transformed observations on
INCOME for the first household?

b. Consider the panel data regression model LIQUORit = β1 + β2INCOMEit + ui + eit where
i = 1, 2,… , 40 refers to household and t = 1, 2, 3 refers to year. Obtain the OLS estimates of this
model.

c. What are the fixed effects estimates of the parameters? What is the sum of squared residuals?
Using the sum of squared residuals from the fixed effects estimates and the OLS estimation in
(b), test for the presence of individual differences using an F-test. Show how the test statistic is
computed. Using the 5% level of significance, what do we conclude?

d. Using OLS, regress LIQUOR on a constant term and 39 individual-specific indicator variables.
Save the OLS residuals and call them LIQUORW. Regress INCOME on a constant term and 39
individual-specific indicator variables. Save the residuals and call them INCOMEW. Using OLS
regress LIQOURW on INCOMEW without a constant term. What is the estimated coefficient?
What is the sum of squared errors? How does this exercise illustrate the Frisch–Waugh–Lovell
theorem discussed in Section 5.2.5?

e. Following Example 15.5, show how to correct the standard errors from the regression of
LIQOURW on INCOMEW to make them match the fixed effects standard errors.
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15.17 The data file liquor contains observations on annual expenditure on liquor (LIQUOR) and annual
income (INCOME) (both in thousands of dollars) for 40 randomly selected households for three con-
secutive years.
a. Create the first-differenced observations on LIQUOR and INCOME. Call these new variables

LIQUORD and INCOMED. Using OLS regress LIQUORD on INCOMED without a constant
term. Construct a 95% interval estimate of the coefficient.

b. Estimate the model LIQUORit = β1 + β2INCOMEit + ui + eit using random effects. Construct a
95% interval estimate of the coefficient on INCOME. How does it compare to the interval in
part (a)?

c. Test for the presence of random effects using the LM statistic in equation (15.35). Use the 5%
level of significance.

d. For each individual, compute the time averages for the variable INCOME. Call this variable
INCOMEM. Estimate the model LIQUORit = β1 + β2INCOMEit + γINCOMEMi + ci + eit using
the random effects estimator. Test the significance of the coefficient γ at the 5% level. Based on
this test, what can we conclude about the correlation between the random effect ui and INCOME?
Is it OK to use the random effects estimator for the model in (b)?

15.18 The data file mexican contains data collected in 2001 from the transactions of 754 female Mexican sex
workers. There is information on four transactions per worker.17 The labels ID and TRANS are used
to describe a particular woman and a particular transaction. There are three categories of variables.
1. Sex worker characteristics: (i) AGE, (ii) an indicator variable ATTRACTIVE equal to 1 if the worker

is attractive, and (iii) an indicator variable SCHOOL if she has completed secondary school or
higher.

2. Client characteristics: (i) an indicator variable REGULAR equal to 1 if the client is a regular,
(ii) an indicator variable RICH equal to 1 if the client is rich, and (iii) an indicator variable ALCO-
HOL if the client has consumed alcohol before the transaction.

3. Transaction characteristics: (i) the log of the price of the transaction LNPRICE, (ii) an indicator
variable NOCONDOM equal to 1 if a condom was not used, and (iii) two indicator variables for
location, BAR equal to 1 if the transaction originated in bar and STREET equal to 1 if the transaction
originated in the street.

a. Using OLS, estimate a relationship with LNPRICE as the dependent variable, and as explana-
tory variables the sex worker characteristics, client characteristics, and transaction characteristics.
Discuss the signs and significance of the estimated coefficients.

b. Gertler, Shah, and Bertozzi argue that the coefficient of NOCONDOM is a risk premium. Some
sex workers are willing to take the risk of having unprotected sex because of the extra price some
clients are willing to pay to avoid using a condom. What is your 95% interval estimate of the risk
premium based on these OLS estimates?

c. What are some factors that might be included in an unobserved heterogeneity error component in
this model? A crucial assumption for the consistency of the OLS estimator is that the unobserved
heterogeneity term is uncorrelated with the explanatory variables. Without carrying out a formal
test, what are your thoughts about this exogeneity assumption for the model in (a)?

d. Estimate the model in part (a) using the fixed effects estimator, omitting sex worker characteris-
tics. (i) Why did we omit the sex worker characteristics? and (ii) Which coefficient estimates are
significantly different from zero at a 5% level of significance?

e. Using the fixed effects estimation in (d), carry out an F-test for the presence of individual sex
worker differences. Use the 1% level of significance.

f. Using the fixed effects estimates, how is the price affected when clients are rich, are regular, and
have consumed alcohol? How does the location of the transaction influence the price?

g. What is your 95% interval estimate of the risk premium based on these fixed effects estimates?
Compare this interval estimate to the one in part (b).

15.19 This exercise uses the data and model in Exercise 15.18.
a. Estimate the model assuming random effects and with the characteristics of the sex workers

included in the model. Carry out a test of the joint significance of the sex worker characteristics
at the 5% level. Are these coefficients jointly significant? Are they individually significant?

............................................................................................................................................................
17These data are a subset of those used by Paul Gertler, Manisha Shah and Stefano Bertozzi in their study “Risky
Business: The Market for Unprotected Sex”, Journal of Political Economy, 2005, 113, 518–550.
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b. What is your 95% interval estimate of the risk premium, the coefficient on NOCONDOM, based
on these random effects estimates?

c. Test for the presence of random effects using the LM statistic in equation (15.35). Use the 5%
level of significance.

d. Based on the random effects estimates, how much extra does a client have to pay to have unpro-
tected sex with an attractive secondary-educated sex worker?

e. Using the t-test statistic in equation (15.36) and a 5% significance level, test whether there are any
significant differences between the fixed effects and random effects estimates of the coefficients
on NOCONDOM, RICH, REGULAR, ALCOHOL, BAR, and STREET . If there are significant
differences between any of the coefficients, should we rely on the fixed effects estimates or the
random effects estimates? Explain your choice.

f. Reconsider the random effects model from part (a), but assume NOCONDOM is correlated with
the random effects. Reestimate the model using the Hausman–Taylor estimator with NOCON-
DOM treated as endogenous. Compare the results with those obtained in part (b). How much
extra does a client have to pay to have unprotected sex with an attractive secondary-educated sex
worker? What is your 95% interval estimate of the risk premium, the coefficient on NOCONDOM,
based on the Hausman–Taylor estimates?

15.20 This exercise uses data from the STAR experiment introduced to illustrate fixed and random effects
for grouped data. In the STAR experiment, children were randomly assigned within schools into three
types of classes: small classes with 13–17 students, regular-sized classes with 22–25 students, and
regular-sized classes with a full-time teacher aide to assist the teacher. Student scores on achievement
tests were recorded as well as some information about the students, teachers, and schools. Data for
the kindergarten classes are contained in the data file star.
a. Estimate a regression equation (with no fixed or random effects) where READSCORE is related to

SMALL, AIDE, TCHEXPER, BOY , WHITE_ASIAN, and FREELUNCH. Discuss the results. Do
students perform better in reading when they are in small classes? Does a teacher’s aide improve
scores? Do the students of more experienced teachers score higher on reading tests? Does the
student’s sex or race make a difference?

b. Reestimate the model in part (a) with school fixed effects. Compare the results with those in
part (a). Have any of your conclusions changed? [Hint: specify SCHID as the cross-section iden-
tifier and ID as the “time” identifier.]

c. Test for the significance of the school fixed effects. Under what conditions would we expect the
inclusion of significant fixed effects to have little influence on the coefficient estimates of the
remaining variables?

d. Reestimate the model in part (a) with school random effects. Compare the results with those from
parts (a) and (b). Are there any variables in the equation that might be correlated with the school
effects? Use the LM test for the presence of random effects.

e. Using the t-test statistic in equation (15.36) and a 5% significance level, test whether there are any
significant differences between the fixed effects and random effects estimates of the coefficients
on SMALL, AIDE, TCHEXPER, WHITE_ASIAN, and FREELUNCH. What are the implications
of the test outcomes? What happens if we apply the test to the fixed and random effects estimates of
the coefficient on BOY?

f. Create school-averages of the variables and carry out the Mundlak test for correlation between
them and the unobserved heterogeneity.

15.21 This exercise uses data from the STAR experiment introduced to illustrate fixed and random effects
for grouped data. It replicates Exercise 15.20 with teachers (TCHID) being chosen as the cross section
of interest. In the STAR experiment, children were randomly assigned within schools into three
types of classes: small classes with 13–17 students, regular-sized classes with 22–25 students, and
regular-sized classes with a full-time teacher aide to assist the teacher. Student scores on achievement
tests were recorded as well as some information about the students, teachers, and schools. Data for
the kindergarten classes are contained in the data file star.
a. Estimate a regression equation (with no fixed or random effects) where READSCORE is related to

SMALL, AIDE, TCHEXPER, TCHMASTERS, BOY , WHITE_ASIAN, and FREELUNCH. Discuss
the results. Do students perform better in reading when they are in small classes? Does a teacher’s
aide improve scores? Do the students of more experienced teachers score higher on reading tests?
Does gender or race make a difference?
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b. Repeat the estimation in (a) using cluster-robust standard errors, with the cluster defined by
individual teachers, TCHID. Are the robust standard errors larger or smaller. Compare the 95%
interval estimate for the coefficient of SMALL using conventional and robust standard errors.

c. Reestimate the model in part (a) with teacher random effects and using both conventional and
cluster-robust standard errors. Compare these results with those from parts (a) and (b).

d. Are there any variables in the equation that might be correlated with the teacher effects? Recall
that teachers were randomly assigned within schools, but not across schools. Create teacher-level
averages of the variables BOY , WHITE_ASIAN, and FREELUNCH and carry out the Mundlak
test for correlation between them and the unobserved heterogeneity.

e. Suppose that we treat FREELUNCH as endogenous. Use the Hausman–Taylor estimator for this
model. Compare the results to the OLS estimates in (a) and the random effects estimates in part (d).
Do you find any substantial differences?

15.22 What is the relationship between crime and punishment? This important question has been exam-
ined by Cornwell and Trumbull18 using a panel of data from North Carolina. The cross sections are
90 counties, and the data are annual for the years 1981–1987. The data are in the data file crime. In
these models, the crime rate is explained by variables describing the deterrence effect of the legal
system, wages in the private sector (which represents returns to legal activities), socioeconomic con-
ditions such as population density and the percentage of young males in the population, and annual
dummy variables to control for time effects. The authors argue that there may be heterogeneity across
counties (unobservable county-specific characteristics).
a. What do you expect will happen to the crime rate if (i) deterrence increases, (ii) wages in the

private sector increase, (iii) population density increases, and (iv) the percentage of young males
increases?

b. Consider a model in which the log of crime rate (LCRMRTE) is a function of the log of the
probability of arrest (LPRBARR), the log of probability of conviction (LPRBCONV), the log of
the probability of a prison sentence (LPRBPRIS), the log of average prison sentence (LAVGSEN),
and the log of average weekly wage in the manufacturing sector (LWMFG). Estimate this model
by OLS. (i) Discuss the signs of the estimated coefficients and their significance. Are they as you
expected? (ii) Interpret the coefficient on LPRBARR.

c. Estimate the model in (b) using a fixed effects estimator. (i) Discuss the signs of the estimated coef-
ficients and their significance. Are they as you expected? (ii) Interpret the coefficient on LPRBARR
and compare it to the estimate in (b). What do you conclude about the deterrent effect of the prob-
ability of arrest? (iii) Interpret the coefficient on LAVGSEN. What do you conclude about the
severity of punishment as a deterrent?

d. In the fixed effects estimation from part (c), test whether the county level effects are all equal.
e. Based on these results, what public policies would you advocate to deal with crime in the

community?
15.23 Macroeconomists are interested in factors that explain economic growth. An aggregate production

function specification was studied by Duffy and Papageorgiou.19 The data are in the data file ces.
They consist of cross-sectional data on 82 countries for 28 years, 1960–1987.
a. Estimate a Cobb–Douglas production function

LYit = β1 + β2LKit + β3LLit + eit

where LY is the log of GDP, LK is the log of capital, and LL is the log of labor. Interpret the
coefficients on LK and LL. Test the hypothesis that there are constant returns to scale, β2 + β3 = 1.

b. Add a time trend variable t = 1, 2,… , 28, to the specification in (a). Interpret the coefficient of this
variable. Test its significance at the 5% level. What effect does this addition have on the estimates
of β2 and β3?

c. Assume β2 + β3 = 1. Solve for β3 and substitute this expression into the model in (b). Show that
the resulting model is LYLit = β1 + β2LKLit + λt + eit where LYL is the log of the output–labor
ratio, and LKL is the log of the capital–labor ratio. Estimate this restricted, constant returns to

............................................................................................................................................................
18“Estimating the Economic Model of Crime with Panel Data,” Review of Economics and Statistics, 1994, 76, 360–366.
19“A Cross-Country Empirical Investigation of the Aggregate Production Function Specification,” Journal of Economic
Growth, 2000, 5, 83–116.
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scale, version of the Cobb–Douglas production function. Compare the estimate of β2 from this
specification to that in part (b).

d. Estimate the model in (b) using a fixed effects estimator. Test the hypothesis that there are no
cross-country differences. Compare the estimates to those in part (b).

e. Using the results in (d), test the hypothesis that β2 + β3 = 1. What do you conclude about constant
returns to scale?

f. Estimate the restricted version of the Cobb–Douglas model in (c) using the fixed effects estimator.
Compare the results to those in part (c). Which specification do you prefer? Explain your choice.

g. Using the specification in (b), replace the time trend variable t with dummy variables D2–D28.
What is the effect of using this dummy variable specification rather than the single time trend
variable?

15.24 This exercise illustrates the transformation that is necessary to produce GLS estimates for the random
effects model. It utilizes the data on investment (INV), value (V) and capital (K) in the data file
grunfeld11. The model is

INVit = β1 + β2Vit + β3Kit + ui + eit

We assume the random effects assumptions RE1–RE5 hold.
a. Find fixed effects estimates of β2 and β3. Check that the variance estimate that you obtain is

σ̂2
e = 2530.042.

b. Compute the sample means INVi, Vi, and Ki for each of the 11 firms. [Hint: one way to do this to
regress each of the variables (INV , then V , then K) on 11 indicator variables, 1 for each firm, and
in each case save the predictions.]

c. Estimate β1, β2, and β3 from the between regression

INVi = β1 + β2Vi + β3Ki + ui + ei •

Check that the variance estimate for σ2
∗ = var

(
ui + ei •

)
is σ̂2

∗ = 6328.554. [Hint: use the pre-
dictions obtained in (b) to run the regression. If you do so, you will be using each of the N
observations repeated T times. The coefficient estimates will be unaffected, but the sum of squared
errors will be T = 20 times bigger than it should be, and the divisor used to estimate the error
variance will be NT − K instead of N − K. You will need to make adjustments accordingly.]

d. Show that

α̂ = 1 −

√√√√ σ̂2
e

Tσ̂2
∗

= 0.85862

e. Apply least squares to the regression model

INV∗
it = β1x∗1 + β2V∗

it + β3K∗
it + v∗it

where the transformed variables are given by INV∗
it = INVit − α̂ INVi, x∗1 = 1 − α̂, V∗

it = Vit − α̂Vi,
and K∗

it = Kit − α̂Ki.
f. Use your software to obtain random effects estimates of the original equation. Compare those

estimates with those you obtained in part (e).
15.25 Consider the production relationship on Chinese firms used in several chapter examples. We now add

another input, MATERIALS. Use the data set from the data file chemical3 for this exercise. (The data
file chemical includes many more firms.)

ln
(
SALESit

)
= β1 + β2ln

(
CAPITALit

)
+ β3ln

(
LABORit

)
+ β4ln

(
MATERIALSit

)
+ ui + eit

a. Estimate this model using OLS. Compute conventional, heteroskedasticity robust, and
cluster-robust standard errors. Using each type of standard error construct a 95% interval
estimate for the elasticity of SALES with respect to MATERIALS. What do you observe about
these intervals?

b. Using each type of standard error in part (a), test at the 5% level the null hypothesis of con-
stant returns to scale, β2 + β3 + β4 = 1 versus the alternative β2 + β3 + β4 ≠ 1. Are the results
consistent?
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c. Use the OLS residuals from (a) and carry out the N × R2 test from Chapter 9 to test for AR(1)
serial correlation in the errors using the 2005 and 2006 data. Is there evidence of serial correlation?
What factors might be causing it?

d. Estimate the model using random effects. How do these estimates compare to the OLS estimates?
Test the null hypothesis β2 + β3 + β4 = 1 versus the alternative β2 + β3 + β4 ≠ 1. What do you
conclude. Is there evidence of unobserved heterogeneity? Carry out the LM test for the presence
of random effects at the 5% level of signficance.

e. Estimate the model using fixed effects. How do the estimates compare to those in (d)? Use the
Hausman test for the significance of the difference in the coefficients. Is there evidence that the
unobserved heterogeneity is correlated with one or more of the explanatory variables? Explain.

f. Obtain the fixed effects residuals, ẽit. Using OLS with cluster-robust standard errors estimate
the regression ẽit = ρẽi,t−1 + rit, where rit is a random error. As noted in Exercise 15.10, if the
idiosyncratic errors eit are uncorrelated we expect ρ = −1∕2. Rejecting this hypothesis implies
that idiosyncratic errors eit are serially correlated. Using the 5% level of significance, what do
you conclude?

g. Estimate the model by fixed effects using cluster-robust standard errors. How different are these
standard errors from the conventional ones in part (e)?

15.26 The data file collegecost contains data on cost per student and related factors at four-year colleges in
the U.S., covering the period 1987 to 2011. In this exercise, we explore a minimalist model predicting
cost per student. Specify the model to be

ln
(
TCit

)
= β1 + β2FTESTUit + β3FTGRADit + β4TTit + β5GAit + β6CFit +

8∑
t=2
δtDt + ui + eit

where TC is the total cost per student, FTESTU is number of full-time equivalent students, FTGRAD
is number of full-time graduate students, TT is number of tenure track faculty per 100 students,
GA is number of graduate assistants per 100 students, and CF is the number of contract faculty per
100 students, which are hired on a year to year basis. The Dt are indicator variables for the years 1989,
1991, 1999, 2005, 2008, 2010, and 2011. The base year is 1987. Only use data on public universities
in this exercise.
a. Calculate the summary statistics for the model variables for the years 1987 and 2011. What do

you observe about the sample averages of these variables?
b. Estimate the model by random effects. Discuss the signs and significance of the estimated coef-

ficients. What is the predicted percentage cost per student change if one additional tenure track
faculty is hired, per 100 students? What does the estimated value of δ8 suggest?

c. Using the random effects estimates, test the following hypotheses at the 5% level: (i)
H0∶β2 ≥ β3, H1∶β2 < β3; (ii) H0∶β4 ≤ β6, H1∶β4 > β6; and (iii) H0∶β5 ≥ β6, H1∶β5 < β6.
What do these tests imply about the relative costs of undergraduate students versus graduate
students, tenure track faculty relative to contract faculty, and contract faculty relative to graduate
assistants?

d. Calculate the time averages of the explanatory variables other than the indicator variables, for
example, FTESTUi•. Add these variables to the model and test their joint significance at the 1%
level. What does the test result tell us about using the random effects estimator in this case? Which
assumption is being tested?

e. Obtain the fixed effects estimates of the model. Discuss the signs and significance of the estimated
coefficients. What is the predicted percentage cost per student change if one additional tenure track
faculty is hired, per 100 students? What does the estimated value of δ8 suggest? How do these
estimates compare to the random effects estimates?

f. Using the fixed effects estimates, test the following hypotheses at the 5% level: (i) H0∶β2 ≥ β3,
H1∶β2 < β3; (ii) H0∶β4 ≤ β6, H1∶β4 > β6; and (iii) H0∶β5 ≥ β6, H1∶β5 < β6. What do these
tests imply about the relative costs of undergraduate students versus graduate students, tenure
track faculty relative to contract faculty, and contract faculty relative to graduate assistants?

15.27 The data file collegecost contains data on cost per student and related factors at four-year colleges
in the U.S., covering the period from 1987 to 2011. In this exercise, we explore a minimalist model
predicting cost per student. Specify the model to be

ln
(
TCit

)
= β1 + β2FTESTUit + β3FTGRADit + β4TTit + β5GAit + β6CFit +

8∑
t=2
δtDt + ui + eit
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where TC is the total cost per student, FTESTU is number of full-time equivalent students, FTGRAD
is number of full-time graduate students, TT is number of tenure track faculty per 100 students, GA
is number of graduate assistants per 100 students, and CF is the number of contract faculty per
100 students, which are hired on a year to year basis. The Dt are indicator variables for the years
1989, 1991, 1999, 2005, 2008, 2010, and 2011. The base year is 1987.
a. Calculate the summary statistics for the model variables for the years 1987 and 2011 separately for

public and private universities. What do you observe about the sample averages of these variables?
In particular, what is the increase in TC between 1987 and 2011 for each type of university. What
has happened to the number of tenure track faculty and the number of contract faculty?

b. Using OLS, estimate the model for public universities using conventional and cluster-robust stan-
dard errors. Are the standard errors noticeably different?

c. Using OLS, estimate the model for private universities using conventional and cluster-robust stan-
dard errors. Are the standard errors noticeably different? How do the coefficient estimates for the
private universities compare to those for the public universities?

d. Estimate the model using fixed effects with cluster-robust standard errors for the public univer-
sities. How do these estimates compare to the OLS estimates in (b)? What are the important
differences?

e. Estimate the model using fixed effects with cluster-robust standard errors for the private universi-
ties. How do these estimates compare to the estimates for the public universities in part (d)? What
are the important differences?

15.28 The data file collegecost contains data on cost per student and related factors at four-year colleges in
the U.S., covering the period 1987 to 2011. In this exercise, we explore a minimalist model predicting
cost per student. Specify the model to be

ln
(
TCit

)
= β1 + β2FTESTUit + β3FTGRADit + β4TTit + β5GAit + β6CFit +

8∑
t=2
δtDt + ui + eit

where TC is the total cost per student, FTESTU is number of full-time equivalent students, FTGRAD
is number of full-time graduate students, TT is number of tenure track faculty per 100 students, GA
is number of graduate assistants per 100 students, and CF is the number of contract faculty, which
are hired on a year to year basis. The Dt are indicator variables for the years 1989, 1991, 1999, 2005,
2008, 2010, and 2011. The base year is 1987. Use data only on public universities for this question.
a. Create first differences of the variables. Using the 2011 data, estimate by OLS the first-difference

model

Δln
(
TCit

)
= β2ΔFTESTUit + β3ΔFTGRADit + β4ΔTTit + β5ΔGAit + β6ΔCFit + Δeit

b. Repeat the estimation in (a) adding an intercept term. What is the interpretation of the constant?
c. Repeat the estimation in (a) adding an intercept plus the 2011 observations on the variables

FTESTU, FTGRAD, TT , GA, and CF. If the assumption of strict exogeneity holds none of the
coefficients on these variables should be significant, and they should be jointly insignificant as
well. What do you conclude? Why is this assumption important for the estimation of panel data
regression models?

d. Create the one period future, or forward, value for each variable, xt+1. That is, for example, in
year t create a new variable FTESTUi,t+1. Using data from 2008 and 2010, estimate the panel data
regression model by fixed effects, including the forward values of FTESTU, FTGRAD, TT , GA,
and CF. If the assumption of strict exogeneity holds none of the coefficients on these variables
should be significant, and they should be jointly insignificant as well. What do you conclude?

15.29 In this exercise, we re-examine the data in Exercise 15.22, a panel of data from North Carolina. Con-
sider a model in which the log of crime rate (LCRMRTE) is a function of the log of police per capita
(LPOLPC), the log of the probability of arrest (LPRBARR), the log of the probability of conviction
(LPRBCONV), the log of average prison sentence (LAVGSEN), and the log of average weekly wage
in the manufacturing sector (LWMFG) and indicator variables for the western region (WEST) and
urban counties (URBAN).
a. It is possible that the crime rate and police per capita are jointly determined and that LPOLPC

might be endogenous. Hence we consider estimating the model by 2SLS. As instruments we use
the log of tax revenue per capita (LTAXPC) and the log of the ratio of face-to-face crimes relative
to other types of crimes (LMIX). Estimate the first-stage regression of LPOLPC on the other
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variables, except LCRMRTE, and the two instruments. Test the joint significance of the IV. Can
we reject the null hypothesis that the IV are weak?

b. Using the instruments in (a), estimate the model by 2SLS. Are the deterrence variables significant?
c. Test for the endogeneity of LPOLPC and test the validity of the surplus instrument. What do you

conclude in each case?
d. The estimation in (b) ignores unobserved county heterogeneity. For each variable, except the

time-invariant variables WEST and URBAN, obtain the variables in the deviation about the county
mean form, that is, apply the within transformation to each variable. Estimate the first-stage model
with the variables in deviation from the mean form. Test the joint significance of the two trans-
formed instruments.

e. Using the transformed instruments and other variables, estimate the model by 2SLS. What differ-
ences do you observe between these estimates and those in part (b)? Recall that you must adjust the
standard errors for the correct degrees of freedom, as in Example 15.5. (Note: You may investigate
whether your software has an automatic command to do 2SLS with panel data as a check.)

f. Using the transformed instruments and other variables, test for the endogeneity of LPOLPC and
test the validity of the surplus instrument. What do you conclude in each case?

15.30 In this exercise, we extend Exercise 15.29 by also considering the possibility that the probability of
arrest is jointly determined with the crime rate and the number of police per capita. The idea is that
when the crime rate is high, the police may intensify their efforts to reduce crime by increasing the
arrest rate. Consider the same model as in Exercise 15.29.
a. It is possible that the crime rate and police per capita are jointly determined and that LPOLPC and

LPRBARR might be endogenous. Hence we consider estimating the model by 2SLS. As instru-
ments we use the log of tax revenue per capita (LTAXPC) and the log of the ratio of face-to-face
crimes relative to other types of crimes (LMIX). Estimate the first-stage regression of LPOLPC
on the other variables, except LCRMRTE, and the two instruments. Test the joint significance of
the IV. Can we reject the null hypothesis that the IV are weak? Estimate the first-stage regression
of LPRBARR on the other variables, except LCRMRTE, and the two instruments. Test the joint
significance of the IV. Can we reject the null hypothesis that the IV are weak?

b. Using the instruments in (a), estimate the model, treating both LPOLPC and LPRBARR as endoge-
nous, by 2SLS. Are the deterrence variables significant?

c. Test for the endogeneity of LPOLPC and LPRBARR using the regression-based Hausman test.
What do you conclude in each case?

d. The estimation in (b) ignores unobserved county heterogeneity. For each variable, except the
time-invariant variables WEST and URBAN, obtain the variables in the deviation about the county
mean form, that is, apply the within transformation to each variable. Estimate the first-stage model
for both LPOLPC and LPRBARR with the variables in deviation from the mean form. Test the
joint significance of the two transformed instruments.

e. Using the transformed instruments and other variables, estimate the model, treating both LPOLPC
and LPRBARR as endogenous, by 2SLS. What differences do you observe between these estimates
and those in part (b)? Recall that you must adjust the standard errors for the correct degrees of
freedom, as in Example 15.5. (Note: You may investigate whether your software has an automatic
command to do 2SLS with panel data as a check.)

f. Test for the endogeneity of LPOLPC and LPRBARR using the regression-based Hausman test.
What do you conclude in each case?

Appendix 15A Cluster-Robust Standard Errors:
Some Details
To appreciate the nature of cluster-robust standard errors, we return momentarily to a simple
regression model for cross-sectional data

yi = β1 + β2xi + ei
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Using the result b2 = β2 +
∑N

i=1wiei, where wi =
(
xi − x

)/∑N
i=1
(
xi − x

)2, in Appendix 8A, we
showed that the variance of the least squares estimator b2, in the presence of heteroskedasticity,
is given by

var
(
b2|x

)
= var

(
N∑

i=1
wiei

||x
)

=
N∑

i=1
w2

i var
(
ei|x

)
+

N∑
i=1

N∑
j=i+1

2wiwjcov
(
ei, ej|x

)

=
N∑

i=1
w2

i var
(
ei|x

)
=

N∑
i=1

w2
i σ

2
i

Because we are assuming a random sample of cross-sectional individuals, cov
(
ei, ej|!

)
= 0 for

i ≠ j, leading to the simplification in the second line of the above equation.
Now suppose we have a panel simple regression model

yit = β1 + β2xit + eit (15A.1)

with the assumptions cov
(
eit, eis|!

)
= ψits and cov

(
eit, ejs|!

)
= 0 for i ≠ j. In equation (15.29) we

denoted var
(
vit
)
= σ2

u + σ
2
it = ψ

2
it. In this appendix we use an alternative notation, to simplify the

double summations. Let var
(
vit
)
= ψitt = cov

(
vit, vit

)
. The pooled least squares estimator for β2

is given by

b2 = β2 +
N∑

i=1

T∑
t=1

witeit (15A.2)

where

wit =
xit − x

N∑
i=1

T∑
t=1

(
xit − x

)2

with x = ∑N
i=1

∑T
t=1 xit

/
NT . The variance of the pooled least squares estimator b2 is given by

var
(
b2|x

)
= var

(
N∑

i=1

T∑
t=1

witeit
||x
)

= var
(

N∑
i=1

gi
||x
)

(15A.3)

where gi =
∑T

t=1witeit is a weighted sum of the errors for individual i. Because we have a random
sample, the errors for different individuals are uncorrelated, implying that gi is uncorrelated with
gj for i ≠ j. Thus,

var
(
b2|x

)
= var

(
N∑

i=1
gi
||x
)

=
N∑

i=1
var

(
gi|x

)
+

N∑
i=1

N∑
j=i+1

2cov
(
gi, gj|x

)
=

N∑
i=1

var
(
gi|x

)
(15A.4)

To find var
(
gi|!

)
suppose for the moment that T = 2, then

var
(
gi|x

)
= var

(
2∑

t=1
witeit

||x
)

= w2
i1var

(
ei1|x

)
+ w2

i2var
(
ei2|x

)
+ 2wi1wi2cov

(
ei1, ei2|x

)

= w2
i1ψi11 + w2

i2ψi22 + 2wi1wi2ψi12

=
2∑

t=1

2∑
s=1

witwisψits
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For T > 2, var
(
gi|x

)
= ∑T

t=1
∑T

s=1witwisψits. Substituting this expression into (15A.4), we have

var
(
b2|x

)
=

N∑
i=1

T∑
t=1

T∑
s=1

witwisψits

=

N∑
i=1

T∑
t=1

T∑
s=1

(
xit − x

)(
xis − x

)
ψits

(
N∑

i=1

T∑
t=1

(
xit − x

)2
)2

(15A.5)

Recall that cov
(
eit, eis|!

)
= E

(
eiteis|!

)
= ψits. A cluster-robust variance estimate is obtained

from (15A.5) by replacing ψits with êitêis. Thus, a cluster-robust standard error for b2 is given by
the square root of

var
⋀(

b2|x
)
=

N∑
i=1

T∑
t=1

T∑
s=1

(
xit − x

)(
xis − x

)
êitêis

(
N∑

i=1

T∑
t=1

(
xit − x

)2
)2 (15A.6)

The above description of how cluster-robust standard errors are calculated and the logic behind
them was done in terms of a model with just one explanatory variable. To describe the robust
variance estimator for models with more than one explanatory variable, matrix algebra is required,
but the principle is the same.

Finally, you will find that the cluster-robust standard errors produced by most software pack-
ages apply a degrees of freedom correction to the expression in (15A.6). Unfortunately, they do
not all use the same correction factor. When using a cluster-robust standard error, the effective
number of observations is G, the number of clusters.20

Appendix 15B Estimation of Error Components
The RE model is

yit = β1 + β2x2it + α1w1i +
(
ui + eit

)
(15B.1)

where ui is the individual-specific error and eit is the usual regression error. We will discuss the
case for a balanced panel, with T time-series observations for each of N individuals. To implement
GLS estimation we need to consistently estimate σ2

u, the variance of the individual-specific error
component, and σ2

e , the variance of the regression error.
The regression error variance σ2

e comes from the fixed effects estimator. In (15.14), we trans-
form the panel data regression into “deviation about the individual mean” form

yit − yi = β2
(
x2it − x2i

)
+
(
eit − ei

)
(15B.2)

The least squares estimator of this equation yields the same estimates and sum of squared errors
(denoted here by SSEDV) as least squares applied to a model that includes a dummy variable for
each individual in the sample. A consistent estimator of σ2

e is obtained by dividing SSEDV by the

............................................................................................................................................
20See Carter, et al. “Asymptotic Behavior of a t-Test Robust to Cluster Heterogeneity,” The Review of Economics and
Statistics, 2017, 99(4), 698–709.
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appropriate degrees of freedom, which is NT – N − KS, where KS is the number of parameters
that are present in the transformed model (15B.2)

σ̂2
e =

SSEDV
NT − N − KS

(15B.3)

The estimator of σ2
u requires a bit more work. We begin with the time-averaged observations

in (15.13)
yi = β1 + β2x2i + α1w1i + ui + ei, i = 1, 2,… ,N (15B.4)

The least squares estimator of (15B.4) is called the between estimator, as it uses variation
between individuals as a basis for estimating the regression parameters. This estimator is unbi-
ased and consistent, but not minimum variance under the error assumptions of the random effects
model. The error term in this model is ui + ei; it is uncorrelated across individuals, and has
homoskedastic variance

var
(
ui + ei

)
= var

(
ui
)
+ var

(
ei
)
= var

(
ui
)
+ var

(
T∑

t=1
eit∕T

)

= σ2
u +

1
T2 var

(
T∑

t=1
eit

)
= σ2

u +
Tσ2

e

T2

= σ2
u +

σ2
e

T
(15B.5)

We can estimate the variance in (15B.5) by estimating the between regression in (15B.4), and
dividing the sum of squared errors, SSEBE, by the degrees of freedom N − KBE, where KBE is the
total number of parameters in the between regression, including the intercept parameter. Then

σ2
u +

σ2
e

T

⋀

=
SSEBE

N − KBE
(15B.6)

With this estimate in hand, we can estimate σ2
u as

σ̂2
u = σ2

u +
σ2

e
T

⋀

−
σ̂2

e
T

=
SSEBE

N − KBE
−

SSEDV

T
(
NT − N − KS

) (15B.7)

We have obtained the estimates of σ2
u and σ2

e using what is called the Swamy–Arora method. This
method is implemented in software packages and is well established. We note, however, that it is
possible in finite samples to obtain an estimate σ̂2

u in (15B.7) that is negative, which is obviously
infeasible. If this should happen, one option is simply to set σ̂2

u = 0, which implies that there are no
random effects. Alternatively, your software may offer other options for estimating the variance
components, which you might try.
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