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CHAPTER 13

Vector Error
Correction and Vector
Autoregressive Models

L E A R N I N G O B J E C T I V E S

Based on the material in this chapter, you should be able to do the following:

1. Explain why economic variables are dynamically
interdependent.

2. Explain the VEC model.

3. Explain the importance of error correction.

4. Explain the VAR model.

5. Explain the relationship between a VEC model
and a VAR model.

6. Explain how to estimate the VEC and VAR
models for the bivariate case.

7. Explain how to generate impulse response
functions and variance decompositions for the
simple case when the variables are not
contemporaneously interdependent and the
shocks are not correlated.

K E Y W O R D S
dynamic relationships
error correction
forecast error variance decomposition

identification problem
impulse response functions

VAR model
VEC model

In Chapter 12, we studied the time-series properties of data and cointegrating relationships
between pairs of nonstationary series. In those examples, we assumed that one of the variables
was the dependent variable

(
let us call it yt

)
and that the other was the independent variable(

say xt
)
, and we treated the relationship between yt and xt like a regression model. However, a

priori, unless we have good reasons not to, we could just as easily have assumed that yt is the
independent variable and xt is the dependent variable. Put simply, we are working with two
variables

{
yt, xt

}
and the two possible regression models relating them are

yt = β10 + β11xt + ey
t , ey

t ∼ N
(

0, σ2
y

)
(13.1a)

xt = β20 + β21yt + ex
t , ex

t ∼ N
(

0, σ2
x

)
(13.1b)
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In this bivariate (two series) system, there can be only one unique relationship between xt and
yt, and so it must be the case that β21 = 1∕β11 and β20 = −β10∕β11. A bit of terminology: for
(13.1a), we say that we have normalized on y (meaning that the coefficient in front of y is set
to 1), whereas for (13.1b), we say that we have normalized on x (meaning that the coefficient in
front of x is set to 1).

Is it better to write the relationship as (13.1a) or (13.1b), or is it better to recognize that in
many relationships, variables like y and x are simultaneously determined? The aim of this chapter
is to explore the causal relationship between pairs of time-series variables. In doing so, we shall
be extending our study of time-series data to take account of their dynamic properties and interac-
tions. In particular, we will discuss the vector error correction (VEC) and vector autoregressive
(VAR) models. We will learn how to estimate a VEC model when there is cointegration between
I(1) variables, and how to estimate a VAR model when there is no cointegration. Note that this
is an extension of the single-equation models examined in Chapter 12.

Some important terminology emerges here. Univariate analysis examines a single data series.
Bivariate analysis examines a pair of series. The term vector indicates that we are considering a
number of series: two, three, or more. The term “vector” is a generalization of the univariate and
bivariate cases.

13.1 VEC and VAR Models
Let us begin with two time-series variables yt and xt and generalize the discussion about dynamic
relationships in Chapter 9 to yield a system of equations:

yt = β10 + β11yt−1 + β12xt−1 + vy
t

xt = β20 + β21yt−1 + β22xt−1 + vx
t (13.2)

The equation (13.2) describes a system in which each variable is a function of its own lag and the
lag of the other variable in the system. In this case, the system contains two variables y and x. In
the first equation yt is a function of its own lag yt−1 and the lag of the other variable in the system
xt−1. In the second equation xt is a function of its own lag xt−1 and the lag of the other variable
in the system yt−1. Together the equations constitute a system known as a VAR. In this example,
since the maximum lag is of order 1, we have a VAR(1).

If y and x are stationary I(0) variables, the above system can be estimated using least squares
applied to each equation. If, however, y and x are nonstationary I(1) and not cointegrated, then as
discussed in Chapter 12, we work with the first differences. In this case, the VAR model is

Δyt = β11Δyt−1 + β12Δxt−1 + vΔy
t

Δxt = β21Δyt−1 + β22Δxt−1 + vΔx
t (13.3)

All variables are now I(0), and the system can again be estimated by least squares. To recap, the
VAR model is a general framework to describe the dynamic interrelationship between stationary
variables. Thus, if y and x are stationary I(0) variables, the system in (13.2) is used. On the other
hand, if y and x are I(1) variables but are not cointegrated, we examine the interrelation between
them using a VAR framework in first differences (13.3).

If y and x are I(1) and cointegrated, then we need to modify the system of equations to allow
for the cointegrating relationship between the I(1) variables. We do this for two reasons. First, as
economists, we like to retain and use valuable information about the cointegrating relationship,
and second, as econometricians, we like to ensure that we use the best technique that takes into
account the properties of the time-series data. Recall the chapter on simultaneous equations—the
cointegrating equation is one way of introducing simultaneous interactions without requiring
the data to be stationary. Introducing the cointegrating relationship leads to a model known as
the VEC model. We turn now to this model.
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Consider two nonstationary variables yt and xt that are integrated of order 1: yt ∼ I(1) and
xt ∼ I(1) and which we have shown to be cointegrated, so that

yt = β0 + β1xt + et (13.4)
and êt ∼ I(0) where êt are the estimated residuals. Note that we could have chosen to normalize
on x. Whether we normalize on y or x is often determined from economic theory; the critical point
is that there can be at most one fundamental relationship between the two variables.

The VEC model is a special form of the VAR for I(1) variables that are cointegrated.
The VEC model is

Δyt = α10 + α11
(
yt−1 − β0 − β1xt−1

)
+ vy

t

Δxt = α20 + α21
(
yt−1 − β0 − β1xt−1

)
+ vx

t (13.5a)
which we can expand as

yt = α10 +
(
α11 + 1

)
yt−1 −α11β0 −α11β1xt−1 + vy

t

xt = α20 + α21yt−1 −α21β0 −
(
α21β1 − 1

)
xt−1 + vx

t (13.5b)
Comparing (13.5b) with (13.2) shows the VEC as a VAR where the I(1) variable yt is related to
other lagged variables

(
yt−1 and xt−1

)
and where the I(1) variable xt is also related to the other

lagged variables
(
yt−1 and xt−1

)
. Note, however, that the two equations contain the common

cointegrating relationship.
The coefficients α11, α21 are known as error correction coefficients, so named because they

show how much Δyt and Δxt respond to the cointegrating error yt−1 – β0 – β1xt−1 = et−1. The
idea that the error leads to a correction comes about because of the conditions put on α11, α21
to ensure stability, namely

(
−1 < α11 ≤ 0

)
and

(
0 ≤ α21 < 1

)
. To appreciate this idea, consider

a positive error et−1 > 0 that occurred because yt−1 >
(
β0 + β1xt−1

)
. A negative error correction

coefficient in the first equation
(
α11

)
ensures that Δy falls, while the positive error correction

coefficient in the second equation
(
α21

)
ensures that Δx rises, thereby correcting the error. Hav-

ing the error correction coefficients less than 1 in absolute value ensures that the system is not
explosive. Note that the VEC is a generalization of the error-correction (single-equation) model
discussed in Chapter 12. In the VEC (system) model, both yt and xt “error-correct.”

The error correction model has become an extremely popular model because its interpretation
is intuitively appealing. Think about two nonstationary variables, say consumption (let us call it yt)
and income (let us call it xt), that we expect to be related (cointegrated). Now think about a change
in your income Δxt, say a pay raise! Consumption will most likely increase, but it may take you
a while to change your consumption pattern in response to a change in your pay. The VEC model
allows us to examine how much consumption will change in response to a change in the explana-
tory variable

(
the cointegration part, yt = β0 + β1xt + et

)
, as well as the speed of the change

(the error correction part, Δyt = α10 + α11
(
et−1

)
+ vy

t where et−1 is the cointegrating error).
There is one final point to discuss—the role of the intercept terms. Thus far, we have intro-

duced an intercept term in the cointegrating equation (β0) as well as in the VEC
(
α10 and α20

)
.

However, doing so can create a problem. To see why, we collect all the intercept terms and rewrite
(13.5b) as

yt =
(
α10 −α11β0

)
+
(
α11 + 1

)
yt−1 −α11β1xt−1 + vy

t

xt =
(
α20 −α21β0

)
+ α21yt−1 −

(
α21β1 − 1

)
xt−1 + vx

t (13.5c)
If we estimate each equation by least squares, we obtain estimates of composite terms(
α10 −α11β0

)
and

(
α20 – α21β0

)
, and we are not able to disentangle the separate effects of β0, α10,

and α20. In the next section, we discuss a simple two-step least squares procedure that gets
around this problem. However, the lesson here is to check whether, and where, an intercept term
is needed.
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13.2 Estimating a Vector Error Correction Model
There are many econometric methods to estimate the error correction model. Nonlinear (sys-
tem) least squares is one method, but the most straightforward method is to use a two-step least
squares procedure. First, use OLS to estimate the cointegrating relationship yt = β0 + β1xt + et
and generate the lagged residuals êt−1 = yt−1 − b0 − b1xt−1.

Second, use OLS to estimate the equations:
Δyt = α10 + α11êt−1 + vy

t (13.6a)
Δxt = α20 + α21êt−1 + vx

t (13.6b)

Note that all the variables in (13.6) (Δy, Δx, and ê) are stationary (recall that for y and x to be
cointegrated, the residuals ê must be stationary). Hence, the standard regression analysis studied
in earlier chapters may be used to test the significance of the parameters. The usual residual
diagnostic tests may be applied.

We need to be careful here about how we combine stationary and nonstationary variables in a
regression model. Cointegration is about the relationship between I(1) variables. The cointegrat-
ing equation does not contain I(0) variables. The corresponding VEC model, however, relates the
change in an I(1) variable (the I(0) variables Δy and Δx) to other I(0) variables, namely, the coin-
tegration residuals êt−1; if required, other stationary variables may be added. In other words, we
should not mix stationary and nonstationary variables: an I(0) dependent variable on the left-hand
side of a regression equation should be “explained” by other I(0) variables on the right-hand side
and an I(1) dependent variable on the left-hand side of a regression equation should be explained
by other I(1) variables on the right-hand side.

E X A M P L E 13.1 VEC Model for GDP

In Figure 13.1 the quarterly real gross domestic product
(GDP) of a small economy (Australia) and a large economy
(United States) for the sample period 1970Q1 to 2000Q4
are displayed. Note that the series have been scaled so that
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FIGURE 13.1 Real gross domestic product (GDP = 100
in 2000).

both economies show a real GDP value of 100 in 2000. They
appear in the data file gdp. It appears from the figure that both
series are nonstationary and possibly cointegrated.

Formal unit root tests of the series confirm that they are
indeed nonstationary. To check for cointegration we obtain
the fitted equation in (13.7) (the intercept term is omitted
because it has no economic meaning):

Ât = 0.985Ut, (13.7)

where A denotes real GDP for Australia and U denotes real
GDP for the United States. Note that we have normalized on
A because it makes more sense to think of a small economy
responding to a large economy. The residuals derived from
the cointegrating relationship êt = At − 0.985Ut are shown in
Figure 13.2. Their first-order autocorrelation is 0.870, and a
visual inspection of the time series suggests that the residuals
may be stationary.

A formal unit root test is performed, and the estimated
unit root test equation is

Δet

⋀

= −0.128êt−1
(tau) (−2.889) (13.8)
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Since the cointegrating relationship does not contain
an intercept term [see Chapter 12, (12.29a)], the 5% critical
value is −2.76. The unit root t-value of −2.889 is less
than −2.76. We reject the null of no cointegration and we
conclude that the two real GDP series are cointegrated. This
result implies that economic activity in the small economy
(Australia, At) is linked to economic activity in the large
economy (United States, Ut). If Ut were to increase by
one unit, At would increase by 0.985. But the Australian
economy may not respond fully by this amount within the
quarter. To ascertain how much it will respond within a
quarter, we estimate the error correction model by least
squares. The estimated VEC model for

{
At,Ut

}
is

ΔAt

⋀

= 0.492 − 0.099êt−1

(t) (−2.077)

ΔUt

⋀

= 0.510 + 0.030êt−1

(t) (0.789) (13.9)
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FIGURE 13.2 Residuals derived from the cointegrating relationship.

The results show that both error correction coefficients
are of the appropriate sign. The negative error correction
coefficient in the first equation (−0.099) indicates that ΔA
falls (i.e., At falls or ΔAt is negative), while the positive
error correction coefficient in the second equation (0.030)
indicates that ΔU rises (i.e., Ut rises or ΔUt is positive),
when there is a positive cointegrating error

(
êt−1 > 0 or

At−1 > 0.985Ut−1
)
. This behavior (negative change in A and

positive change in U) “corrects” the cointegrating error. The
error correction coefficient (−0.099) is significant at the 5%
level; it indicates that the quarterly adjustment of At will be
about 10% of the deviation of At−1 from its cointegrating
value 0.985Ut−1. This is a slow rate of adjustment. However,
the error correction coefficient in the second equation
(0.030) is insignificant; it suggests that ΔU does not react to
the cointegrating error. This outcome is consistent with the
view that the small economy is likely to react to economic
conditions in the large economy, but not vice versa.

13.3 Estimating a VAR Model
The VEC is a multivariate dynamic model that incorporates a cointegrating equation. It is
relevant when, for the bivariate case, we have two variables, say y and x, that are both I(1), but
are cointegrated. Now we ask: What should we do if we are interested in the interdependen-
cies between y and x, but they are not cointegrated? In this case, we estimate a VAR model
as shown in (13.3).
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E X A M P L E 13.2 VAR Model for Consumption and Income

Consider Figure 13.3 that shows the log of real personal dis-
posable income (RPDI) (denoted as Y) and the log of real
personal consumption expenditure (RPCE) (denoted as C) for
the U.S. economy over the period 1986Q1 to 2015Q2. Both
series appear to be nonstationary, but are they cointegrated?
The quarterly data are stored in the data file fred5 .

The Dickey–Fuller test values for unit roots for C were
−0.88 when an intercept only was included and −1.63 when
both an intercept and trend term were included. In both cases,
there were three augmentation terms. The corresponding
values for Y were −1.65 and −0.43. In these cases, one
augmentation term was sufficient. The 10% critical values
from Table 12.2 are −2.57 without a trend and −3.13 with
a trend. Since the test values are greater than the critical
values, we cannot conclude that the series are stationary.
Using a 10% significance level, unit root tests on the first
differences of the series lead to a conclusion that the first
differences are stationary, and hence the series are I(1).
Testing for cointegration yields the following results:

êt = Ct + 0.543 − 1.049Yt

Δêt

⋀

= −0.203êt−1 − 0.290Δêt−1
(τ) (−3.046)

(13.10)

An intercept term has been included to capture the compo-
nent of (log) consumption that is independent of disposable
income. From Table 12.4, the 10% critical value of the test for
stationarity in the cointegrating residuals is −3.07. Since the
tau (unit root t-value) of−3.046 is greater than−3.07, it indi-
cates that the errors are not stationary and hence that the rela-
tionship between C (i.e., log(RPCE)) and Y (i.e., log(RPDI))
is spurious. That is, we have no cointegration. Thus, we would
not apply a VEC model to examine the dynamic relationship
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Y = ln(RPDI)
C = ln(RPCE)

FIGURE 13.3 The logarithms of real personal disposable income (RPDI)
and real personal consumption expenditure (RPCE).

between aggregate consumption C and income Y . Instead,
we would estimate a VAR model for the set of I(0) variables{
ΔCt,ΔYt

}
.

For illustrative purposes, the order of lag in this example
has been restricted to one. In general, one should use signif-
icance of the coefficient estimates and serial correlation in
the errors to choose a suitable number of lags which may be
greater than one. The results are

ΔCt

⋀

= 0.00367 + 0.348ΔCt−1 + 0.131ΔYt−1

(t) (4.87) (4.02) (2.52) (13.11a)

ΔYt

⋀

= 0.00438 + 0.590ΔCt−1 − 0.291ΔYt−1

(t) (3.38) (3.96) (−3.25) (13.11b)

The first equation (13.11a) shows that the quarterly
growth in consumption

(
ΔCt

)
is significantly related to its

own past value
(
ΔCt−1

)
and also significantly related to

the quarterly growth in last period’s income
(
ΔYt−1

)
. The

second equation (13.11b) shows that ΔYt is significantly
negatively related to its own past value but significantly
positively related to last period’s change in consumption.
The constant terms capture the fixed component in the
change in log consumption and the change in log income.

Having estimated these models, can we infer anything
else? If the system is subjected to an income shock, what is
the effect of the shock on the dynamic path of the quarterly
growth in consumption and income? Will they rise and by
how much? If the system is also subjected to a consumption
shock, what is the contribution of an income versus a con-
sumption shock on the variation of income? We turn now to
some analysis suited to addressing these questions.
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13.4 Impulse Responses and Variance
Decompositions
Impulse response functions and variance decompositions are techniques that are used by
macroeconometricians to analyze problems such as the effect of an oil price shock on inflation
and GDP growth, and the effect of a change in monetary policy on the economy.

13.4.1 Impulse Response Functions
Impulse response functions show the effects of shocks on the adjustment path of the variables.
To help us understand this, we shall first consider a univariate series.

The Univariate Case Consider a univariate series yt = ρyt−1 + vt and subject it to a shock
of size v in period one. Assume an arbitrary starting value of y at time zero: y0 = 0. (Since we
are interested in the dynamic path, the starting point is irrelevant.) At time t = 1, following the
shock, the value of y will be: y1 = ρy0 + v1 = v. Assume that there are no subsequent shocks in
later time periods

[
v2 = v3 = · · · = 0

]
, at time t = 2, y2 = ρy1 = ρv. At time t = 3, y3 = ρy2 =

ρ
(
ρy1

)
= ρ2v, and so on. Thus the time-path of y following the shock is

{
v, ρv, ρ2v,…

}
. The

values of the coefficients
{
1,ρ, ρ2,…

}
are known as multipliers, and the time-path of y following

the shock is known as the impulse response function.
To illustrate, assume that ρ = 0.9 and let the shock be unity: v = 1. According to the analysis,

y will be {1, 0.9, 0.81,…}, approaching zero over time. This impulse response function is plotted
in Figure 13.4. It shows us what happens to y after a shock. In this case, y initially rises by the
full amount of the shock and then it gradually returns to the value before the shock.

The Bivariate Case Now, let us consider an impulse response function analysis with two
time series based on a bivariate VAR system of stationary variables:

yt = δ10 + δ11yt−1 + δ12xt−1 + vy
t

xt = δ20 + δ21yt−1 + δ22xt−1 + vx
t (13.12)
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FIGURE 13.4 Impulse responses for an AR(1) model
yt = 0.9 yt−1 + vt following a unit shock.
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In this case, there are two possible shocks to the system—one to y and the other to x. Thus we
are interested in four impulse response functions—the effect of a shock to y on the time-paths of
y and x and the effect of a shock to x on the time-paths of y and x.

The actual mechanics of generating impulse responses in a system is complicated by the facts
that (i) one has to allow for interdependent dynamics (the multivariate analog of generating the
multipliers) and (ii) one has to identify the correct shock from unobservable data. Taken together,
these two complications lead to what is known as the identification problem. In this chapter, we
consider a special case where there is no identification problem.1 This special case occurs when
the system that is described in (13.12) is a true representation of the dynamic system—namely,
y is related only to lags of y and x, and x is related only to lags of y and x. In other words, y and x
are related dynamically, but not contemporaneously. The current value xt does not appear in the
equation for yt and the current value yt does not appear in the equation for xt. Also, we need to
assume that the errors vx

t and vy
t are contemporaneously uncorrelated.

Consider the case when there is a one standard deviation shock (alternatively called an
innovation) to y so that at time t = 1, vy

1 = σy, and vy
t is zero thereafter. Assume vx

t = 0 for all t.
It is traditional to consider a standard deviation shock (innovation) rather than a unit shock to
eliminate units of measurement. Assume y0 = x0 = 0. Also, since we are focusing on how a
shock changes the paths of y and x, we can ignore the intercepts. Then

1. When t = 1, the effect of a shock of size σy on y is y1 = vy
1 = σy, and the effect on x is

x1 = vx
1 = 0.

2. When t = 2, the effect of the shock on y is

y2 = δ11y1 + δ12x1 = δ11σy + δ120 = δ11σy

and the effect on x is

x2 = δ21y1 + δ22x1 = δ21σy + δ220 = δ21σy

3. When t = 3, the effect of the shock on y is

y3 = δ11y2 + δ12x2 = δ11δ11σy + δ12δ21σy

and the effect on x is

x3 = δ21y2 + δ22x2 = δ21δ11σy + δ22δ21σy.

By repeating the substitutions for t = 4, 5,… , we obtain further expressions. The impulse
response of the shock (or innovation) to y on y is σy

[
1, δ11,

(
δ11δ11 + δ12δ21

)
,…

]
and the

impulse response of a shock to y on x is σy
[
0, δ21,

(
δ21δ11 + δ22δ21

)
,…

]
.

Now consider what happens when there is a one standard deviation shock to x so that at time
t = 1, vx

1 = σx, and vx
t is zero thereafter. Assume vy

t = 0 for all t. In the first period after the shock,
the effect of a shock of size σx on y is y1 = vy

1 = 0, and the effect of the shock on x is x1 = vx
1 = σx.

Two periods after the shock, when t = 2, the effect on y is

y2 = δ11y1 + δ12x1 = δ110 + δ12σx = δ12σx

and the effect on x is
x2 = δ21y1 + δ22x1 = δ210 + δ22σx = δ22σx

Again, by repeated substitutions, we obtain the impulse response of a shock to x on y
as σx

[
0, δ12,

(
δ11δ12 + δ12δ22

)
,…

]
, and the impulse response of a shock to x on x as

σx
[
1, δ22,

(
δ21δ12 + δ22δ22

)
,…

]
. Figure 13.5 shows the four impulse response functions for

numerical values: σy = 1, σx = 2, δ11 = 0.7, δ12 = 0.2, δ21 = 0.3 and δ22 = 0.6.

............................................................................................................................................
1Appendix 13A introduces the general problem.
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FIGURE 13.5 Impulse responses to standard deviation shock.

The advantage of examining impulse response functions (and not just VAR coefficients) is that
they show the size of the impact of the shock plus the rate at which the shock dissipates, allowing
for interdependencies.

13.4.2 Forecast Error Variance Decompositions
Another way to disentangle the effects of various shocks is to consider the contribution of each
type of shock to the forecast error variance.

Univariate Analysis Consider again the univariate series, yt = ρyt−1 + vt. The best
one-step-ahead forecast (alternatively the forecast one period ahead) is

yF
t+1 = Et

[
ρyt + vt+1

]

where Et is the expected value conditional on information at time t (i.e., we are interested in
the mean value of yt+1 using what is known at time t). At time t the conditional expectation
Et
[
ρyt

]
= ρyt is known, but the error vt+1 is unknown, and so its conditional expectation is zero.

Thus the best forecast of yt+1 is ρyt, and the forecast error is
yt+1 − Et

[
yt+1

]
= yt+1 − ρyt = vt+1

The variance of the one-step forecast error is var
(
vt+1

)
= σ2. Suppose we wish to forecast two

steps ahead; using the same logic, the two-step forecast becomes
yF

t+2 = Et
[
ρyt+1 + vt+2

]
= Et

[
ρ
(
ρyt + vt+1

)
+ vt+2

]
= ρ2yt

and the two-step forecast error becomes
yt+2 − Et

[
yt+2

]
= yt+2 − ρ2yt = ρvt+1 + vt+2
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In this case, the variance of the forecast error is var
(
ρvt+1 + vt+2

)
= σ2(ρ2 + 1

)
, showing that the

variance of forecast error increases as we increase the forecast horizon. There is only one shock
that leads to a forecast error. Hence the forecast error variance is 100% due to its own shock.
The exercise of attributing the source of the variation in the forecast error is known as variance
decomposition.

Bivariate Analysis We can perform a forecast error variance decomposition for our
special bivariate example where there is no identification problem. Ignoring the intercepts (since
they are constants), the one-step ahead forecasts are

yF
t+1 = Et

[
δ11yt + δ12xt + vy

t+1

]
= δ11yt + δ12xt

xF
t+1 = Et

[
δ21yt + δ22xt + vx

t+1

]
= δ21yt + δ22xt

The corresponding one-step-ahead forecast errors and variances are

FEy
1 = yt+1 − Et

[
yt+1

]
= vy

t+1 var
(

FEy
1

)
= σ2

y

FEx
1 = xt+1 − Et

[
xt+1

]
= vx

t+1 var
(

FEx
1

)
= σ2

x

Hence in the first period, all variation in the forecast error for y is due to its own shock. Likewise,
100% of the forecast error for x can be explained by its own shock. Using the same technique, the
two-step ahead forecast for y is

yF
t+2 = Et

[
δ11yt+1 + δ12xt+1 + vy

t+2

]

= Et

[
δ11

(
δ11yt + δ12xt + vy

t+1
)
+ δ12

(
δ21yt + δ22xt + vx

t+1
)
+ vy

t+2

]

= δ11
(
δ11yt + δ12xt

)
+ δ12

(
δ21yt + δ22xt

)

and that for x is
xF

t+2 = Et

[
δ21yt+1 + δ22xt+1 + vx

t+2

]

= Et

[
δ21

(
δ11yt + δ12xt + vy

t+1
)
+ δ22

(
δ21yt + δ22xt + vx

t+1
)
+ vx

t+2

]

= δ21
(
δ11yt + δ12xt

)
+ δ22

(
δ21yt + δ22xt

)

The corresponding two-step-ahead forecast errors and variances are (recall that we are working
with the special case of independent errors)

FEy
2 = yt+2 − Et

[
yt+2

]
=
[
δ11vy

t+1 + δ12vx
t+1 + vy

t+2

]

var
(

FEy
2

)
= δ2

11σ
2
y + δ

2
12σ

2
x + σ

2
y

FEx
2 = xt+2 − Et

[
xt+2

]
=
[
δ21vy

t+1 + δ22vx
t+1 + vx

t+2

]

var
(

FEx
2

)
= δ2

21σ
2
y + δ

2
22σ

2
x + σ

2
x

We can decompose the total variance of the forecast error for y,
(
δ2

11σ
2
y + δ

2
12σ

2
x + σ

2
y

)
, into that

due to shocks to y,
(
δ2

11σ
2
y + σ

2
y

)
, and that due to shocks to x,

(
δ2

12σ
2
x

)
. This decomposition is

often expressed in proportional terms. The proportion of the two-step forecast error variance of
y explained by its “own” shock is

(
δ2

11σ
2
y + σ

2
y

)/(
δ2

11σ
2
y + δ

2
12σ

2
x + σ

2
y

)
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and the proportion of the two-step forecast error variance of y explained by the “other” shock is
(
δ2

12σ
2
x

)/(
δ2

11σ
2
y + δ

2
12σ

2
x + σ

2
y

)

Similarly, the proportion of the two-step forecast error variance of x explained by its own
shock is (

δ2
22σ

2
x + σ

2
x

)/(
δ2

21σ
2
y + δ

2
22σ

2
x + σ

2
x

)

and the proportion of the forecast error of x explained by the other shock is
(
δ2

21σ
2
y

)/(
δ2

21σ
2
y + δ

2
22σ

2
x + σ

2
x

)

For our numerical example with σy = 1, σx = 2, δ11 = 0.7, δ12 = 0.2, δ21 = 0.3, and δ22 = 0.6,
we find that 90.303% of the two-step forecast error variance of y is due to y, and only 9.697% is
due to x.

To sum up, suppose you were interested in the relationship between economic growth and
inflation. A VAR model will tell you whether they are significantly related to each other; an
impulse response analysis will show how growth and inflation react dynamically to shocks, and
a variance decomposition analysis will be informative about the sources of volatility.

The General Case The example above assumes that x and y are not contemporaneously
related and that the shocks are uncorrelated. There is no identification problem, and the gen-
eration and interpretation of the impulse response functions and decomposition of the forecast
error variance are straightforward. In general, this is unlikely to be the case. Contemporaneous
interactions and correlated errors complicate the identification of the nature of shocks and
hence the interpretation of the impulses and decomposition of the causes of the forecast error
variance. This topic is discussed in greater detail in textbooks devoted to time-series analysis.2
A description of how the identification problem can arise is given in Appendix 13A.

13.5 Exercises

13.5.1 Problems
13.1 Consider the following first-order VAR model of stationary variables:

yt = δ11yt−1 + δ12xt−1 + vy
t

xt = δ21yt−1 + δ22xt−1 + vx
t

Under the assumption that there is no contemporaneous dependence, determine the impulse
responses, four periods after a standard deviation shock for
a. y following a shock to y
b. y following a shock to x
c. x following a shock to y
d. x following a shock to x

13.2 Consider the first-order VAR model in Exercise 13.1. Under the assumption that there is no contem-
poraneous dependence, determine
a. the contribution of a shock to y on the variance of the three-step ahead forecast error for y
b. the contribution of a shock to x on the variance of the three-step ahead forecast error for y
c. the contribution of a shock to y on the variance of the three-step ahead forecast error for x
d. the contribution of a shock to x on the variance of the three-step ahead forecast error for x

............................................................................................................................................................
2One reference you might consider is Lütkepohl, H. (2005) Introduction to Multiple Time Series Analysis, Springer,
New York, Chapter 9.
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13.3 The VEC model is a special form of the VAR for I(1) variables that are cointegrated. Consider the
following VEC model:

Δyt = α10 + α11
(
yt−1 − β0 − β1xt−1

)
+ vy

t

Δxt = α20 + α21
(
yt−1 − β0 − β1xt−1

)
+ vx

t

The VEC model may also be rewritten as a VAR, but the two equations will contain common
parameters:

yt = α10 +
(
α11 + 1

)
yt−1 −α11β0 −α11β1xt−1 + vy

t

xt = α20 + α21yt−1 −α21β0 −
(
α21β1 − 1

)
xt−1 + vx

t

a. Suppose you were given the following results from an estimated VEC model:

Δyt

⋀

= 2 − 0.5
(
yt−1 − 1 − 0.7xt−1

)

Δxt

⋀

= 3 + 0.3
(
yt−1 − 1 − 0.7xt−1

)

Rewrite the model in the VAR form.
b. Now suppose you were given the following results of an estimated VAR model, but you were also

told that y and x are cointegrated.
ŷt = 0.7yt−1 + 0.3 + 0.24xt−1

x̂t = 0.6yt−1 − 0.6 + 0.52xt−1

Rewrite the model in the VEC form.
13.4 VAR and VEC models are popular forecasting models because they rely on the past history of

observed outcomes to predict the expected future values.
a. Consider the following estimated VAR model:

yt = δ̂11yt−1 + δ̂12xt−1 + v̂1t

xt = δ̂21yt−1 + δ̂22xt−1 + v̂2t

What are the forecasts for yt+1 and xt+1?
What are the forecasts for yt+2 and xt+2?

b. Consider the following estimated VEC model:
Δyt = α̂11

(
yt−1 − β̂1xt−1

)
+ v̂1t

Δxt = α̂21

(
yt−1 − β̂1xt−1

)
+ v̂2t

What are the forecasts for yt+1 and xt+1?
What are the forecasts for yt+2 and xt+2?

13.5.2 Computer Exercises
13.5 The data file gdp contains quarterly data on the real GDP of Australia (AUS) and real GDP of the

United States (USA) for the sample period 1970Q1 to 2000Q4.
a. Are the series stationary or nonstationary?
b. Test for cointegration allowing for an intercept term. You will find that the intercept is negative.

Is this sensible? If not, repeat the test for cointegration excluding the constant term.
c. Save the cointegrating residuals and estimate the VEC model.

13.6 The data file fred5 contains the log of RPDI (Y) and the log of RPCE (C) for the U.S. economy over
the period 1986Q1 to 2015Q2.
a. Are the series stationary, or nonstationary? In particular, test whether the series are trend

stationary.
b. Test for cointegration allowing for an intercept term. Are the series cointegrated?
c. Estimate a VAR model for the set of I(0) variables

{
ΔCt,ΔYt

}
. Pay particular attention to the

order of lags.
13.7 Consider again the data file fred5 used in Example 13.2 and Exercise 13.6.

a. Estimate a VAR model for
{
ΔCt,ΔYt

}
with three lags of each variable included. Comment on

the results. Has serial correlation in the errors been eliminated?
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b. The concept of “Granger causality” was introduced in Section 9.3.4. In a VAR involving two
variables x and y, we can ask whether x Granger causes y, whether y Granger causes x, and whether
there is Granger causality in both directions. Using the model estimated in part (a), test whether
ΔY Granger causes ΔC and whether ΔC Granger causes ΔY .

13.8 The data file vec contains 100 observations on two generated series of data, x and y. The variables
are nonstationary and cointegrated without a constant term. Save the cointegrating residuals

(
ê
)

and
estimate the VEC model. As a check, the results for the case normalized on y are

Δyt

⋀

= −0.576
(
êt−1

)

(t) (−6.158)
Δxt

⋀

= 0.450
(
êt−1

)

(t) (4.448)

a. The residuals from the error correction model should not be autocorrelated. Are they?
b. Note that one of the error correction terms is negative and the other is positive. Explain why this

is necessary.
13.9 The data file var contains 100 observations on two generated series of data, w and z. The variables are

nonstationary but not cointegrated. Estimate a VAR model of changes in the variables. As a check,
the results are (the intercept terms were not significant):

Δwt

⋀

= 0.743Δwt−1 + 0.214Δzt−1

(t) (11.403) (2.893)
Δzt

⋀

= −0.155Δwt−1 + 0.641Δzt−1

(t) (−2.293) (8.338)

a. The residuals from the VAR model should not be autocorrelated. Is this the case?
b. Determine the impulse responses for the first two periods. (You may assume the special condition

that there is no contemporaneous dependence.)
c. Determine the variance decompositions for the first two periods.

13.10 The quantity theory of money says that there is a direct relationship between the quantity of money
in the economy and the aggregate price level. Put simply, if the quantity of money doubles, then the
price level should also double. Figure 13.6 shows the percentage change in a measure of the quantity
of money (M) and the percentage change in a measure of aggregate prices (P) for the United States
between 1961Q1 and 2005Q4 (data file qtm). A VEC model was estimated as follows:

ΔPt

⋀

= −0.016
(
Pt−1 − 1.004Mt−1 + 0.039

)
+ 0.514ΔPt−1 − 0.005ΔMt−1

(t) (−2.127) (−3.696) (1.714) (7.999) (−0.215)
ΔMt

⋀

= 0.067
(
Pt−1 − 1.004Mt−1 + 0.039

)
− 0.336ΔPt−1 − 0.340ΔMt−1

(t) (3.017) (−3.696) (1.714) (−1.796) (−4.802)
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FIGURE 13.6 Percentage changes in money and price.
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a. Identify the cointegrating relationship between P and M. Is the quantity theory of money
supported?

b. Identify the error-correction coefficients. Is the system stable?
c. The above results were estimated using a system approach. Compute the cointegrating residuals

and confirm that the series is indeed an I(0) variable.
d. Estimate a VEC model using the cointegrating residuals. (Your results should be the same as

above.)
13.11 Research into the Phillips curve is concerned with providing empirical evidence of a tradeoff between

inflation and unemployment. Can an economy experience lower unemployment if it is prepared to
accept higher inflation? Figure 13.7 plots the changes in a measure of the unemployment rate (DU)
and the changes in a measure of inflation (DP) for the United States for the sample period 1970M07
to 2009M06. A VAR model was estimated as follows:

DUt = 0.180DUt−1− 0.046DPt−1

(t) (3.905) (−0.909)

DPt = −0.098DUt−1 + 0.373DPt−1

(t) (−2.522) (8.711)
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FIGURE 13.7 Changes in the unemployment and inflation rates.

a. Is there evidence of an inverse relationship between the change in the unemployment rate (DU)
and the change in the inflation rate (DP)?

b. What is the response of DU at time t + 1 following a unit shock to DU at time t?
c. What is the response of DP at time t + 1 following a unit shock to DU at time t?
d. What is the response of DU at time t + 2?
e. What is the response of DP at time t + 2?

13.12 Figure 13.8 shows the time series for two exchange rates—the EURO per $US and the STERLING
per $US (data file sterling). Both the levels and the changes in the data are shown.
a. Which set of data would you consider using to estimate a VEC model, and which set to estimate

a VAR? Why?
b. Apply the two-step approach suggested in this chapter to estimate a VEC model.
c. Estimate a VAR model paying attention to the order of the lag.

13.13 Financial analysts often debate the role of dividends (DV) in the determination of share prices (SP).
Figure 13.9 shows plots of the rate of change in DV and SP computed as

DVt = 100ln
(
DNt∕DNt−1

)
, SPt = 100ln

(
PNt∕PNt−1

)

where PN is the Standard and Poor Composite Price Index; DN is the nominal dividend per share
(source: Prescott, E. C. and Mehra, R. “The Equity Premium: A Puzzle,” Journal of Monetary Eco-
nomics, 15 March, 1985, pp. 145–161). The data are annual observations over the period 1889–1979.
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FIGURE 13.8 Exchange rates.
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FIGURE 13.9 Change in dividends (DV) and share price (SP).

The data file is called equity. Estimate a first-order VAR for SP and DV by applying least squares to
each equation:

SPt = β10 + β11SPt−1 + β12DVt−1 + vs
t

DVt = β20 + β21SPt−1 + β22DVt−1 + vd
t

Estimate an ARDL for each equation:

SPt = α10 + α11SPt−1 + α12DVt−1 + α13DVt + es
t

DVt = α20 + α21SPt−1 + α22DVt−1 + α23SPt + ed
t
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Compare the two sets of results and note the importance of the contemporaneous endogenous variable
(SP, DV) in each equation.
a. Explain why least squares estimation of the VAR model with lagged variables on the right-hand

side yields consistent estimates.
b. Explain why least squares estimation of the model with lagged and contemporaneous variables

on the right-hand side yields inconsistent estimates. (You might like to refer to the material in
Chapter 11.)

c. What do you infer about the role of dividends in the determination of share prices?
13.14 The file gfc contains data about economic activity in two major economies: the United States and the

Euro Area (the group of countries in Europe where the Euro currency is the legal tender). Specifically,
the data are the logs of their GDP, standardized so that the value of GDP is equal to 100 in 2000. The
levels and the change in economic activity are shown in Figure 13.10(a) and (b). The sample period
is from 1995Q1 to 2009Q4 and includes the global financial crisis that began in September 2007.
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(a) (b)

FIGURE 13.10 Logs of GDP (a) and change in logs of GDP (b).

a. Based on a visual inspection of the data, what would you infer about the interactions between the
GDPs in the two economies?

b. Do the economies have a long-run relationship? Specify the econometric model and estimate the
model. Plot the residuals and comment on their properties.

c. Do the economies have a short-run relationship? Specify the econometric model and estimate the
model. Plot the residuals and comment on their properties.

13.15 The file precious contains monthly data on the prices of gold and silver (in logs) for the period 1970M1
to 2014M2.
a. Plot the two series and comment on the graph. Do the two prices appear to be moving together?
b. Use a series of hypothesis tests to decide on predictive models for the price of silver and the price

of gold.

Appendix 13A The Identification Problem3

A bivariate dynamic system with contemporaneous interactions (also known as a structural
model) is written as

yt + β1xt = α1yt−1 + α2xt−1 + ey
t

xt + β2yt = α3yt−1 + α4xt−1 + ex
t

............................................................................................................................................
3This appendix requires a basic understanding of matrix notation.
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which can be more conveniently expressed in matrix form as
[

1 β1
β2 1

] [
yt
xt

]
=
[
α1 α2
α3 α4

] [
yt−1
xt−1

]
+
[

ey
t

ex
t

]

or rewritten in symbolic form as BYt = AYt−1 + Et, where

Yt =
[

yt
xt

]
B =

[
1 β1
β2 1

]
A =

[
α1 α2
α3 α4

]
Et =

[
ey

t
ex

t

]

A VAR representation (also known as reduced-form model) is written as
yt = δ1yt−1 + δ2xt−1 + vy

t

xt = δ3yt−1 + δ4xt−1 + vx
t

or in matrix form as: Yt = CYt−1 + Vt, where

C =
[
δ1 δ2
δ3 δ4

]
Vt =

[
vy

t
vx

t

]

Clearly, there is a relationship between (13.A.1) and (13.A.2): C = B−1A and Vt = B−1Et.
The special case considered in the chapter assumes that there are no contemporaneous inter-
actions

(
β1 = β2 = 0

)
, making B an identity matrix. There is no identification problem in this

case because the VAR residuals can be unambiguously “identified” as shocks to y or as shocks
to x: vy = ey, vx = ex. The generation and interpretation of the impulse responses and variance
decompositions are unambiguous.

In general, however, B is not an identity matrix, making vy and vx weighted averages of ey

and ex. In this general case, impulse responses and variance decompositions based on vy and vx are
not meaningful or useful because we cannot be certain about the source of the shocks. A number
of methods exist for “identifying” the structural model from its reduced form.
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