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CHAPTER 6

Further Inference
in the Multiple
Regression Model

L E A R N I N G O B J E C T I V E S

Based on the material in this chapter, you should be able to

1. Explain the concepts of restricted and
unrestricted sums of squared errors and how
they are used to test hypotheses.

2. Use the F-test to test single null hypotheses or
joint null hypotheses.

3. Use your computer software to perform an
F-test.

4. Test the overall significance of a regression
model and identify the components of this test
from your computer output.

5. From output of your computer software, locate
(a) the sum of squared errors, (b) the F-value for
the overall significance of a regression model,
(c) the estimated covariance matrix for the least
squares estimates, and (d) the correlation matrix
for the explanatory variables.

6. Explain the relationship between the finite
sample F-test and the large sample χ2-test,
and the assumptions under which each is
suitable.

7. Obtain restricted least squares estimates that
include nonsample information in the
estimation procedure.

8. Explain the properties of the restricted least
squares estimator. In particular, how do its bias
and variance compare with those of the
unrestricted, ordinary, least squares estimator?

9. Explain the differences between models
designed for prediction and models designed to
estimate a causal effect.

10. Explain what is meant by (a) an omitted variable
and (b) an irrelevant variable. Explain the con-
sequences of omitted and irrelevant variables
for the properties of the least squares estimator.

11. Explain the concept of a control variable and the
assumption necessary for a control variable to
be effective.

12. Explain the issues that need to be considered
when choosing a regression model.

13. Test for misspecification using RESET.

14. Compute forecasts, standard errors of forecast
errors, and interval forecasts from a multiple
regression model.

15. Use the Akaike information or Schwartz criteria
to select variables for a predictive model.
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16. Identify collinearity and explain its
consequences for least squares estimation.

17. Identify influential observations in a multiple
regression model.

18. Compute parameter estimates for a regression
model that is nonlinear in the parameters and
explain how nonlinear least squares differs from
linear least squares.

K E Y W O R D S
χ2-test
AIC
auxiliary regressions
BIC
causal model
collinearity
control variables
F-test

influential observations
irrelevant variables
nonlinear least squares
nonsample information
omitted variable bias
overall significance
prediction
predictive model

RESET
restricted least squares
restricted model
restricted SSE
SC
single and joint null hypotheses
unrestricted model
unrestricted SSE

Economists develop and evaluate theories about economic behavior. Hypothesis testing
procedures are used to test these theories. In Chapter 5, we developed t-tests for null hypotheses
consisting of a single restriction on one parameter βk from the multiple regression model, and
null hypotheses consisting of a single restriction that involves more than one parameter. In this
chapter we extend our earlier analysis to testing a null hypothesis with two or more restrictions
on two or more parameters. An important new development for such tests is the F-test. A large
sample alternative that can be used under weaker assumptions is the χ2-test.

The theories that economists develop sometimes provide nonsample information that can
be used along with the information in a sample of data to estimate the parameters of a regres-
sion model. A procedure that combines these two types of information is called restricted least
squares. It can be a useful technique when the data are not information-rich—a condition called
collinearity—and the theoretical information is good. The restricted least squares procedure also
plays a useful practical role when testing hypotheses. In addition to these topics, we discuss
model specification for the multiple regression model, prediction, and the construction of pre-
diction intervals. Model specification involves choosing a functional form and choosing a set of
explanatory variables.

Critical to the choice of a set of explanatory variables is whether a model is to be used for
prediction or causal analysis. For causal analysis, omitted variable bias and selection of control
variables is important. For prediction, selection of variables that are highly correlated with the
dependent variable is more relevant. We also discuss the problems that arise if our data are not
sufficiently rich because the variables are collinear or lack adequate variation, and summarize
concepts for detecting influential observations. The use of nonlinear least squares is introduced
for models that are nonlinear in the parameters.

6.1 Testing Joint Hypotheses: The F-test
In Chapter 5 we showed how to use one- and two-tail t-tests to test hypotheses involving

1. A single coefficient
2. A linear combination of coefficients
3. A nonlinear combination of coefficients.
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The test for a single coefficient was the most straightforward, requiring only the estimate of the
coefficient and its standard error. For testing a linear combination of coefficients, computing the
standard error of the estimated linear combination brought added complexity. It uses the vari-
ances and covariances of all estimates in the linear combination and can be computationally
demanding if done on a hand calculator, especially if there are three or more coefficients in the
linear combination. Software will perform the test automatically, however, yielding the standard
error, the value of the t-statistic, and the p-value of the test. If assumptions MR1–MR6 hold
then t-statistics have exact distributions, making the tests valid for small samples. If MR6 is
violated, implying

(
ei|X

)
is no longer normally distributed, or if MR2: E

(
ei|X

)
= 0 is weak-

ened to the conditions E
(
ei
)
= 0 and cov

(
ei, xjk

)
= 0, then we need to rely on large sample

results that make the tests approximately valid, with the approximation improving as sample size
increases.

For testing non-linear combinations of coefficients, one must rely on large sample approx-
imations even if assumptions MR1–MR6 hold, and the delta method must be used to compute
standard errors. Derivatives of the nonlinear function and the covariance matrix of the coeffi-
cients are required, but as with a linear combination, software will perform the test automatically,
computing the standard error for you, as well as the value of the t-statistic and its p-value. In
Chapter 5 we gave an example of an interval estimate rather than a hypothesis test for a nonlinear
combination, but that example—the optimal level of advertising—showed how to obtain all the
ingredients needed for a test. For both hypothesis testing and interval estimation of a nonlinear
combination, it is the standard error that requires more effort.

A characteristic of all the t tests in Chapter 5 is that they involve a single conjecture about
one or more of the parameters—or, put another way, there is only one “equal sign” in the null
hypothesis. In this chapter, we are interested in extending hypothesis testing to null hypotheses
that involve multiple conjectures about the parameters. A null hypothesis with multiple conjec-
tures, expressed with more than one equal sign, is called a joint hypothesis. An example of a joint
hypothesis is testing whether a group of explanatory variables should be included in a particular
model. Should variables on socioeconomic background, along with variables describing educa-
tion and experience, be used to explain a person’s wage? Does the quantity demanded of a product
depend on the prices of substitute goods, or only on its own price? Economic hypotheses such as
these must be formulated into statements about model parameters. To answer the first of the two
questions, we set up a null hypothesis where the coefficients of all the socioeconomic variables
are equal to zero. For the second question, the null hypothesis would equate the coefficients of
prices of all substitute goods to zero. Both are of the form

H0∶β4 = 0, β5 = 0, β6 = 0 (6.1)
where β4, β5, and β6 are the coefficients of the socioeconomic variables, or the coefficients of the
prices of substitute goods. The joint null hypothesis in (6.1) contains three conjectures (three equal
signs): β4 = 0, β5 = 0, and β6 = 0. A test of H0 is a joint test for whether all three conjectures
hold simultaneously.

It is convenient to develop the test statistic for testing hypotheses such as (6.1) within the
context of an example. We return to Big Andy’s Burger Barn.

E X A M P L E 6.1 Testing the Effect of Advertising

The test used for testing a joint null hypothesis is the F-test.
To introduce this test and concepts related to it, consider the
Burger Barn sales model given in (5.23):
SALES = β1 + β2PRICE + β3ADVERT + β4ADVERT2 + e

(6.2)

Suppose now we wish to test whether SALES is influenced by
advertising. Since advertising appears in (6.2) as both a linear
term ADVERT and as a quadratic term ADVERT2, advertis-
ing will have no effect on sales if β3 = 0 and β4 = 0; adver-
tising will have an effect if β3 ≠ 0 or β4 ≠ 0 or if both β3
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and β4 are nonzero. Thus, for this test our null and alternative
hypotheses are

H0∶β3 = 0, β4 = 0
H1∶β3 ≠ 0 or β4 ≠ 0 or both are nonzero

Relative to the null hypothesis H0∶β3 = 0, β4 = 0, the model
in (6.2) is called the unrestricted model; the restrictions in
the null hypothesis have not been imposed on the model. It
contrasts with the restricted model, which is obtained by
assuming the parameter restrictions in H0 are true. When H0
is true, β3 = 0 and β4 = 0, and ADVERT and ADVERT2 drop
out of the model. It becomes

SALES = β1 + β2PRICE + e (6.3)

The F-test for the hypothesis H0∶β3 = 0, β4 = 0 is based on
a comparison of the sums of squared errors (sums of squared
OLS residuals) from the unrestricted model in (6.2) and the
restricted model in (6.3). Our shorthand notation for these
two quantities is SSEU and SSER, respectively.

Adding variables to a regression reduces the sum of
squared errors—more of the variation in the dependent vari-
able becomes attributable to the variables in the regression
and less of its variation becomes attributable to the error.
In terms of our notation, SSER – SSEU ≥ 0. Using the data
in the file andy to estimate (6.2) and (6.3), we find that
SSEU = 1532.084 and SSER = 1896.391. Adding ADVERT
and ADVERT2 to the equation reduces the sum of squared
errors from 1896.391 to 1532.084.

What the F-test does is to assess whether the reduction in the sum of squared errors is sufficiently
large to be significant. If adding the extra variables has little effect on the sum of squared errors,
then those variables contribute little to explaining variation in the dependent variable, and there
is support for a null hypothesis that drops them. On the other hand, if adding the variables leads to
a big reduction in the sum of squared errors, those variables contribute significantly to explaining
the variation in the dependent variable, and we have evidence against the null hypothesis. The
F-statistic determines what constitutes a large reduction or a small reduction in the sum of squared
errors. It is given by

F =
(
SSER − SSEU

)
∕J

SSEU∕(N − K) (6.4)

where J is the number of restrictions or number of hypotheses in H0, N is the number of obser-
vations, and K is the number of coefficients in the unrestricted model.

To use the F-statistic to assess whether a reduction in the sum of squared errors is sufficient
to reject the null hypothesis, we need to know its probability distribution when the null hypothesis
is true. If assumptions MR1–MR6 hold, then, when the null hypothesis is true, the statistic F has
what is called an F-distribution with J numerator degrees of freedom and (N − K ) denominator
degrees of freedom. Some details about this distribution are given in Appendix B.3.8, with its
typical shape illustrated in Figure B.9(a). If the null hypothesis is not true, then the difference
between SSER and SSEU becomes large, implying that the restrictions placed on the model by
the null hypothesis significantly reduce the ability of the model to fit the data. A large value for
SSER − SSEU means that the value of F tends to be large, so that we reject the null hypothesis
if the value of the F-test statistic becomes too large. What is too large is decided by compar-
ing the value of F to a critical value Fc, which leaves a probability α in the upper tail of the
F-distribution with J and N − K degrees of freedom. Tables of critical values for α = 0.01 and
α = 0.05 are provided in Statistical Tables 4 and 5. The rejection region F ≥ Fc is illustrated in
Figure B.9(a).

E X A M P L E 6.2 The F-Test Procedure

Using the hypothesis testing steps introduced in Chapter 3,
the F-test procedure for testing whether ADVERT and
ADVERT2 should be excluded from the sales equation is as
follows:

1. Specify the null and alternative hypotheses: The joint
null hypothesis is H0∶β3 = 0, β4 = 0. The alternative
hypothesis is H1∶β3 ≠ 0 or β4 ≠ 0 or both are nonzero.
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2. Specify the test statistic and its distribution if the null
hypothesis is true: Having two restrictions in H0 means
J = 2. Also, recall that N = 75, so the distribution of the
F-test statistic when H0 is true is

F =
(
SSER − SSEU

)
∕2

SSEU∕(75 − 4) ∼ F(2,71)

3. Set the significance level and determine the rejection
region: Using α = 0.05, the critical value from the
F(2, 71)-distribution is Fc = F(0.95, 2, 71), giving a rejection
region of F ≥ 3.126. Alternatively, H0 is rejected if
p-value ≤ 0.05.

4. Calculate the sample value of the test statistic and, if
desired, the p-value: The value of the F-test statistic is

F =
(
SSER − SSEU

)
∕J

SSEU∕(N − K) = (1896.391 − 1532.084)∕2
1532.084∕(75 − 4)

= 8.44

The corresponding p-value is p = P
(
F(2, 71) > 8.44

)
=

0.0005.
5. State your conclusion: Since F = 8.44 > Fc = 3.126, we

reject the null hypothesis that both β3 = 0 and β4 = 0,
and conclude that at least one of them is not zero.
Advertising does have a significant effect upon sales
revenue. The same conclusion is reached by noting that
p-value = 0.0005 < 0.05.

You might ask where the value Fc = F(0.95, 2, 71) = 3.126 came
from. The F critical values in Statistical Tables 4 and 5 are
reported for only a limited number of degrees of freedom.
However, exact critical values such as the one for this problem
can be obtained for any number of degrees of freedom using
your econometric software.

6.1.1 Testing the Significance of the Model
An important application of the F-test is for what is called testing the overall significance of
a model. In Section 5.5.1, we tested whether the dependent variable y is related to a particular
explanatory variable xk using a t-test. In this section, we extend this idea to a joint test of the
relevance of all the included explanatory variables. Consider again the general multiple regression
model with (K − 1) explanatory variables and K unknown coefficients

y = β1 + x2β2 + x3β3 + · · · + xKβK + e (6.5)

To examine whether we have a viable explanatory model, we set up the following null and alter-
native hypotheses:

H0∶β2 = 0, β3 = 0, … , βK = 0
H1∶At least one of the βk is nonzero fork = 2, 3,… ,K (6.6)

The null hypothesis is a joint one because it has K − 1 components. It conjectures that each and
every one of the parameters βk, other than the intercept parameter β1, are simultaneously zero. If
this null hypothesis is true, none of the explanatory variables influence y, and thus our model is
of little or no value. If the alternative hypothesis H1 is true, then at least one of the parameters is
not zero, and thus one or more of the explanatory variables should be included in the model. The
alternative hypothesis does not indicate, however, which variables those might be. Since we are
testing whether or not we have a viable explanatory model, the test for (6.6) is sometimes referred
to as a test of the overall significance of the regression model. Given that the t-distribution can
only be used to test a single null hypothesis, we use the F-test for testing the joint null hypothesis
in (6.6). The unrestricted model is that given in (6.5). The restricted model, assuming the null
hypothesis is true, becomes

yi = β1 + ei (6.7)

The least squares estimator of β1 in this restricted model is b∗1 = ∑N
i=1 yi∕N = y, which is the

sample mean of the observations on the dependent variable. The restricted sum of squared errors
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from the hypothesis (6.6) is

SSER =
N∑

i=1

(
yi − b∗1

)2 =
N∑

i=1

(
yi − y

)2 = SST

In this one case, in which we are testing the null hypothesis that all the model parameters are zero
except the intercept, the restricted sum of squared errors is the total sum of squares (SST) from
the full unconstrained model. The unrestricted sum of squared errors is the sum of squared errors
from the unconstrained model—that is, SSEU = SSE. The number of restrictions is J = K − 1.
Thus, to test the overall significance of a model, but not in general, the F-test statistic can be
modified and written as

F = (SST − SSE)∕(K − 1)
SSE∕(N − K) (6.8)

The calculated value of this test statistic is compared to a critical value from the F(K − 1, N − K)
distribution. It is used to test the overall significance of a regression model. The outcome of
the test is of fundamental importance when carrying out a regression analysis, and it is usually
automatically reported by computer software as the F-value.

E X A M P L E 6.3 Overall Significance of Burger Barns Equation

To illustrate, we test the overall significance of the regression,
(6.2), used to explain Big Andy’s sales revenue. We want
to test whether the coefficients of PRICE, ADVERT , and
ADVERT2 are all zero, against the alternative that at least one
of these coefficients is not zero. Recalling that the model is
SALES = β1 + β2PRICE + β3ADVERT + β4ADVERT2 + e,
the hypothesis testing steps are as follows:

1. We are testing

H0∶β2 = 0, β3 = 0, β4 = 0

against the alternative

H1∶At least one of β2 or β3 or β4 is nonzero

2. If H0 is true, F = (SST − SSE)∕(4 − 1)
SSE∕(75 − 4) ∼ F(3,71).

3. Using a 5% significance level, we find the critical value
for the F-statistic with (3,71) degrees of freedom is
Fc = 2.734. Thus, we reject H0 if F ≥ 2.734.

4. The required sums of squares are SST = 3115.482 and
SSE = 1532.084 which give an F-value of

F = (SST − SSE)∕(K − 1)
SSE∕(N − K)

= (3115.482 − 1532.084) ∕3
1532.084∕(75 − 4) = 24.459

Also, p-value = P(F ≥ 24.459) = 0.0000, correct to four
decimal places.

5. Since 24.459 > 2.734, we reject H0 and conclude that the
estimated relationship is a significant one. A similar con-
clusion is reached using the p-value. We conclude that
at least one of PRICE, ADVERT , or ADVERT2 have an
influence on sales. Note that this conclusion is consis-
tent with conclusions that would be reached using sepa-
rate t-tests for the significance of each of the coefficients
in (5.25).

Go back and check the output from your computer software.
Can you find the F-value 24.459 and the corresponding
p-value of 0.0000 that form part of the routine output?

6.1.2 The Relationship Between t- and F-Tests
A question that may have occurred to you is what happens if we have a null hypothesis which
is not a joint hypothesis; it only has one equality in H0? Can we use an F-test for this case, or
do we go back and use a t-test? The answer is when testing a single “equality” null hypothesis
(a single restriction) against a “not equal to” alternative hypothesis, either a t-test or an F-test can
be used; the test outcomes will be identical. Two-tail t-tests are equivalent to F-tests when there is
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a single hypothesis in H0. An F-test cannot be used as an alternative to a one-tail t-test, however.
To explore these notions we return to the Big Andy example.

E X A M P L E 6.4 When are t- and F-tests equivalent?

In Examples 6.1 and 6.2, we tested whether advertising
affects sales by using an F-test to test whether β3 = 0 and
β4 = 0 in the model
SALES = β1 + β2PRICE + β3ADVERT + β4ADVERT2 + e

(6.9)
Suppose now we want to test whether PRICE affects SALES.
Following the same F-testing procedure, we have H0∶β2 = 0,
H1∶β2 ≠ 0, and the restricted model

SALES = β1 + β3ADVERT + β4ADVERT2 + e (6.10)
Estimating (6.9) and (6.10) gives SSEU = 1532.084 and
SSER = 2683.411, respectively. The required F-value is

F =
(
SSER − SSEU

)
∕J

SSEU∕(N − K)

= (2683.411 − 1532.084)∕1
1532.084∕(75 − 4) = 53.355

The 5% critical vale is Fc = F(0.95, 1, 71) = 3.976. Thus, we
reject H0∶β2 = 0.

Now let us see what happens if we use a t-test for the
same problem: H0∶β2 = 0 and H1∶β2 ≠ 0. The results from
estimating (6.9) were

SALES
(se)

⋀

= 109.72
(6.80)

− 7.640PRICE
(1.046)

+ 12.151ADVERT
(3.556)

−2.768ADVERT2

(0.941)

The t-value for testing H0∶β2 = 0 against H1∶β2 ≠ 0 is
t = 7.640∕1.045939 = 7.30444. The 5% critical value for
the t-test is tc = t(0.975, 71) = 1.9939. We reject H0∶β2 = 0
because 7.30444 > 1.9939. The reason for using so many
decimals here will soon become clear. We wish to reduce
rounding error to ensure the relationship between the t- and
F-tests is correctly revealed.

Notice that the squares of the calculated and
critical t-values are identical to the corresponding
F-values. That is, t2 = (7.30444)2 = 53.355 = F and
t2
c =(1.9939)2 = 3.976 = Fc. The reason for this corre-

spondence is an exact relationship between the t- and
F-distributions. The square of a t random variable with df
degrees of freedom is an F random variable with 1 degree
of freedom in the numerator and df degrees of freedom in
the denominator: t2

(d! ) = F(1,d! ). Because of this exact rela-
tionship, the p-values for the two tests are identical, meaning
that we will always reach the same conclusion whichever
approach we take. However, there is no equivalence when
using a one-tail t-test when the alternative is an inequality
such as > or <. Because F = t2, the F-test cannot distinguish
between the left and right tails as is needed for a one-tail
test. Also, the equivalence between t-tests and F-tests does
not carry over when a null hypothesis consists of more than
a single restriction. Under these circumstances (J ≥ 2), an
F-test needs to be used.

Summarizing the F-Test Procedure
1. The null hypothesis H0 consists of one or more linear equality restrictions on the model

parameters βk. The number of restrictions is denoted by J. When J = 1, the null hypothe-
sis is called a single null hypothesis. When J ≥ 2, it is called a joint null hypothesis. The
null hypothesis may not include any “greater than or equal to” or “less than or equal to”
hypotheses.

2. The alternative hypothesis states that one or more of the equalities in the null hypothesis
is not true. The alternative hypothesis may not include any “greater than” or “less than”
options.

3. The test statistic is the F-statistic in equation (6.24).
4. If assumptions MR1–MR6 hold, and if the null hypothesis is true, F has the F-distribution

with J numerator degrees of freedom and N – K denominator degrees of freedom. The null
hypothesis is rejected if F ≥ Fc, where Fc = F(1–α, J, N−K) is the critical value that leaves α
percent of the probability in the upper tail of the F-distribution.

5. When testing a single equality null hypothesis, it is perfectly correct to use either the t- or
F-test procedure: they are equivalent. In practice, it is customary to test single restrictions
using a t-test. The F-test is usually reserved for joint hypotheses.
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6.1.3 More General F-Tests
So far we have discussed the F-test in the context of whether a variable or a group of variables
could be excluded from the model. The conjectures made in the null hypothesis were that partic-
ular coefficients are equal to zero. The F-test can also be used for much more general hypotheses.
Any number of conjectures (J ≤ K) involving linear hypotheses with equal signs can be tested.
Deriving the restricted model implied by H0 can be trickier, but the same general principles hold.
The restricted sum of squared errors is still greater than the unrestricted sum of squared errors.
In the restricted model, least squares estimates are obtained by minimizing the sum of squared
errors subject to the restrictions on the parameters being true, and the unconstrained minimum
(SSEU) is always less than the constrained minimum (SSER). If SSEU and SSER are substantially
different, assuming that the null hypothesis is true significantly reduces the ability of the model
to fit the data; in other words, the data do not support the null hypothesis, and it is rejected by the
F-test. On the other hand, if the null hypothesis is true, we expect the data to be compatible with
the conditions placed on the parameters. We expect little change in the sum of squared errors, in
which case the null hypothesis will not be rejected by the F-test.

E X A M P L E 6.5 Testing Optimal Advertising

To illustrate how to obtain a restricted model for a null
hypothesis that is more complex than assigning zero to a
number of coefficients, we return to Example 5.17 where
we found that the optimal amount for Andy to spend on
advertising ADVERT0 is such that

β3 + 2β4ADVERT0 = 1 (6.11)
Now suppose that Big Andy has been spending $1900 per
month on advertising and he wants to know whether this
amount could be optimal. Does the information from the
estimated equation provide sufficient evidence to reject a
hypothesis that $1900 per month is optimal? The null and
alternative hypotheses for this test are

H0∶β3 + 2 × β4 × 1.9 = 1 H1∶β3 + 2 × β4 × 1.9 ≠ 1
After carrying out the multiplication, these hypotheses can
be written as

H0∶β3 + 3.8β4 = 1 H1∶β3 + 3.8β4 ≠ 1
How do we obtain the restricted model implied by the null
hypothesis? Note that when H0 is true, β3 = 1 – 3.8β4. Sub-
stituting this restriction into the unrestricted model in (6.9)
gives

SALES = β1 + β2PRICE +
(
1 − 3.8β4

)
ADVERT

+ β4ADVERT2 + e

Collecting terms and rearranging this equation to put it in a
form convenient for estimation yields
(SALES − ADVERT ) = β1 + β2PRICE + β4

(
ADVERT2

− 3.8ADVERT ) + e (6.12)

Estimating this model by least squares with dependent
variable y = (SALES − ADVERT ) and explanatory variables
x2 = PRICE and x3 = (ADVERT 2 – 3.8ADVERT ) yields
the restricted sum of squared errors SSER = 1552.286. The
unrestricted sum of squared errors is the same as before,
SSEU = 1532.084. We also have one restriction (J = 1) and
N – K = 71 degrees of freedom. Thus, the calculated value
of the F-statistic is

F = (1552.286 − 1532.084)∕1
1532.084∕71 = 0.9362

For α = 0.05, the critical value is Fc = 3.976. Since
F = 0.9362 < Fc = 3.976, we do not reject H0. We conclude
that Andy’s conjecture, that an advertising expenditure of
$1900 per month is optimal is compatible with the data.

Because there is only one conjecture in H0, you can
also carry out this test using the t-distribution. Check it
out. For the t-value, you should find t = 0.9676. The value
F = 0.9362 is equal to t2 = (0.9676)2, obeying the relation-
ship between t- and F-random variables that we mentioned
previously. You will also find that the p-values are identical.
Specifically,

p-value = P
(
F(1, 71) > 0.9362

)

= P
(
t(71) > 0.9676

)
+ P

(
t(71) < −0.9676

)
= 0.3365

The result 0.3365 > 0.05 leads us to conclude that
ADVERT0 = 1.9 is compatible with the data.

You may have noticed that our description of this test has deviated slightly from the
step-by-step hypothesis testing format introduced in Chapter 3 and used so far in the book.
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The same ingredients were there, but the arrangement of them varied. From now on, we will
be less formal about following these steps. By being less formal, we can expose you to the
type of discussion you will find in research reports, but please remember that the steps were
introduced for a purpose: to teach you good habits. Following the steps ensures that you include
a description of all the relevant components of the test and that you think about the steps in the
correct order. It is not correct, for example, to decide on the hypotheses or the rejection region
after you observe the value of the statistic.

E X A M P L E 6.6 A One-Tail Test

Suppose that, instead of wanting to test whether the data
supports the conjecture “ADVERT = 1.9 is optimal,” Big
Andy wants to test whether the optimal value of ADVERT is
greater than 1.9. If he has been spending $1900 per month
on advertising, and he does not want to increase this amount
unless there is convincing evidence that the optimal amount
is greater than $1900, he will set up the hypotheses

H0∶β3 + 3.8β4 ≤ 1 H1∶β3 + 3.8β4 > 1 (6.13)

In this case, we can no longer use the F-test. Using a t-test
instead, your calculations will reveal t = 0.9676. The rejec-
tion region for a 5% significane level is reject H0 if t ≥ 1.667.
Because 0.9676 < 1.667, we do not reject H0. There is not
enough evidence in the data to suggest the optimal level of
advertising expenditure is greater than $1900.

6.1.4 Using Computer Software
Though it is possible and instructive to compute an F-value by using the restricted and unrestricted
sums of squares, it is often more convenient to use the power of econometric software. Most
software packages have commands that will automatically compute t- and F-values and their
corresponding p-values when provided with a null hypothesis. You should check your software.
Can you work out how to get it to test null hypotheses similar to those we constructed? These
tests belong to a class of tests called Wald tests; your software might refer to them in this way.
Can you reproduce the answers we got for all the tests in Chapters 5 and 6?

E X A M P L E 6.7 Two (J = 2) Complex Hypotheses

In this example, we consider a joint test of two of Big Andy’s
conjectures. In addition to proposing that the optimal level of
monthly advertising expenditure is $1900, Big Andy is plan-
ning staffing and purchasing of inputs on the assumption that
when PRICE = $6 and ADVERT = 1.9, sales revenue will be
$80,000 on average. In the context of our model, and in terms
of the regression coefficients βk, the conjecture is

E(SALES|PRICE = 6,ADVERT = 1.9)
= β1 + β2PRICE + β3ADVERT + β4ADVERT2

= β1 + 6β2 + 1.9β3 + 1.92β4

= 80
Are the conjectures about sales and optimal advertising
compatible with the evidence contained in the sample of
data? We formulate the joint null hypothesis

H0∶β3 + 3.8β4 = 1, β1 + 6β2 + 1.9β3 + 3.61β4 = 80

The alternative is that at least one of these restrictions is not
true. Because there are J = 2 restrictions to test jointly, we
use an F-test. A t-test is not suitable. Note also that this is an
example of a test with two restrictions that are more general
than simply omitting variables. Constructing the restricted
model requires substituting both of these restrictions into our
extended model, which is left as an exercise. Using instead
computer output obtained by supplying the two hypotheses
directly to the software, we obtain a computed value for the
F-statistic of 5.74 and a corresponding p-value of 0.0049.
At a 5% significance level, the joint null hypothesis is
rejected. As another exercise, use the least squares estimates
to predict sales revenue for PRICE = 6 and ADVERT = 1.9.
Has Andy been too optimistic about the level of sales, or
too pessimistic?
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6.1.5 Large Sample Tests
There are two key requirements for the F-statistic to have the F-distribution in samples of all sizes:
(1) assumptions MR1–MR6 must hold and (2) the restrictions in H0 must be linear functions of
the parameters β1, β2, …, βK. In this section, we are concerned with what test statistics are valid
in large samples when the errors are no longer normally distributed or when the strict exogeneity
assumption is weakend to E

(
ei
)
= 0 and cov

(
ei, xjk

)
= 0 (i ≠ j). We will also make a few remarks

about testing nonlinear hypotheses.
To appreciate the testing alternatives, details about how the F-statistic in (6.4) is constructed

are in order. An F random variable is defined as the ratio of two independent chi-square
(
χ2)

random variables, each divided by their degrees of freedom.1 That is, if V1 ∼ χ2
(m1) and V2 ∼ χ2

(m2),
and V1 and V2 are independent, then

F =
V1∕m1
V2∕m2

∼ F(m1,m2)

In our case, the two independent χ2 random variables are

V1 =
(
SSER − SSEU

)

σ2 ∼ χ2
(J) and V2 = (N − K)σ̂2

σ2 ∼ χ2
(N−K)

If σ2 were known, V1 would be a natural candidate for testing whether the difference between
SSER and SSEU is sufficiently large to reject a null hypothesis. Because σ2 is unknown, we use
V2 to eliminate it. Specifically,

F =
V1∕J

V2∕(N − K) =

(
SSER − SSEU

)

σ2

/
J

(N − K)σ̂2

σ2

/
(N − K)

=
(
SSER − SSEU

)
∕J

σ̂2 ∼ F(J,N−K) (6.13)

Note that σ̂2 = SSEU∕(N − K), and so the result in (6.13) is identical to the F-statistic first intro-
duced in (6.4).

When we drop the normality assumption or weaken the strict exogeneity assumption, the
argument becomes slightly different. In this case, V1 no longer has an exact χ2-distribution, but
we can nevertheless rely on asymptotic theory to say that

V1 =
(
SSER − SSEU

)

σ2
a∼χ2

(J)

Then, we can go one step further and say that replacing σ2 by its consistent estimator σ̂2 does not
change the asymptotic distribution of V1.2 That is,

V̂1 =
(
SSER − SSEU

)

σ̂2
a∼χ2

(J) (6.14)

This statistic is a valid alternative for testing joint linear hypotheses in large samples under less
restrictive assumptions, with the approximation improving as sample size increases. At a 5%
significance level, we reject H0 if V̂1 is greater than or equal to the critical value χ2

(0.95,J), or if
the p-value P

(
χ2
(J) > V̂1

)
is less than 0.05. In response to an automatic test command, most

software will give you values for both F and V̂1. The value for V̂1 will probably be referred to as
“chi-square.”

Although it is clear that F = V̂1∕J, the two test alternatives will not necessarily lead to
the same outcome; their p-values will be different. Both are used in practice, and it is possible
............................................................................................................................................
1See Appendices B.3.6 and B.3.8.
2See William Greene, Econometric Analysis 8e, Pearson Prentice-Hall, 2018, Theorem D.16, page 1168 of online
Appendix.
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that the F-test will provide a better small-sample approximation than V̂1 even under the less
restrictive assumptions. As the sample size grows (the degrees of freedom for the denominator
of the F-statistic increase), the two tests become identical—their p-values become the same, and
their critical values beome equivalent in the sense that limN→∞F(1−α, J,N−K) = χ2

(1−α,J)∕J. Check
it out yourself. Suppose J = 4 and α = 0.05, then from Statistical Table 3, χ2

(0.95,4)∕4 = 9.488∕4
= 2.372. The F-values are in Statistical Table 4, but it is instructive to use software to provide a
few extra values. Doing so, we find F(0.95, 4, 60) = 2.525, F(0.95, 4, 120) = 2.447, F(0.95, 4, 500) = 2.390,
F(0.95, 4, 1000) = 2.381, and F(0.95, 4, 10000) = 2.373. As N − K increases, the 95th percentile of the
F-distribution approaches 2.372.

E X A M P L E S 6.2 and 6.5 Revisited

When testing H0∶β3 = β4 = 0 in the equation

SALES = β1 + β2PRICE + β3ADVERT + β4ADVERT2 + e
(6.15)

we obtain F = 8.44 with corresponding p-value = 0.0005,
and χ2 = 16.88 with corresponding p-value = 0.0002.
Because there are two restrictions (J = 2), the F-value is half

the χ2-value. The p-values are different because the tests are
different.

For testing H0∶β3 + 3.8β4 = 1, we obtain F = 0.936
with corresponding p-value = 0.3365 and χ2 = 0.936 with
corresponding p-value = 0.3333. The F- and χ2-values are
equal because J = 1, but again the p-values are slightly
different.

Testing Nonlinear Hypotheses Test statistics for joint hypotheses which are nonlinear
functions of the parameters are more challenging theoretically,3 but nevertheless can typically be
carried out by your software with relative ease. Only asymptotic results are available, and the
relevant test statistic is the chi-square, although you may find that some software also gives an
F-value. Another thing to be on lookout for is whether a nonlinear hypothesis can be re-framed
as a linear hypothesis to avoid one aspect of the approximation.

E X A M P L E 6.8 A Nonlinear Hypothesis

In Section 5.7.4, we found that, in terms of the parameters of
equation (6.2), the optimal level of advertising is given by

ADVERT0 =
1 − β3

2β4

To test the hypothesis that the optimal level is $1,900 against
the alternative that it is not $1,900, we can set up the follow-
ing hypotheses which are nonlinear in the parameters

H0∶
1 − β3

2β4
= 1.9 H1∶

1 − β3
2β4

≠ 1.9 (6.16)

There are three ways we can approach this problem. The
first way is to convert the hypotheses so that they are
linear in the parameters. That is, H0∶β3 + 3.8β4 = 1 versus
H1∶β3 + 3.8β4 ≠ 1. These are the hypotheses that we tested
in Example 6.5. The p-value for the F-test was 0.337.

The second way is to test (6.16) using the t-test value

t =
g
(
b3, b4

)
− 1.9

se
[
g
(
b3, b4

)]

=
(
1 − b3

)
∕2b4 − 1.9

se
((

1 − b3
)
∕2b4

) = 2.0143 − 1.9
0.1287 = 0.888

The values g
(
b3, b4

)
=
(
1 − b3

)
∕2b4 = 2.0143 and

se
[
g
(
b3, b4

)]
= se

((
1 –b3

)
∕2b4

)
= 0.1287, were found

in Example 5.17 for computing an interval estimate
for ADVERT0. The third way is to use the χ2-test for
testing (6.16). When we have only a single hypothesis,
χ2 = F = t2 = (0.888)2 = 0.789. The F and t2 critical values
correspond, yielding a p-value of 0.377. The χ2-test is a
different test, however. It yields a p-value of 0.374.

............................................................................................................................................
3See William Greene, Econometric Analysis 8e, Pearson Prentice-Hall, 2018, pp. 211–212.
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Having so many options will undoubtedly leave you wondering what to do. In general, the best
strategy is to convert the hypotheses into ones that are linear if that is possible. Otherwise, the
t- or χ2-tests can be used, but the t-test option is not available if J ≥ 2. The important thing to
take away from this section is an appreciation of the different test statistics that appear on your
software output—what they mean, where they come from, and the circumstances under which
they are exact finite sample tests or asymptotic approximations.

6.2 The Use of Nonsample Information
In many estimation problems we have information over and above the information contained
in the sample observations. This nonsample information may come from many places, such as
economic principles or experience. When it is available, it seems intuitive that we should find
a way to use it. If the nonsample information is correct, and if we combine it with the sample
information, the precision with which we can estimate the parameters is improved.

To illustrate how we might go about combining sample and nonsample information, con-
sider a model designed to explain the demand for beer. From the theory of consumer choice in
microeconomics, we know that the demand for a good will depend on the price of that good,
on the prices of other goods—particularly substitutes and complements—and on income. In the
case of beer, it is reasonable to relate the quantity demanded (Q) to the price of beer (PB), the
price of liquor (PL), the price of all other remaining goods and services (PR), and income (I).
To estimate this demand relationship, we need a further assumption about the functional form.
Using “ln” to denote the natural logarithm, we assume, for this case, that the log-log functional
form is appropriate:

ln(Q) = β1 + β2ln(PB) + β3ln(PL) + β4ln(PR) + β5ln(I) + e (6.17)

This model is a convenient one because it precludes infeasible negative prices, quantities, and
income, and because the coefficients β2, β3, β4, and β5 are elasticities. See Section 4.6.

A relevant piece of nonsample information can be derived by noting that if all prices and
income go up by the same proportion, we would expect there to be no change in quantity
demanded. For example, a doubling of all prices and income should not change the quantity of
beer consumed. This assumption is that economic agents do not suffer from “money illusion.”
Let us impose this assumption on our demand model and see what happens. Having all prices
and income change by the same proportion is equivalent to multiplying each price and income
by a constant. Denoting this constant by λ and multiplying each of the variables in (6.17) by
λ yields

ln(Q) = β1 + β2ln(λPB) + β3ln(λPL) + β4ln(λPR) + β5ln(λI)
= β1 + β2ln(PB) + β3ln(PL) + β4ln(PR) + β5ln(I)
+
(
β2 + β3 + β4 + β5

)
ln(λ) + e (6.18)

Comparing (6.17) with (6.18) shows that multiplying each price and income by λ will give a
change in ln(Q) equal to

(
β2 + β3 + β4 + β5

)
ln(λ). Thus, for there to be no change in ln(Q) when

all prices and income go up by the same proportion, it must be true that

β2 + β3 + β4 + β5 = 0 (6.19)

Thus, we can say something about how quantity demanded should not change when prices and
income change by the same proportion, and this information can be written in terms of a specific
restriction on the parameters of the demand model. We call such a restriction nonsample infor-
mation. If we believe that this nonsample information makes sense, and hence that the parameter
restriction in (6.19) holds, then it seems desirable to be able to obtain estimates that obey this
restriction.
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To introduce the nonsample information, we solve the parameter restriction β2 + β3 + β4 +
β5 = 0 for one of the βk’s. Which one is not important mathematically, but for reasons that will
become apparent, we solve for β4:

β4 = −β2 − β3 − β5

Substituting this expression into the original model in (6.17) gives

ln(Q) = β1 + β2ln(PB) + β3ln(PL) +
(
−β2 − β3 − β5

)
ln(PR) + β5ln(I) + e

= β1 + β2
[
ln(PB) − ln(PR)

]
+ β3

[
ln(PL) − ln(PR)

]
+ β5

[
ln(I) − ln(PR)

]
+ e

= β1 + β2ln
(PB

PR

)
+ β3ln

(PL
PR

)
+ β5ln

( I
PR

)
+ e (6.20)

By using the restriction to replace β4, and using the properties of logarithms, we have constructed
the new variables ln(PB/PR), ln(PL/PR), and ln(I/PR). These variables have an appealing inter-
pretation. Because PR represents the price of all other goods and services, (PB/PR) and (PL/PR)
can be viewed as the real price of beer and the real price of liquor, respectively, and (I/PR) can
be viewed as real income. By applying least squares to the restricted equation (6.20), we obtain
the restricted least squares estimates (

b∗1, b
∗
2, b

∗
3, b

∗
5
)
. The restricted least squares estimate for

β4 is given by b∗4 = −b∗2 − b∗3 − b∗5.

E X A M P L E 6.9 Restricted Least Squares

Observations on Q, PB, PL, PR, and I, taken from a cross
section of 30 households are stored in the file beer. Using
these observations to estimate (6.20), we obtain

ln(Q)
(se)

⋀

= −4.798 − 1.2994
(0.166)

ln
(PB

PR

)
+ 0.1868
(0.284)

ln
(PL

PR

)

+ 0.9458
(0.427)

ln
( I

PR

)

and b∗4 = −(−1.2994) − 0.1868 − 0.9458 = 0.1668. We esti-
mate the price elasticity of demand for beer as −1.30, the
cross-price elasticity of demand for beer with respect to liquor
as 0.19, the cross-price elasticity of demand for beer with
respect to other goods and services as 0.17, and the income
elasticity of demand for beer as 0.95.

Substituting the restriction into the original equation and rearranging it like we did to get (6.20)
will always work, but it may not be necessary. Different software has different options for obtain-
ing restricted least squares estimates. Please check what is available in the software of your choice.

What are the properties of the restricted least squares estimation procedure? If assumptions
MR1–MR5 hold for the unrestricted model, then the restricted least squares estimator is biased,
E
(
b∗k
) ≠ βk, unless the constraints we impose are exactly true. This result makes an important

point about econometrics. A good economist will obtain more reliable parameter estimates than
a poor one because a good economist will introduce better nonsample information. This is true at
the time of model specification as well as later, when constraints might be applied to the model.
Nonsample information is not restricted to constraints on the parameters; it is also used for model
specification. Good economic theory is a very important ingredient in empirical research.

The second property of the restricted least squares estimator is that its variance is smaller
than the variance of the least squares estimator, whether the constraints imposed are true or
not. By combining nonsample information with the sample information, we reduce the varia-
tion in the estimation procedure caused by random sampling. This reduction in variance obtained
by imposing restrictions on the parameters is not at odds with the Gauss–Markov theorem. The
Gauss–Markov result that the least squares estimator is the best linear unbiased estimator applies



❦

❦ ❦

❦

6.3 Model Specification 273

to linear and unbiased estimators that use data alone, and no constraints on the parameters. Includ-
ing additional information with the data gives the added reward of a reduced variance. If the
additional nonsample information is correct, we are unambiguously better off; the restricted least
squares estimator is unbiased and has lower variance. If the additional nonsample information is
incorrect, the reduced variance comes at the cost of bias. This bias can be a big price to pay if
it leads to estimates substantially different from their corresponding true parameter values. Evi-
dence on whether or not a restriction is true can be obtained by testing the restriction along the
lines of the previous section. In the case of this particular demand example, the test is left as an
exercise.

6.3 Model Specification
In what has been covered so far, we have generally taken the role of the model as given. Questions
have been of the following type: Given a particular regression model, what is the best way to
estimate its parameters? Given a particular model, how do we test hypotheses about the parameters
of that model? How do we construct interval estimates for the parameters of a model? What are
the properties of estimators in a given model? Given that all these questions require knowledge
of the model, it is natural to ask where the model comes from. In any econometric investigation,
choice of the model is one of the first steps. In this section, we focus on the following questions:
What are the important considerations when choosing a model? What are the consequences of
choosing the wrong model? Are there ways of assessing whether a model is adequate?

Three essential features of model choice are (1) choice of functional form, (2) choice of
explanatory variables (regressors) to be included in the model, and (3) whether the multiple
regression assumptions MR1–MR6, listed in Chapter 5, hold. The implications of some viola-
tions of these assumptions have already been discussed. In particular, we have seen how it is
necessary to rely on large sample results for inference if the errors are no longer normally dis-
tributed (MR6 is violated), or if assumption MR2: E

(
ei|X

)
= 0 is weakened to the alternative

assumption that E
(
ei
)
= 0 and cov

(
ei, xjk

)
= 0 for i ≠ j. Later chapters on heteroskedasticity,

regression with time-series data, and endogenous regressors deal with violations of MR3, MR4
and cov

(
ei, xjk

)
= 0. In this section, we focus mainly on issues dealing with choice of regressors

and also give some consideration to choice of functional form. The properties of alternative func-
tional forms were considered in Sections 2.8, 4.3–4.6, and 5.6. When making a functional-form
choice, we need to ask questions such as: How is the dependent variable y likely to respond when
the regressors change? At a constant rate? At a decreasing rate? Is it reasonable to assume constant
elasticities over the whole range of the data? Are there any patterns in the least squares residuals
that suggest an alternative functional form? The use of least squares residuals for assessing the
adequacy of a functional form was considered in Section 4.3.4.

For choice of regressors, a fundamental consideration is the purpose of the model—whether
it is intended for prediction or for causal analysis. We turn now to that question.

6.3.1 Causality versus Prediction
With causal inference we are primarily interested in the effect of a change in a regressor on the
conditional mean of the dependent variable. Is there an effect and, if so, what is its magnitude?
We wish to be able to say that a one-unit change in an explanatory variable will cause a particular
change in the mean of the dependent variable, other factors held constant. This type of analysis
is important for policy work. For example, suppose a government is concerned about educational
performance in schools and believes that large class sizes may be the cause of poor performance.
Before it spends large sums of money increasing the number of teachers, and building more class-
rooms, it would want convincing evidence that class size does have an impact on performance.
We would need to be able to separate the effect of class size from the effect of other variables
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such as socioeconomic background. It may be that large classes tend to be in areas of poor socio-
economic background. Under these circumstances it is important to include all relevant variables
so that we can be sure “other factors are held constant” when we measure the effect of class size.

On the other hand, if the purpose of a model is to predict the value of a dependent variable,
then, for regressor choice, it is important to choose variables that are highly correlated with the
dependent variable and that lead to a high R2. Whether or not these variables have a direct effect
on the dependent variable, and the possible omission of some relevant variables, are less impor-
tant. Predictive analysis using variables from the increasingly popular field of “big data” is an
example of where variables are chosen for their predictive ability rather than to examine causal
relationships.

To appreciate the difference in emphasis, and when it matters, suppose the variables(
yi, xi, zi

)
, i = 1, 2,… ,N are randomly selected from a population satisfying

yi = β1 + β2xi + β3zi + ei (6.21)
We have chosen the notation x for one of the explanatory variables and z for the other explanatory
variable to distinguish between what will be an included variable x and an omitted variable z.
We assume E

(
ei|xi, zi

)
= 0 and hence E

(
yi|xi, zi

)
= β1 + β2xi + β3zi. Under these assumptions,

β2 and β3 have the causal interpretations

β2 =
∂E

(
yi|xi, zi

)

∂xi
β3 =

∂E
(
yi|xi, zi

)

∂zi

That is, β2 represents the change in the mean of y from a change in x, other factors held constant,
and β3 represents the change in the mean of y from a change in z, other factors held constant
The assumption E

(
ei|xi, zi

)
= 0 is important for these interpretations. It means that changes in

xi or zi have no impact on the error term. Now suppose that xi and zi are correlated, a common
occurrence among explanatory variables. Because they are correlated, E

(
zi|xi

)
will depend on xi.

Let us assume that this dependence can be represented by the linear function
E
(
zi|xi

)
= γ1 + γ2xi (6.22)

Then, using (6.21) and (6.22), we have
E
(
yi|xi

)
= β1 + β2xi + β3E

(
zi|xi

)
+ E

(
ei|xi

)

= β1 + β2xi + β3
(
γ1 + γ2xi

)

=
(
β1 + β3γ1

)
+
(
β2 + β3γ2

)
xi

where E
(
ei|xi

)
= Ez

[
E
(
ei|xi, zi

)]
= 0 by the law of iterated expectations. If knowing xi or zi

does not help to predict ei, then knowing xi does not help to predict ei either.
Now, we can define ui = yi − E

(
yi|xi

)
, α1 = β1 + β3γ1, and α2 = β2 + β3γ2, and write

yi =
(
β1 + β3γ1

)
+
(
β2 + β3γ2

)
xi + ui

= α1 + α2xi + ui (6.23)
where E

(
ui|xi

)
= 0 by definition. Application of least squares to (6.23) will yield best linear

unbiased estimates of α1 and α2. If the objective is to use xi to predict yi, we can proceed with this
equation without worrying about the omission of zi. However, because zi is not held constant, α2
does not measure the causal effect of xi on yi, which is given by β2. The coefficient α2 includes
the indirect effect of xi on zi through γ2 (which may or may not be causal), followed by the effect
of that change in zi on yi, through β3. Note that if β3 = 0 (zi does not effect yi) or γ2 = 0 (zi and xi
are uncorrelated), then α2 = β2 and estimation of α2 gives the required causal effect.

Thus, to estimate a causal effect of a variable x using least squares, we need to start with a
model where all variables that are correlated with x and impact on y are included. An alternative,
valuable when data on all such variables are not available, is to use control variables. We discuss
their use in Section 6.3.4.
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6.3.2 Omitted Variables
As explained in the previous section, if our objective is to estimate a causal relationship, then
the possible omission of relevant variables is a concern. In this section, we explore further the
impact of omitting important variables. Such omissions are always a possibility. Our economic
principles may have overlooked a variable, or lack of data may lead us to drop a variable even
when it is prescribed by economic theory.

E X A M P L E 6.10 Family Income Equation

To introduce the omitted variable problem, we consider a
sample of married couples where both husbands and wives
work. This sample was used by labor economist Tom Mroz
in a classic paper on female labor force participation. The
variables from this sample that we use in our illustration
are stored in the file edu_inc. The dependent variable is the
logarithm of annual family income FAMINC defined as the
combined income of husband and wife. We are interested
in the impact of level of education, both the husband’s

T A B L E 6.1 Estimated Equations for Family Income

ln(FAMINC)
(1) (2) (3) (4) (5)

C 10.264 10.539 10.238 10.239 10.310

HEDU 0.0439 0.0613 0.0448 0.0460 0.0517
(se) (0.0087) (0.0071) (0.0086) (0.0136) (0.0133)

[p-value] [0.0000] [0.0000] [0.0000] [0.0007] [0.0001]

WEDU 0.0390 0.0421 0.0492
(se) (0.0116) (0.0115) (0.0247)

[p-value] [0.0003] [0.0003] [0.0469]

KL6 –0.1733 –0.1724 –0.1690
(se) (0.0542) (0.0547) (0.0548)

[p-value] [0.0015] [0.0017] [0.0022]

XTRA_X5 0.0054 –0.0321
(se) (0.0243) (0.0154)

[p-value] [0.8247] [0.0379]

XTRA_X6 –0.0069 0.0309
(se) (0.0215) (0.0101)

[p-value] [0.7469] [0.0023]

SSE 82.2648 84.4623 80.3297 80.3062 81.0622
RESET p-values

1 term
(
ŷ2) 0.3374 0.1017 0.1881 0.1871 0.1391

2 terms
(
ŷ2, ŷ3) 0.1491 0.0431 0.2796 0.2711 0.2715

education (HEDU) and the wife’s education (WEDU), on
family income. The first equation to be estimated is

ln(FAMINC) = β1 + β2HEDU + β3WEDU + e (6.24)

Coefficient estimates from this equation, their standard
errors, and their p-values for testing whether they are
significantly different from zero, are given in column (1) of
Table 6.1. We estimate that an additional year of education
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for the husband will increase annual income by 4.4%, and an
additional year of education for the wife will increase income
by 3.9%. Both estimates are significantly different from zero
at a 1% level of significance.4

What happens if we now incorrectly omit wife’s educa-
tion from the equation? The resulting estimates are given in
column (2) of Table 6.1. Omitting WEDU leads to an esti-
mate that suggests the effect of an extra year of education for

the husband is 6.1%. The effect of the wife’s education has
been incorrectly attributed to the husband’s education leading
to an overstatement of the latter’s importance. This change
in the magnitude of a coefficient is typical of the effect of
incorrectly omitting a relevant variable. Omission of a rele-
vant variable (defined as one whose coefficient is nonzero)
leads to an estimator that is biased. Naturally enough, this
bias is known as omitted variable bias.

Omitted Variable Bias: A Proof To give a general expression for the bias for the
case where one explanatory variable is omitted from a model with two explanatory variables,
consider the model yi = β1 + β2xi + β3zi + ei. Suppose that we incorrectly omit zi from the model
and estimate instead yi = β1 + β2xi + vi where vi = β3zi + ei. Then, the estimator used for β2 is

b∗2 =
∑(

xi − x
)(

yi − y
)

∑(
xi − x

)2 = β2 +
∑

wivi

where wi =
(
xi − x

)/∑(
xi − x

)2. The second equality in this equation follows from Appendix
2D. Substituting for vi yields

b∗2 = β2 + β3
∑

wizi +
∑

wiei

Assuming that E
(
ei|!, "

)
= 0, or alternatively, that

(
yi, xi, zi

)
is a random sample and

E
(
ei|xi, zi

)
= 0, the conditional mean of b∗2 is

E
(
b∗2|x, z

)
= β2 + β3

∑
wizi = β2 + β3

cov
⋀

(x, z)
var
⋀

(x)
(6.25)

You are asked to prove this result in Exercise 6.3. Unconditionally, we have

E
(
b∗2
)
= β2 + β3E

[cov
⋀

(x, z)
var
⋀

(x)

]
(6.26)

and in large samples, under less restrictive conditions,

b∗2
p
→ β2 + β3

cov(x, z)
var(x) (6.27)

Thus, E
(
b∗2
) ≠ β2 and b∗2 is not a consistent estimator for β2. It is biased in small and large sam-

ples if cov(x, z) ≠ 0. In terms of (6.25)—the result is similar for (6.26) and (6.27)—the bias is
given by

bias
(
b∗2|x, z

)
= E

(
b∗2|x, z

)
− β2 = β3

cov
⋀

(x, z)
var
⋀

(x)
(6.28)

We can make four more interesting observations from the results in (6.25)–(6.28).
1. Omitting a relevant variable is a special case of using a restricted least squares estimator

where the restriction β3 = 0 is not true. It leads to a biased estimator for β2 but one with a
lower variance. In columns (1) and (2) of Table 6.1 the reduction in the standard error for
the coefficient of HEDU from 0.0087 to 0.0071 is consistent with the lower-variance result.

2. Knowing the sign of β3 and the sign of the covariance between x and z tells us the direction
of the bias. In Example 6.9 we expect a wife’s level of education to have a positive effect
on family income

(
β3 > 0

)
, and we expect husband’s and wife’s levels of education to be

............................................................................................................................................
4There are a number of other entries in Table 6.1 that we discuss in due course: estimates from other equations and
RESET values.
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T A B L E 6.2 Correlation Matrix for Variables Used in Family Income Example

ln(FAMINC) HEDU WEDU KL6 XTRA_X5 XTRA_X6
ln(FAMINC) 1.000
HEDU 0.386 1.000
WEDU 0.349 0.594 1.000
KL6 –0.085 0.105 0.129 1.000
XTRA_X5 0.315 0.836 0.518 0.149 1.000
XTRA_X6 0.364 0.821 0.799 0.160 0.900 1.000

positively correlated (cov(x, z) > 0). Thus, we expect an upward bias for the coefficient esti-
mate in (2), as indeed has occurred. The positive correlation between HEDU and WEDU
can be confirmed from the correlation matrix in Table 6.2.

3. The bias in (6.28) can also be written as β3γ̂2 where γ̂2 is the least squares estimate of γ2
from the regression equation E(z|x) = γ1 + γ2x. This result is consistent with equation (6.23)
where we explained how omitting a relevant variable can lead to an incorrect estimate of a
causal effect.

4. The importance of the assumption E
(
ei|x, z

)
= 0 becomes clear. In the equation yi = β1 +

β2xi + vi, we have E
(
vi|xi

)
= β3E

(
zi|xi

)
. It is the nonzero value for E

(
zi|xi

)
that leads to the

biased estimator for β2.

E X A M P L E 6.11 Adding Children Aged Less Than 6 Years

There are, of course, other variables that could be included
as explanators of family income. In column (3) of Table 6.1
we include KL6, the number of children less than 6 years old.
The larger the number of young children, the fewer the num-
ber of hours likely to be worked and hence a lower family
income would be expected. The estimated coefficient on KL6
is negative, confirming this expectation. Also, despite the fact

that KL6 is not highly correlated with HEDU and WEDU,
the coefficient estimates for these variables have increased
slightly, indicating that once we hold the number of young
children constant, the returns to education for both the wife
and the husband are greater, with the greater increase going
to the wife whose working hours would be the more likely to
be affected by the presence of young children.

6.3.3 Irrelevant Variables
The consequences of omitting relevant variables may lead you to think that a good strategy is to
include as many variables as possible in your model. However, doing so will not only complicate
your model unnecessarily, it may inflate the variances of your estimates because of the presence
of irrelevant variables—those whose coefficients are zero because they have no direct effect on
the dependent variable.

E X A M P L E 6.12 Adding Irrelevant Variables

To see the effect of irrelevant variables, we add two artifi-
cially generated variables XTRA_X5 and XTRA_X6 to the
family income equation. These variables were constructed
so that they are correlated with HEDU and WEDU but

have no influence on family income. The results from
including these two variables are given in column (4) of
Table 6.1. What can we observe from these estimates? First,
as expected, the coefficients of XTRA_X5 and XTRA_X6
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have p-values greater than 0.05. They do indeed appear
to be irrelevant variables. Also, the standard errors of the
coefficients estimated for all other variables have increased,
with p-values increasing correspondingly. The inclusion
of irrelevant variables that are correlated with the other
variables in the equation has reduced the precision of the
estimated coefficients of the other variables. This result
follows because, by the Gauss–Markov theorem, the least
squares estimator of the correct model is the minimum
variance linear unbiased estimator.

Finally, let us check what happens if we retain XTRA_X5
and XTRA_X6, but omit WEDU, leading to the results in col-
umn (5). The coefficients for XTRA_X5 and XTRA_X6 have
become significantly different from zero at a 5% level of sig-
nificance. The irrelevant variables have picked up the effect
of the relevant omitted variable. While this may not matter
if prediction is the main objective of the exercise, it can lead
to very erroneous conclusions if we are trying to identify the
causal effects of the included variables.

6.3.4 Control Variables
In the discussion so far, we have not explicitly distinguished between variables whose causal effect
is of particular interest and other variables that may simply be in the equation to avoid omitted
variable bias in the estimate of the causal coefficient. Variables included in the equation to avoid
omitted variable bias in the coefficient of interest are called control variables. Control variables
may be included in the equation because they have a direct effect on the dependent variable in
their own right or because they can act as proxy variables for relevant omitted variables that are
difficult to observe. For a control variable to serve its purpose and act as a proxy for an omitted
variable, it needs to satisfy a conditional mean independence assumption. To introduce this
assumption, we return to the equation

yi = β1 + β2xi + β3zi + ei (6.29)
where the observation

(
yi, xi, zi

)
is obtained by random sampling and where E

(
ei|xi, zi

)
= 0. Sup-

pose we are interested in β2, the causal effect of xi on yi, and, although β3 provides the causal
effect of zi on yi, we are not concerned about estimating it. Also suppose that zi is omitted from
the equation because it is unobservable or because data on it are too difficult to obtain, leaving
the equation

yi = β1 + β2xi + vi

where vi = β3zi + ei. If zi and xi are uncorrelated, there are no problems. Application of least
squares to yi = β1 + β2xi + vi will yield a consistent estimate for β2. However, as indicated in
(6.28), correlation between zi and xi leads to a bias in the least squares estimator for β2 equal to
β3cov(x, z)∕var(x).

Now consider another variable q that has the property
E
(
zi|xi, qi

)
= E

(
zi|qi

)
(6.30)

This property says that once we know q, knowing x does not provide any more information
about z. It means that x and z will no longer be correlated once q has been partialled out. We say
that zi and xi are conditionally mean independent. An example will help cement this concept.

When labor economists estimate wage equations they are particularly interested in the returns
to education. In particular, what is the causal relationship between more education and higher
wages? Other variables such as experience are typically added to the equation, but they are usually
not the main focus. One variable that is clearly relevant, but difficult to include because it cannot
be observed, is ability. Also, more able people are likely to have more education, and so ability and
education will be correlated. Excluding the variable “ability” will bias the estimate of the causal
effect of education on wages. Suppose, however, that we have observations on IQ. IQ will clearly
be correlated with both education and ability. Will it satisfy the conditional mean independence
assumption? We need to be able to write

E(ABILITY|EDUCATION, IQ) = E(ABILITY|IQ)
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That is, once we know somebody’s IQ, knowing their level of education does not add any extra
information about their ability. Another way to think about it is that education is “as if” it was
randomly assigned, once we have taken IQ into account. One could argue whether this is a rea-
sonable assumption, but, if it is reasonable, then we can proceed to use IQ as a control variable
or a proxy variable to replace ABILITY .

How a Control Variable Works Returning to equation (6.29), namely, yi = β1 + β2xi +
β3zi + ei, we can write

E
(
yi|xi, qi

)
= β1 + β2xi + β3E

(
zi|xi, qi

)
+ E

(
ei|xi, qi

)
(6.31)

If the conditional mean independence assumption in (6.30) holds, then E
(
zi|xi, qi

)
= E

(
zi|qi

)
.

For illustrative purposes, we assume E
(
zi|qi

)
is a linear function of qi, say E

(
zi|qi

)
= δ1 + δ2qi.

We also need to assume that qi has no direct effect on yi, so that E
(
ei|xi, qi

)
= 0.5 Inserting these

results into (6.31), we have
E
(
yi|xi, qi

)
= β1 + β2xi + β3

(
δ1 + δ2qi

)

= β1 + β3δ1 + β2xi + β3δ2qi

= α1 + β2xi + α2qi

where α1 = β1 + β3δ1 and α2 = β3δ2. Defining ui = yi − E
(
yi|xi, qi

)
, we have the equation

yi = α1 + β2xi + α2qi + ui

Since E
(
ui|xi, qi

)
= 0 by definition, least squares estimates of α1, β2, and α2 will be consistent.

Notice that we have been able to estimate β2, the causal effect of x on y, but we have not been able
to consistently estimate β3, the causal effect of z on y.

This result holds if q is a perfect proxy for z. We may want to ask what happens if the condi-
tional mean independence assumption does not hold, making q an imperfect proxy for z. Suppose

E
(
zi|xi, qi

)
= δ1 + δ2qi + δ3xi

In this case q is not a perfect proxy because, after controlling for it, E
(
zi|xi, qi

)
still depends on x.

Using similar algebra, we obtain
E
(
yi|xi, qi

)
=
(
β1 + β3δ1

)
+
(
β2 + β3δ3

)
xi + β3δ2qi

The bias from using this equation to estimate β2 is β3δ3. The bias from omitting z instead of using
the control variable is β3cov(x, z)∕var(x). Thus, for the control variable to be an improvement over
omission of z, we require δ3 < cov(x, z)∕var(x). Now, cov(x, z)∕var(x) is equal to the coefficient
of x in a regression of z on x. Thus, the condition δ3 < cov(x, z)∕var(x) is equivalent to saying that
the coefficient of x in a regression of z on x is lower after the inclusion of q. Put another way, after
partialling out q, the correlation between x and z is reduced but not eliminated.

E X A M P L E 6.13 A Control Variable for Ability

To illustrate the use of a control variable, we consider the
model

ln(WAGE) = β1 + β2EDUC + β3EXPER
+ β4EXPER2 + β5ABILITY + e

and use data stored in the data file koop_tobias_87, a subset
of data used by Koop and Tobias.6 The sample is restricted
to white males who are at least 16 years of age and who
worked at least 30 weeks and 800 hours during the year.
The Koop–Tobias data extend from 1979 to 1993. We use

............................................................................................................................................
5In Exercise 6.4 you are invited to investigate how this assumption can be relaxed.
6G. Koop and J.L. Tobias (2004), “Learning about Heterogeneity in Returns to Schooling”, Journal of Applied
Econometrics, 19, 827–849.
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observations from 1987, a total of N = 1057. The variables
EDUC and EXPER are numbers of years of education
and experience, respectively. The variable ABILITY is
unobserved, but we have instead the proxy variable SCORE,
which is constructed from the 10 component tests of the
Armed Services Vocational Aptitude Battery, administered
in 1980, and standardized for age. Omitting ABILITY , the
least squares estimated equation is

ln(WAGE)
(se)

⋀

= 0.887
(0.293)

+ 0.0728EDUC
(0.0091)

+ 0.01268EXPER
(0.0403)

− 0.00571EXPER
(0.00165)

2

Including the proxy variable SCORE, we obtain

ln(WAGE)
(se)

⋀

= 1.055
(0.297)

+ 0.0592EDUC
(0.0101)

+ 0.1231EXPER
(0.0401)

− 0.00538EXPER
(0.00165)

2 + 0.0604SCORE
(0.0195)

The return to an extra year of education drops from 7.3% to
5.9% after including the variable SCORE, suggesting that
omitting the variable ABILITY has incorrectly attributed
some of its effect to the level of education. There has been
little effect on the coefficients of EXPER and EXPER2.
The conditional mean independence assumption that has to
hold to conclude that extra EDUC causes a 5.9% increase
in WAGE is E(ABILITY|EDUC, EXPER, SCORE) =
E(ABILITY|EXPER, SCORE). After allowing for EXPER
and SCORE, knowing EDUC does not provide any more
information about ABILITY . This assumption is required for
both the education and experience coefficients to be given
a causal interpretation. Finally, we note that the coefficient
of the proxy variable SCORE cannot be given a causal
interpretation.

6.3.5 Choosing a Model
Although choosing a model is fundamental, it is often not an easy task. There is no one set of
mechanical rules that can be applied to come up with the best model. The choice will depend on
the purpose of the model and how the data were collected, and requires an intelligent application of
both theoretical knowledge and the outcomes of various statistical tests. Better choices come with
experience. What is important is to recognize ways of assessing whether a model is reasonable
or not. The following points are helpful for such an assessment.

1. Is the purpose of the model to identify one or more causal effects or is it prediction? Where
causality is the focus, omitted variable bias can invalidate conclusions. Careful selection
of control variables, whether they be variables in their own right or proxy variables, is
necessary. On the other hand, if prediction is the objective, then the major concern is using
variables that have high predictive power because of their correlation with the dependent
variable. Omitted variables bias is not a major concern.

2. Theoretical knowledge, expert assessment of likely behavior, and general understanding
of the nature of the relationship are important considerations for choosing variables and
functional form.

3. If an estimated equation has coefficients with unexpected signs, or unrealistic magnitudes,
they could be caused by a misspecification such as the omission of an important variable.

4. Patterns in least squares residuals can be helpful for uncovering problems caused by an
incorrect functional form. Some illustrations are given in Section 4.3.4.

5. One method for assessing whether a variable or a group of variables should be included
in an equation is to perform significance tests. That is, t-tests for hypotheses such as
H0∶β3 = 0 or F-tests for hypotheses such as H0∶β3 = β4 = 0. Such tests can include coef-
ficients of squares and products of variables as tests for a suitable functional form. Failure
to reject a null hypotheses that one or more coefficients are zero can be an indication that
the variable(s) are irrelevant. However, it is important to remember that failure to reject a
null hypothesis can also occur if the data are not sufficiently rich to disprove the hypothesis.
More will be said about poor data in Section 6.5. For the moment we note that, when
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a variable has an insignificant coefficient, it can either be (a) discarded as an irrelevant
variable, or (b) retained because the theoretical reason for its inclusion is a strong one.

6. Have the leverage, studentized residuals, DFBETAS, and DFFITS measures identified any
influential observations?7 If an unusual observation is not a data error, then understanding
why it occurred may provide useful information for setting up the model.

7. Are the estimated coefficients robust with respect to alternative specifications? If the model
is designed to be a causal one, and estimates of the causal coefficient change dramatically
when different specifications of the model are estimated, or different sets of control vari-
ables are included, then there is cause for concern.

8. A test known as RESET (Regression Specification Error Test) can be useful for detect-
ing omitted variables or an incorrect functional form. Details of this test are provided in
Section 6.3.6.

9. Various model selection criteria, based on maximizing R2, or minimizing the sum of
squared errors (SSE), subject to a penalty for too many variables, have been suggested.
These criteria are more valuable when a model is designed for prediction rather than
causal analysis. For reliable prediction a sum of squared errors that is small relative to
the explanatory power of the model is essential. We describe three of these criteria in
Section 6.4.1: an adjusted R2, the Akaike information criterion (AIC), and the Schwarz
criterion (SC), also known as the Bayesian information criterion (BIC).

10. A more stringent assessment of a model’s predictive ability is to use a “hold-out” sample.
A least squares estimated equation is designed to minimize the within-sample sum of
squared errors. To check out a model’s ability to predict outside the sample, some obser-
vations can be withheld from estimation and the model can be assessed on its ability to
predict the withheld observations. More details are provided in Section 6.4.1.

11. Following the guidelines in the previous 10 points can almost inevitably lead to revisions
of originally proposed models, or to more general experimentation with alternative models.
Searching for a model with “significant” estimates and the selective reporting of a finally
chosen “significant” model is a questionable practice. Not knowing the search process that
led to the selected results makes valid interpretation of the results difficult. Proper reporting
of results should include disclosure of all estimated models and the criteria used for model
selection.

6.3.6 RESET
Testing for model misspecification is a way of asking whether our model is adequate, or whether
we can improve on it. It could be misspecified if we have omitted important variables, included
irrelevant ones, chosen a wrong functional form, or have a model that violates the assumptions
of the multiple regression model. RESET (REgression Specification Error Test) is designed to
detect omitted variables and incorrect functional form. It proceeds as follows.

Suppose that we have specified and estimated the regression model
y = β1 + β2x2 + β3x3 + e

Let (b1, b2, b3) be the least squares estimates, and let
ŷ = b1 + b2x2 + b3x3 (6.32)

be the fitted values of y. Consider the following two artificial models:
y = β1 + β2x2 + β3x3 + γ1ŷ2 + e (6.33)

y = β1 + β2x2 + β3x3 + γ1ŷ2 + γ2ŷ3 + e (6.34)

............................................................................................................................................
7These measures for detecting influential observations are discussed in Sections 4.3.6 and 6.5.3.
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In (6.33), a test for misspecification is a test of H0∶γ1 = 0 against the alternative H1∶γ1 ≠ 0. In
(6.34), testing H0∶γ1 = γ2 = 0 against H1∶γ1 ≠ 0 and/or γ2 ≠ 0 is a test for misspecification.
In the first case, a t- or an F-test can be used. An F-test is required for the second equation.
Rejection of H0 implies that the original model is inadequate and can be improved. A failure to
reject H0 says that the test has not been able to detect any misspecification.

To understand the idea behind the test, note that ŷ2 and ŷ3 will be polynomial functions of x2
and x3. If you square and cube both sides of (6.32), you will get terms such as x2

2, x
3
3, x2x3, x2x2

3,
and so on. Since polynomials can approximate many different kinds of functional forms, if the
original functional form is not correct, the polynomial approximation that includes ŷ2 and ŷ3 may
significantly improve the fit of the model. If it does, this fact will be detected through nonzero
values of γ1 and γ2. Furthermore, if we have omitted variables and these variables are correlated
with x2 and x3, then they are also likely to be correlated with terms such as x2

2 and x2
3, so some of

their effect may be picked up by including the terms ŷ2 and/or ŷ3. Overall, the general philosophy
of the test is if we can significantly improve the model by artificially including powers of the
predictions of the model, then the original model must have been inadequate.

E X A M P L E 6.14 Applying RESET to Family Income Equation

To illustrate RESET we return to the family income equation
considered in Examples 6.10–6.12. In those examples spec-
ifications with different variables included were estimated,
and the results presented in Table 6.1. The full model, with-
out the irrelevant variables, was

ln(FAMINC) = β1 + β2 HEDU + β3 WEDU + β4KL6 + e

Please go back and check Table 6.1, where RESET p-values
for both H0∶γ1 = 0 and H0∶γ1 = γ2 = 0 are presented in
the last two rows of the table. The only instance where
RESET rejects a model at a 5% significance level is where
wife’s education has been excluded and the null hypothesis

is H0∶γ1 = γ2 = 0. Exclusion of KL6 is not picked up by
RESET, most likely because it is not highly correlated with
HEDU and WEDU. Also, when the irrelevant variables
XTRA_X5 and XTRA_X6 are included, and WEDU is
excluded, RESET does not pick up the misspecification. The
likely cause of this failure is the high correlations between
WEDU and the two irrelevant variables.

There are two important lessons from this example.
First, if RESET does not reject a model, that model is not
necessarily a good one. Second, RESET will not always
discriminate between alternative models. Rejection of the
null hypothesis is indicative of a misspecification, but failure
to reject the null hypothesis tells us very little.

6.4 Prediction
The prediction or forecasting problem for a regression model with one explanatory variable was
introduced in Section 4.1. That material extends naturally to the more general model that has
more than one explanatory variable. In this section, we describe that extension, reinforce earlier
material, and provide some more general background.

Suppose we have values on K−1 explanatory variables represented by
!0 =

(
1, x02, x03,… , x0K

)
, and that we wish to use this information to predict or forecast a

corresponding dependent variable value y0. In Appendix 4D we learned that the minimum
mean square error predictor for y0 is the conditional expectation E

(
y0|x0

)
. To make this result

operational, we need to make an assumption about the functional form for E
(
y0|x0

)
, and estimate

the parameters on which it depends. In line with the multiple regression model, we assume that
the conditional expectation is the linear-in-the-parameters function

E
(
y0|x0

)
= β1 + β2x02 + β3x03 + · · · + βKx0K (6.35)

Defining e0 = y0 − E
(
y0|x0

)
, we can write

y0 = β1 + β2x02 + β3x03 + · · · + βKx0K + e0 (6.36)
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To estimate the parameters
(
β1, β2,… , βK

)
in (6.35), we assume we have i = 1, 2,… ,N observa-

tions yi and !i = (1, xi2, xi3,… , xiK) such that
E
(
yi|xi

)
= β1 + β2xi2 + β3xi3 + · · · + βKxiK (6.37)

Define ei = yi − E
(
yi|xi

)
so that the model used to estimate

(
β1, β2,… , βK

)
can be written as

yi = β1 + β2xi2 + β3xi3 + · · · + βKxiK + ei (6.38)
Equations (6.35)–(6.38) make up the predictive model. Equations (6.37) and (6.38) refer to the
sample observations used to estimate the parameters. Equation (6.35) is the predictor that would
be used if the parameters

(
β1, β2,… βK

)
were known. Equation (6.36) incorporates the realized

value y0 and the error e0. When we think of prediction or forecasting—we use the two terms
interchangeably—we naturally think of forecasting outside the sample observations. Under these
circumstances y0 will be unobserved at the time the forecast is made. With time-series data, x0 will
be future values of the explanatory variables for which a forecast is required; for cross-section data
it will be values for an individual or some other economic unit that was not sampled. There are,
however, instances where we make within-sample predictions or forecasts despite the fact that we
have observed realized values for y for those observations. One example is their use in RESET
where the regression equation was augmented with the squares and cubes of the within-sample
predictions. When we are considering within-sample predictions, x0 will be identical to one of
the xi, or it can be viewed as generic notation to represent all xi.

Note that (6.36) and (6.38) do not have to be causal models. To have a good predictive model,
(yi, y0) needs to be highly correlated with the variables in (xi, x0), but there is no requirement that
(yi, y0) be caused by (xi, x0). There is no requirement that all variables that affect y have to be
included and there is no such thing as omitted variable bias. In (6.38), we are simply estimating
the conditional expectation of the variables that are included. Under these circumstances, the
interpretation of (ei, e0) is different from its interpretation in a causal model. In a causal model
e represents the effect of variables omitted from the model; it is important that these effects are
isolated from those in the model through the exogeneity assumption. We think of e as part of the
data generating process. In a predictive model the coefficients in the conditional expectation can
represent the direct effect of included variables and the indirect effect of excluded variables. The
error term e is simply the difference between the realized value y and its conditional expectation;
it is the forecasting error that would occur if

(
β1, β2,… , βK

)
were known and did not have to be

estimated. It does not take on an “all-other-variables” interpretation.
Application of least squares to (6.35) will yield unbiased estimates of

(
β1, β2,… , βK

)
con-

ditional on # =
(
!1, !2,… , !N

)
. If we assume further that var

(
ei|X

)
= σ2 and E

(
eiej|X

)
= 0 for

i ≠ j, then the least squares estimator is best linear unbiased conditional on X. Unconditionally, it
will be a consistent estimator providing assumptions about the limiting behavior of the explana-
tory variables hold.8 Having obtained the least squares estimates (b1, b2, …, bK), we can define
an operational predictor for y0 as (6.35) with the unknown βk replaced by their estimators. That is,

ŷ0 = b1 + b2x02 + b3x03 + · · · + bKx0K (6.39)
An extra assumption that we need is that

(
e0|x0

)
is uncorrelated with

(
ei|X

)
for i = 1, 2,… ,N

and i ≠ 0. We also assume var
(
e0|x0

)
= var

(
ei|X

)
= σ2, an assumption used when deriving the

variance of the forecast error.
After replacing the βk with bk, the forecast error is given by

! = y0 − ŷ0
=
(
β1 − b1

)
+
(
β2 − b2

)
x02 +

(
β3 − b3

)
x03 + · · · +

(
βK − bK

)
x0K + e0 (6.40)

There are two components in this forecast error: the errors
(
βk − bk

)
from estimating the unknown

parameters, and an error e0 which is the deviation of the realized y0 from its conditional mean.
The predictor ŷ0 is unbiased in the sense that E

(
! |x0,X

)
= 0 and it is a best linear unbiased

............................................................................................................................................
8See Section 5.7.1 for an illustration in the case of simple regression.
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predictor in the sense that the conditional variance var
(
! |x0,X

)
is no greater than that of any

other linear unbiased predictor. The conditional variance of the prediction error is

var
(
! |x0,X

)
= var

[(
K∑

k=1

(
βk − bk

)
x0k

)|||||
x0,X

]
+ var

(
e0|x0,X

)

= var
[(

K∑
k=1

bkx0k

)|||||
x0,X

]
+ σ2

=
K∑

k=1
x2

0kvar
(
bk|x0,X

)
+ 2

K∑
k=1

K∑
j=k+1

x0kx0jcov
(
bk, bj|x0,X

)
+ σ2 (6.41)

In the first line of this equation we have assumed that the covariance between
(
βk − bk

)
and e0 is

zero. This assumption will indeed be true for out-of-sample prediction and where e0 is uncorre-
lated with the sample data used to estimate the βk. For within-sample prediction the situation is
more complicated. Strictly speaking, if e0 is equal to one of the ei in the sample, then

(
βk − bk

)
and e0 will be correlated. This correlation will not be large relative to the overall variance of f ,
however, and tends to get ignored in software calculations. In the second line of (6.41) βkx0k can be
treated as a constant and so var

((
βk − bk

)
x0k|x0,X

)
= var

(
bkx0k|x0,X

)
. The third line follows

from the rule for calculating the variance of a weighted sum in (P.20) of the Probability Primer.
Each of the terms in the expression for var

(
! |x0,X

)
involves σ2. To obtain the estimated

variance of the forecast error var
⋀(

! |x0,X
)
, we replace σ2 with its estimator σ̂2. The standard error

of the forecast is given by se(! ) =
√

var
⋀(

! |x0,X
)
. If the random errors ei and e0 are normally

distributed, or if the sample is large, then
!

se(! ) =
y0 − ŷ0√

var
⋀(

y0 − ŷ0|x0,X
) ∼ t(N−K) (6.42)

Following the steps we have used many times, a 100(1 − α)% interval predictor for y0 is
ŷ0 ± tcse(! ), where tc is a critical value from the t(N−K)-distribution.

Before providing an example there are two practical considerations worth mentioning.
First, in (6.41), the error variance σ2 is typically much larger than the variance of the other
component—that part of the forecast error attributable to estimation of the βk. Consequently,
this latter component is sometimes ignored and se(! ) = σ̂ is used. Second, the framework
presented so far does not capture many of the typical characteristics of time-series forecasting.
With time-series forecasting, some of the explanatory variables will usually be lagged values of
the dependent variable. This means that the conditional expectation of a y0 will depend on past
values of itself. The sample information contributes to the conditional expectation of y0. In the
above exposition we have treated x0 as future values of the explanatory variables. The sample
information has only contributed to the predictor through the estimation of the unknown βk.
In other words, E

(
y0|x0

)
= E

(
y0|x0,X, y), where y is used to denote all observations on the

dependent variable. A more general scenario for time-series forecasting where this assumption
is relaxed is considered in Chapter 9.

E X A M P L E 6.15 Forecasting SALES for the Burger Barn

We are concerned with finding a 95% prediction interval
for SALES at Big Andy’s Burger Barn when PRICE0 = 6,
ADVERT0 = 1.9 and ADVERT2

0 = 3.61. These are the
values considered by Big Andy in Example 6.6. In terms
of the general notation x0 = (1, 6, 1.9, 3.61). The point
prediction is

SALES
⋀

0 = 109.719 − 7.640PRICE0 + 12.1512ADVERT0

− 2.768ADVERT2
0

= 109.719 − 7.640 × 6 + 12.1512 × 1.9 − 2.768
× 3.61

= 76.974
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With the settings proposed by Big Andy, we forecast that
sales will be $76,974.

To obtain a prediction interval, we first need to
compute the estimated variance of the forecast error.
Using equation (6.41) and the covariance matrix values in
Table 6.3, we have

var
⋀(

! |x0,X
)
= σ̂2 + var

⋀(
b1|x0,X

)
+ x2

02var
⋀(

b2|x0,X
)

+ x2
03var
⋀(

b3|x0,X
)
+ x2

04var
⋀(

b4|x0,X
)

+ 2x02cov
⋀(

b1, b2|x0,X
)

+ 2x03cov
⋀(

b1, b3|x0,X
)

+ 2x04cov
⋀(

b1, b4|x0,X
)

+ 2x02x03cov
⋀(

b2, b3|x0,X
)

+ 2x02x04cov
⋀(

b2, b4|x0,X
)

+ 2x03x04cov
⋀(

b3, b4|x0,X
)

= 21.57865 + 46.22702 + 62 × 1.093988

+ 1.92 × 12.6463 + 3.612 × 0.884774

+ 2 × 6 × (−6.426113)

+ 2 × 1.9 × (−11.60096)

+ 2 × 3.61 × 2.939026

+ 2 × 6 × 1.9 × 0.300406

+ 2 × 6 × 3.61 × (−0.085619)

+ 2 × 1.9 × 3.61 × (−3.288746)

= 22.4208

T A B L E 6.3
Covariance Matrix for Andy’s
Burger Barn Model

b1 b2 b3 b4

b1 46.227019 −6.426113 −11.600960 2.939026
b2 −6.426113 1.093988 0.300406 −0.085619
b3 −11.600960 0.300406 12.646302 −3.288746
b4 2.939026 −0.085619 −3.288746 0.884774

The standard error of the forecast error is se(! ) =√
22.4208 = 4.7351, and the relevant t-value is t(0.975, 71) =

1.9939, giving a 95% prediction interval of

(76.974 − 1.9939 × 4.7351, 76.974 + 1.9939 × 4.7351)
= (67.533, 86.415)

We predict, with 95% confidence, that Big Andy’s settings for
price and advertising expenditure will yield SALES between
$67,533 and $86,415.

6.4.1 Predictive Model Selection Criteria
In this section we consider three model selection criteria: (i) R2 and R

2, (ii) AIC, and (iii) SC
(BIC), and describe how a hold-out sample can be used to evaluate a model’s predictive or forecast
ability. Throughout the section you should keep in mind that we are not recommending blind
application of any of these criteria. They should be treated as devices that provide additional
information about the relative merits of alternative models, and they should be used in conjunction
with the other considerations listed in Section 6.3.5 and in the introduction to Section 6.3.

Choice of a model based exclusively on R
2, AIC, or SC involves choosing a model that min-

imizes the sum of squared errors with a penalty for adding extra variables. While these criteria
can be used for both predictive and causal models, their goal of minimizing a function of the sum
of squared errors rather than focusing on the coefficient, make them more suitable for predictive
model selection. Another common feature of the criteria is that they are suitable only for compar-
ing models with the same dependent variable, not for models with different dependent variables
such as y and ln(y). More general versions of the AIC and SC, based on likelihood functions9,
............................................................................................................................................
9An introduction to maximum likelihood estimation can be found in Appendix C.8.
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are available for models with transformations of the dependent variable, but we do not consider
them here.

R2 and R
2

In Chapters 4 and 5, we introduced the coefficient of determination
R2 = 1 – SSE∕SST as a measure of goodness of fit. It shows the proportion of variation in
a dependent variable explained by variation in the explanatory variables. Since it is desirable
to have a model that fits the data well, there can be a tendency to think that the best model is
the one with the highest R2. There are at least two problems with this line of thinking. First, if
cross-sectional data are being used to estimate a causal effect, then low R2’s are typical and not
necessarily a concern. What is more important is to avoid omitted variable bias and to have a
sample size sufficiently large to get a reliable estimate of the coefficient of interest.

The second problem is one related to predictive models, namely, that comparing models on
the basis of R2 is only legitimate if the models have the same number of explanatory variables.
Adding more variables always increases R2 even if the variables added have no justification. As
variables are added the sum of squared errors SSE goes down and thus R2 goes up. If the model
contains N − 1 variables, then R2 = 1.

An alternative measure of goodness of fit called the adjusted-R2, denoted as R
2, has been

suggested to overcome this problem. It is computed as

R
2
= 1 − SSE∕(N − K)

SST∕(N − 1)
This measure does not always go up when a variable is added because of the degrees of freedom
term N − K in the numerator. As the number of variables K increases, SSE goes down, but so does
N − K. The effect on R

2 depends on the amount by which SSE falls. While solving one problem,
this corrected measure of goodness of fit unfortunately introduces other problems. It loses its
interpretation; R

2 is no longer the proportion of explained variation. Also, it can be shown that
if a variable is added to an equation, say with coefficient βK, then R

2 will increase if the t-value
for testing the hypothesis H0∶βK = 0 is greater than one. Thus, using R

2 as a device for selecting
the appropriate set of explanatory variables is like using a hypothesis test for significance of a
coefficient with a critical value of 1, a value much less than that typically used with 5% and 10%
levels of significance. Because of these complications, we prefer to report the unadjusted R2 as a
goodness-of-fit measure, and caution is required if R

2 is used for model selection. Nevertheless,
you should be familiar with R

2. You will see it in research reports and on the output of software
packages.

Information Criteria Selecting variables to maximize R
2 can be viewed as selecting vari-

ables to minimize SSE, subject to a penalty for introducing too many variables. Both the AIC and
the SC work in a similar way but with different penalties for introducing too many variables. The
Akaike information criterion (AIC) is given by

AIC = ln
(SSE

N

)
+ 2K

N
(6.43)

and the Schwarz criterion (SC), also known as the Bayesian information criterion (BIC), is
given by

SC = ln
(SSE

N

)
+ K ln(N)

N
(6.44)

In each case the first term becomes smaller as extra variables are added, reflecting the decline in
the SSE, but the second term becomes larger because K increases. Because Kln(N)∕N > 2K∕N
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for N ≥ 8, in reasonable sample sizes the SC penalizes extra variables more heavily than does the
AIC. Using these criteria, the model with the smallest AIC, or the smallest SC, is preferred.

To get values of the more general versions of these criteria based on maximized values of
the likelihood function you need to add [1 + ln(2π)] to (6.43) and (6.44). It is good to be aware
of this fact in case your computer software reports the more general versions. However, although
it obviously changes the AIC and SC values, adding a constant does not change the choice of
variables that minimize the criteria.

Using a Hold-Out Sample When a model is designed for prediction or forecasting, we
are naturally interested in its ability to forecast dependent variable values that have not yet been
observed. To assess a model on this basis, we could make some forecasts and then compare these
forecasts with the corresponding realizations after they occur. However, if we are in the model
construction phase of an investigation, it is unlikely we would want to wait for extra observations.
A way out of this dilemma is to hold back some of the observations from estimation and then eval-
uate the model on the basis of how well it can predict the omitted observations. Suppose we have
a total of N observations of which N1 are used for estimation and N2 = N − N1 are held back to
evaluate a model’s forecasting ability. Thus, we have estimates

(
b1, b2,… , bK

)
from observations(

yi, !i
)
, i = 1, 2,… ,N1 and we calculate the predictions

ŷi = b1 + b2xi2 + · · · + bKxiK i = N1 + 1,N2 + 2,… ,N

A measure of the model’s out-of-sample forecasting ability is the root mean squared error
(RMSE)

RMSE =

√
1

N2

N∑
i=N1+1

(
yi − ŷi

)2

We expect this quantity to be larger than its within-sample counterpart σ̂ =√∑N1
i=1
(
yi − ŷi

)2/(N1 − K
)

because the least squares estimation procedure is such that
∑N1

i=1
(
yi − ŷi

)2 is minimized. Models can be compared on the basis of their hold-out RMSEs.

E X A M P L E 6.16 Predicting House Prices

Real estate agents and potential homebuyers are interested in
valuing houses or predicting the price of a house with particu-
lar characteristics. There are many factors that have a bearing
on the price of a house, but for our predictive model we will
consider just two, the age of the house in years (AGE), and
its size in hundreds of square feet (SQFT). The most general
model we consider is
ln(PRICE) = β1 + β2AGE + β3SQFT + β4AGE2 + β5SQFT2

+ β6AGE × SQFT + e

where PRICE is the house price in thousands of dollars. Of
interest is whether some or all of the quadratic terms AGE2,
SQFT2, and AGE × SQFT improve the predictive ability of
the model. For convenience, we evaluate predictive ability in
terms of ln(PRICE) not PRICE. We use data on 900 houses

sold in Baton Rouge, Louisiana in 2005, stored in the data file
br5. For a comparison based on the RMSE of predictions (but
not the other criteria) we randomly chose 800 observations
for estimation and 100 observations for the hold-out sample.
After this random selection, the observations were ordered so
that the first 800 were used for estimation and the last 100 for
predictive assessment.

Values of the criteria for the various models appear
in Table 6.4. Looking for the model with the highest R

2,
and the models with the smallest values (or largest negative
numbers) for the AIC and SC, we find that all three criteria
prefer model 2 where AGE2 is included, but SQFT2 and
AGE × SQFT are excluded. Using the out-of-sample RMSE
criterion, model 6, with AGE × SQFT included in addition
to AGE2, is slightly favored over model 2.
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T A B L E 6.4 Model Selection Criteria for House Price Example

Model

Variables included
in addition to
(SQFT, AGE) R2 R

2 AIC SC RMSE
1 None 0.6985 0.6978 –2.534 –2.518 0.2791
2 AGE2 0.7207 0.7198∗ –2.609∗ –2.587∗ 0.2714
3 SQFT2 0.6992 0.6982 –2.535 –2.513 0.2841
4 AGE × SQFT 0.6996 0.6986 –2.536 –2.515 0.2790
5 AGE2, SQFT2 0.7208 0.7196 –2.607 –2.580 0.2754
6 AGE2, AGE × SQFT 0.7210 0.7197 –2.608 –2.581 0.2712*
7 SQFT2, AGE × SQFT 0.7006 0.6993 –2.537 –2.510 0.2840
8 SQFT2, AGE2, AGE × SQFT 0.7212∗ 0.7197 –2.606 –2.574 0.2754

∗Best model according to each of the criteria.

6.5 Poor Data, Collinearity, and Insignificance
Most economic data that are used for estimating economic relationships are nonexperimental.
Indeed, in most cases they are simply “collected” for administrative or other purposes. They
are not the result of a planned experiment in which an experimental design is specified for the
explanatory variables. In controlled experiments the right-hand-side variables in the model can
be assigned values in such a way that their individual effects can be identified and estimated
with precision. When data are the result of an uncontrolled experiment, many of the economic
variables may move together in systematic ways. Such variables are said to be collinear, and the
problem is labeled collinearity. In this case there is neither a guarantee that the data will be “rich
in information” nor that it will be possible to isolate the economic relationship or parameters of
interest.

As an example, consider the problem faced by the marketing executives at Big Andy’s Burger
Barn when they try to estimate the increase in sales revenue attributable to advertising that appears
in newspapers and the increase in sales revenue attributable to coupon advertising. Suppose that
it has been common practice to coordinate these two advertising devices, so that at the same
time that advertising appears in the newspapers there are flyers distributed containing coupons
for price reductions on hamburgers. If variables measuring the expenditures on these two forms
of advertising appear on the right-hand side of a sales revenue equation such as (5.2), then the
data on these variables will show a systematic, positive relationship; intuitively, it will be difficult
for such data to reveal the separate effects of the two types of ads. Although it is clear that total
advertising expenditure increases sales revenue, because the two types of advertising expenditure
move together, it may be difficult to sort out their separate effects on sales revenue.

As a second example, consider a production relationship explaining output over time as
a function of the amounts of various quantities of inputs employed. There are certain factors
of production (inputs), such as labor and capital, that are used in relatively fixed proportions.
As production increases, the changing amounts of two or more such inputs reflect equipropor-
tionate increases. Proportional relationships between variables are the very sort of systematic
relationships that epitomize “collinearity.” Any effort to measure the individual or separate effects
(marginal products) of various mixes of inputs from such data will be difficult.

It is not just relationships between variables in a sample of data that make it difficult to isolate
the separate effects of individual explanatory variables. If the values of an explanatory variable
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do not vary or change much within a sample of data, then it is clearly difficult to use that data to
estimate a coefficient that describes the effect of change in that variable. It is hard to estimate the
effect of change if there has been no change.

6.5.1 The Consequences of Collinearity
The consequences of collinearity and/or lack of variation depend on whether we are examining an
extreme case in which estimation breaks down or a bad, but not extreme, case in which estimation
can still proceed but our estimates lack precision. In Section 5.3.1, we considered the model

yi = β1 + β2xi2 + β3xi3 + ei

and wrote the variance of the least squares estimator for β2 as

var
(
b2|X

)
= σ2

(
1 − r2

23
)∑N

i=1
(
xi2 − x2

)2 (6.45)

where r23 is the correlation between x2 and x3. Exact or extreme collinearity exists when x2 and
x3 are perfectly correlated, in which case r23 = 1 and var

(
b2|X

)
goes to infinity. Similarly, if x2

exhibits no variation ∑(
xi2 − x2

)2 equals zero and var
(
b2|X

)
again goes to infinity. In this case,

x2 is collinear with the constant term. In general, whenever there are one or more exact linear
relationships among the explanatory variables, then the condition of exact collinearity exists. In
this case, the least squares estimator is not defined. We cannot obtain estimates of βk’s using the
least squares principle. One of our least squares assumptions MR5, which says that the values of
xik are not exact linear functions of the other explanatory variables, is violated.

The more usual case is one in which correlations between explanatory variables might be
high, but not exactly one; variation in explanatory variables may be low but not zero; or linear
dependencies between more than two explanatory variables could be high but not exact. These
circumstances do not constitute a violation of least squares assumptions. By the Gauss–Markov
theorem, the least squares estimator is still the best linear unbiased estimator. We might still be
unhappy, however, if the best we can do is constrained by the poor characteristics of our data.
From (6.45), we can see that when r23 is close to one or ∑(

xi − x2
)2 is close to zero, the variance

of b2 will be large. A large variance means a large standard error, which means the estimate may
not be significantly different from zero and an interval estimate will be wide. The sample data
have provided relatively imprecise information about the unknown parameters.

Although (6.45) is only valid for a regression model with two explanatory variables, with a
few simple changes we can generalize this equation to gain insights into collinearity in the more
general multiple regression model with K − 1 explanatory variables. First, recall from Section
4.2.2 that a simple correlation between two variables is the same as the R2 from the regression
of one variable on another, so that r2

23 = R2
2•, where R2

2• is the R2 from the so-called auxiliary
regression xi2 = α2 + α3xi3 + vi. Then, another way to write (6.45) is

var
(
b2|X

)
= σ2

∑(
xi2 − x2

)2 (1 − R2
2•

) (6.46)

The beauty of this equation is that it holds for the general model yi = β1 + β2xi2 + β3xi3 + · · · +
βKxiK + ei, where R2

2• is the R2 from the auxiliary regression xi2 = α2 + α3xi3 + · · · + αKxiK + vi.
The ratio

VIF = 1∕
(
1 − R2

2•

)

is called the variance inflation factor. If R2
2• = 0, indicating no collinearity—no vari-

ation in x2 can be explained by the other explanatory variables—then VIF = 1 and
var

(
b2|X

)
= σ2/∑(

xi2 − x2
)2. On the other hand, if R2

2• = 0.90, indicating that 90% of the vari-
ation in x2 can be explained by the other regressors, then VIF = 10 and var

(
b2|#

)
is ten times
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larger than the than it would be if there was no collinearity present. VIF is sometimes used
to describe the severity of collinearity in a regression. Auxiliary regression R2

k•’s and variance
inflation factors can be found for every explanatory variable in a regression; equations analogous
to (6.46) hold for each of the coefficient estimates.

By examining R2
2•, we can obtain a very informative third representation. The R2 from the

regression xi2 = α2 + α3xi3 + · · · + αKxiK + vi is the portion of the total variation in x2 about its
mean, ∑(

xi2 − x2
)2, explained by the model. Let the fitted values from the auxiliary regres-

sion be x̂i2 = a2 + a3xi3 + · · · + aKxiK , where
(
a2, a3,… , aK

)
are the least squares estimates of(

α2, α3,… , αK
)
. A residual from the auxiliary regression is xi2 − x̂i2 and its R2 can be written as

R2
2• = 1 −

∑(
xi2 − x̂i2

)2

∑(
xi2 − x2

)2

Substituting this into (6.46), we have

var
(
b2|X

)
= σ2

∑(
xi2 − x̂i2

)2 (6.47)

The term ∑(
xi2 − x̂i2

)2 is the sum of squared least squares residuals from the auxiliary regres-
sion. When collinearity is stronger, with a larger amount of variation in x2 explained by the other
regressors, the smaller ∑(

xi2 − x̂i2
)2 becomes and the larger var

(
b2|#

)
becomes. It is the varia-

tion in x2 that is not explained by the other regressors that increases the precision of least squares
estimation.

The effects of imprecise estimation resulting from collinearity can be summarized as
follows:

1. When estimator standard errors are large, it is likely that the usual t-tests will lead to the
conclusion that parameter estimates are not significantly different from zero. This outcome
occurs despite possibly high R2- or F-values indicating significant explanatory power of the
model as a whole. The problem is that collinear variables do not provide enough information
to estimate their separate effects, even though theory may indicate their importance in the
relationship.

2. Estimators may be very sensitive to the addition or deletion of a few observations, or to the
deletion of an apparently insignificant variable.

3. Despite the difficulties in isolating the effects of individual variables from such a sample,
accurate forecasts may still be possible if the nature of the collinear relationship remains
the same within the out-of-sample observations. For example, in an aggregate production
function where the inputs labor and capital are nearly collinear, accurate forecasts of output
may be possible for a particular ratio of inputs but not for various mixes of inputs.

6.5.2 Identifying and Mitigating Collinearity
Because nonexact collinearity is not a violation of least squares assumptions, it does not make
sense to go looking for a problem if there is no evidence that one exists. If you have estimated
an equation where the coefficients are precisely estimated and significant, they have the expected
signs and magnitudes, and they are not sensitive to adding or deleting a few observations, or an
insignificant variable, then there is no reason to try and identify or mitigate collinearity. If there
are highly correlated variables, they are not causing you a problem. However, if you have a poorly
estimated equation that does not live up to expectations, it is useful to establish why the estimates
are poor.

One simple way to detect collinear relationships is to use sample correlation coefficients
between pairs of explanatory variables. These sample correlations are descriptive measures
of linear association. However, collinear relationships that involve more than two explanatory
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variables are better detected using auxiliary regressions. If an R2
k• is high, say greater than 0.8,

then a large portion of the variation in xk is explained by the other regressors, and that may have
a detrimental effect on the precision of estimation of βk. If an auxiliary regression R2

k• is not high,
then the precision of an estimator bk is not unduly affected by collinearity, although it may still
suffer if the variation in xk is inadequate.

The collinearity problem is that the data do not contain enough “information” about the indi-
vidual effects of explanatory variables to permit us to estimate all the parameters of the statistical
model precisely. Consequently, one solution is to obtain more information and include it in the
analysis. One form the new information can take is more, and better, sample data. Unfortunately,
in economics, this is not always possible. Cross-sectional data are expensive to obtain, and, with
time-series data, one must wait for the data to appear. Alternatively, if new data are obtained via
the same nonexperimental process as the original sample of data, then the new observations may
suffer the same collinear relationships and provide little in the way of new, independent informa-
tion. Under these circumstances the new data will help little to improve the precision of the least
squares estimates.

A second way of adding new information is to introduce, as we did in Section 6.2, nonsample
information in the form of restrictions on the parameters. This nonsample information may then
be combined with the sample information to provide restricted least squares estimates. The good
news is that using nonsample information in the form of linear constraints on the parameter values
reduces estimator sampling variability. The bad news is that the resulting restricted estimator is
biased unless the restrictions are exactly true. Thus it is important to use good nonsample infor-
mation, so that the reduced sampling variability is not bought at a price of large estimator biases.

E X A M P L E 6.17 Collinearity in a Rice Production Function

To illustrate collinearity we use data on rice production from
a cross section of Philippine rice farmers to estimate the pro-
duction function

ln(PROD) = β1 + β2ln(AREA) + β3ln(LABOR)
+ β4ln(FERT) + e (6.48)

where PROD denotes tonnes of freshly threshed rice, AREA
denotes hectares planted, LABOR denotes person-days of
hired and family labor and FERT denotes kilograms of
fertilizer. Data for the years 1993 and 1994 can be found in
the file rice5. One would expect collinearity may be an issue.
Larger farms with more area are likely to use more labor

T A B L E 6.5 Rice Production Function Results from 1994 Data

Variable
Coefficient

bk se(bk)

95%
Interval
Estimate p -Value∗

Auxiliary
Regression

R2 VIF
C −1.9473 0.7385 0.0119
ln(AREA) 0.2106 0.1821 [−0.1573, 0.5786] 0.2543 0.891 9.2
ln(LABOR) 0.3776 0.2551 [−0.1379, 0.8931] 0.1466 0.944 17.9
ln(FERT) 0.3433 0.1280 [0.0846, 0.6020] 0.0106 0.870 7.7

∗p-value for H0∶βk = 0 versus H1∶βk ≠ 0

and more fertilizer than smaller farms. The likelihood
of a collinearity problem is confirmed by examining the
results in Table 6.5, where we have estimated the function
using data from 1994 only. These results convey very little
information. The 95% interval estimates are very wide,
and, because the coefficients of ln(AREA) and ln(LABOR)
are not significantly different from zero, their interval
estimates include a negative range. The high auxiliary R2’s
and correspondingly high variance inflation factors point to
collinearity as the culprit for the imprecise results. Further
evidence is a relatively high R2 = 0.875 from estimating
(6.48), and a p-value of 0.0021 for the joint test of the two
insignificant coefficients, H0∶β2 = β3 = 0.
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We consider two ways of improving the precision of
our estimates: (1) including non-sample information, and
(2) using more observations. For non-sample information,
suppose that we are willing to accept the notion of constant
returns to scale. That is, increasing all inputs by the same
proportion will lead to an increase in production of the same
proportion. If this constraint holds, then β2 + β3 + β4 = 1.
Testing this constraint as a null hypothesis yields a p-value
of 0.313; so it is not a constraint that is incompatible with
the 1994 data. Substituting β2 + β3 + β4 = 1 into (6.48) and
rearranging the equation gives

ln
(PROD

AREA

)
= β1 + β3ln

(LABOR
AREA

)
+ β4ln

(FERT
AREA

)
+ e

(6.49)
This equation can be viewed as a “yield” equation. Rice yield
per hectare is a function of labor per hectare and fertilizer
per hectare. Results from estimating it appear in Table 6.6.
Has there been any improvement? The answer is not much!
The estimate for β3 is no longer “insignificant,” but that
is more attributable to an increase in the magnitude of b3

T A B L E 6.6 Rice Production Function Results from 1994 Data with Constant Returns to Scale

Variable
Coefficient

bk se(bk
)

95%
Interval
Estimate p -Value∗

C −2.1683 0.7065 0.0038
ln(AREA) 0.2262 0.1815 [−0.1474, 0.5928] 0.2197
ln(LABOR) 0.4834 0.2332 [0.0125, 0.9544] 0.0445
ln(FERT) 0.2904 0.1171 [0.0539, 0.5268] 0.0173

∗p-value for H0∶βk = 0 versus H1∶βk ≠ 0

T A B L E 6.7 Rice Production Function Results from Data for 1993 and 1994

Variable Coefficient se(bk
) 95% Interval

Estimate p -Value∗
Auxiliary

Regression
R2 VIF

C −1.8694 0.4565 0.0001
ln(AREA) 0.2108 0.1083 [−0.0045, 0.4261] 0.0549 0.870 7.7
ln(LABOR) 0.3997 0.1307 [0.1399, 0.6595] 0.0030 0.901 10.1
ln(FERT) 0.3195 0.0635 [0.1932, 0.4457] 0.0000 0.776 4.5

∗p-value for H0∶βk = 0 versus H1∶βk ≠ 0

than to a reduction in its standard error. The reduction in
standard errors is only marginal, and the interval estimates
are still wide, conveying little information. The squared cor-
relation between ln

(
LABOR

/
AREA

)
and ln

(
FERT

/
AREA

)
is 0.414 which is much less than the earlier auxiliary
R2’s, but, nevertheless, the new estimates are relatively
imprecise.

As an alternative to injecting non-sample information
into the estimation procedure, we examine the effect of
including more observations by combining the 1994 data
with observations from 1993. The results are given in
Table 6.7. Here there has been a substantial reduction in
the standard errors, with considerable improvement in the
precision of the estimates, despite the fact that the variance
inflation factors still remain relatively large. The greatest
improvement has been for the coefficient of ln(FERT),
which has the lowest variance inflation factor. The interval
estimates for the other two coefficients are still likely to be
wider than a researcher would desire, but at least there has
been some improvement.
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T A B L E 6.8 Statistics for Identifying Influential Observations

Influence Statistic Formula Investigative Threshold

Leverage hi =
var
⋀(

êi
)
− σ̂2

σ̂2 hi >
2K
N

or 3K
N

Studentized residual êstu
i =

êi

σ̂(i)
(
1 − hi

)1/2
|||ê

stu
i
||| > 2

DFBETAS DFBETASki =
bk − bk(i)(

σ̂(i) ∕σ̂
)
× se

(
bk
) ||DFBETASki

|| >
2√
N

DFFITS DFFITSi =
( hi

1 − hi

)1/2
êstu

i
||DFFITSi

|| > 2
(K

N

)1/2

6.5.3 Investigating Influential Observations
In Section 4.3.6, we introduced a number of measures for detecting influential observations. The
purpose of having such measures is first to detect whether there may have been a data error, and
second, if the accuracy of the data is confirmed, to identify unusual observations that may be wor-
thy of further investigation. Are there observations that can be explained within the context of the
proposed model? Are there other factors at work that could have led to the unusual observations?

In Section 4.3.6, the measures were introduced within the context of the simple regression
model with one explanatory variable. The same measures are relevant for the multiple regression
model, but some of the formulas change slightly to accommodate the extra regressors. Now would
be a good time to go back and reread Section 4.3.6. Are you back? Now that you understand the
concepts, we can proceed. The important concepts introduced in that section were the leverage
of the ith observation, hi, the studentized residual, êstu

i , the sensitivity of a coefficient estimate to
omission of the ith observation, DFBETASki, and the sensitivity of a prediction to omission of
the ith observation DFFITSi. Multiple regression versions of these measures are summarized in
Table 6.8 along with conventional thresholds above which further scrutiny of an observation may
be warranted. Remember, the purpose is not to throw out unusual observations but to learn from
them. They may reveal some important characteristics of the data.

E X A M P L E 6.18 Influential Observations in the House Price Equation

To illustrate the identification of potentially influential obser-
vations, we return to Example 6.16 where, using predictive
model selection criteria, the preferred equation for predicting
house prices was

ln(PRICE) = β1 + β2SQFT + β3AGE + β4AGE2 + e

In a sample of 900 observations it is not surprising to find
a relatively large number of data points where the various
influence measures exceed the recommended thresholds. As
examples, in Table 6.9 we report the values of the measures

for those observations with the three largest DFFITS. It
turns out that the other influence measures for these three
observations also have large values. In parentheses next to
each of the values is the rank of its absolute value. When we
check the characteristics of the three unusual observations,
we find observation 540 is the newest house in the sample
and observation 150 is the oldest house. Observation 411
is both old and large; it is the 10th largest (99th percentile)
and the sixth oldest (percentile 99.4) house in the sample. In
Exercise 6.20, you are invited to explore further the effect of
these observations.
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T A B L E 6.9 Influence Measures for House Price Equation

Observation hi (rank) êstu
i (rank) DFFITSi (rank) DFBETASki (rank)

Threshold 2.5K
N

= 0.011 2 2
( K

N

)1∕2
= 0.133

2√
N

= 0.067

SQFT AGE AGE2

411 0.0319 (10) −4.98 (1) 0.904 (1) −0.658 (1) 0.106 (17) −0.327 (3)
524 0.0166 (22) −4.31 (3) 0.560 (2) 0.174 (9) 0.230 (2) −0.381 (2)
150 0.0637 (2) 1.96 (48) −0.511 (3) −0.085 (29) −0.332 (1) 0.448 (1)

6.6 Nonlinear Least Squares
We have discovered how the least squares estimation technique can be used to estimate a variety of
nonlinear functions. They include log-log models, log-linear models, and models with quadratic
and interaction terms. However, the models we have encountered so far have all been linear in
the parameters β1, β2, … , βK.10 In this section we discuss estimation of models that are nonlinear
in the parameters. To give an appreciation of what is meant by such a model, it is convenient to
begin with the following simple artificial example,

yi = βxi1 + β2xi2 + ei (6.50)

where yi is a dependent variable, xi1 and xi2 are explanatory variables, β is an unknown parame-
ter that we wish to estimate, and the ei satisfy the multiple regression assumptions MR1–MR5.
This example differs from the conventional linear model because the coefficient of xi2 is equal to
the square of the coefficient of xi1, and the number of parameters is not equal to the number of
variables.

How can β be estimated? Think back to Chapter 2. What did we do when we had a simple
linear regression equation with two unknown parameters β1 and β2? We set up a sum of squared
errors function that, in the context of (6.50), is

S(β) =
N∑

i=1

(
yi − βxi1 − β2xi2

)2 (6.51)

Then we asked what values of the unknown parameters make S(β) a minimum. We searched for
the bottom of the bowl in Figure 2A.1. We found that we could derive formulas for the minimizing
values b1 and b2. We called these formulas the least squares estimators.

When we have models that are nonlinear in the parameters, we cannot in general derive
formulas for the parameter values that minimize the sum of squared errors function. However,
for a given set of data, we can ask the computer to search for the parameter values that take
us to the bottom of the bowl. There are many numerical software algorithms that can be used
to find minimizing values for functions such as S(β). Those minimizing values are known as
the nonlinear least squares estimates. It is also possible to obtain numerical standard errors
that assess the reliability of the nonlinear least squares estimates. Finite sample properties

............................................................................................................................................
10There have been a few exceptions where we have used notation other than β1, β2, … , βK to denote the parameters.
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and distributions of nonlinear least squares estimators are not available, but their large sample
asymptotic properties are well established.11

E X A M P L E 6.19 Nonlinear Least Squares Estimates for Simple Model

To illustrate estimation of (6.50), we use data stored in the
file nlls. The sum of squared error function is graphed in
Figure 6.1. Because we only have one parameter, we have
a two-dimensional curve, not a “bowl.” It is clear from the
curve that the minimizing value for β lies between 1.0 and
1.5. From your favorite software, the nonlinear least squares
estimate turns out to be b = 1.1612. The standard error
depends on the degree of curvature of the sum of squares
function at its minimum. A sharp minimum with a high
degree of curvature leads to a relatively small standard error,
while a flat minimum with a low degree of curvature leads
to a relatively high standard error. There are different ways
of measuring the curvature that can lead to different standard
errors. In this example, the “outer-product of gradient”
method yields a standard error of se(b) = 0.1307, while
the standard error from the “observed-Hessian” method is
se(b) = 0.1324.12 Differences such as this one disappear as
the sample size gets larger.

Two words of warning must be considered when
estimating a nonlinear-in-the-parameters model. The first
is to check that the estimation process has converged to a
global minimum. The estimation process is an iterative one
where a series of different parameter values are checked until
the process converges at the minimum. If your software tells
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FIGURE 6.1 Sum of squared errors function for single-parameter
example.

you the process has failed to converge, the output provided, if
any, does not provide the nonlinear least squares estimates.
This might happen if a maximum number of iterations has
been reached or there has been a numerical problem that
has caused the iterations to stop. A second problem that
can occur is that the iterative process may stop at a “local”
minimum rather than the “global” minimum. In the example
in Figure 6.1, there is a local minimum at β = −2.0295.
Your software will have an option of giving starting values
to the iterative process. If you give it a starting value of
−2, it is highly likely you will end up with the estimate
b = −2.0295. This value is not the nonlinear least squares
estimate, however. The nonlinear least squares estimate is at
the global minimum which is the smallest of the minima if
more than one exists. How do you guard against ending up
at a local minimum? It is wise to try different starting values
to ensure you end up at the same place each time. Notice that
the curvature at the local minimum in Figure 6.1 is much less
than at the global minimum. This should be reflected in a
larger “standard error” at the local minimum. Such is indeed
the case. We find the outer-product-gradient method yields
se(b) = 0.3024, and from the observed-Hessian method we
obtain se(b) = 0.3577.

............................................................................................................................................
11Details of how the numerical algorithms work, how standard errors are obtained, the asymptotic properties of the
estimators, and the assumptions necessary for the asymptotic properties to hold, can be found in William Greene,
Econometric Analysis 8e, Pearson Prentice-Hall, 2018, Chapter 7.
12These methods require advanced material. See William Greene, Econometric Analysis 8e, Pearson Prentice-Hall,
2018, Section 14.4.6.
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E X A M P L E 6.20 A Logistic Growth Curve

A model that is popular for modeling the diffusion of techno-
logical change is the logistic growth curve13

yt =
α

1 + exp(−β − δt) + et (6.52)

where yt is the adoption proportion of a new technology. For
example, yt might be the proportion of households who own a
computer, or the proportion of computer-owning households
who have the latest computer, or the proportion of musical
recordings sold as compact disks. In the example that fol-
lows, yt is the share of total U.S. crude steel production that
is produced by electric arc furnace technology.

Before considering this example, we note some details
about the relationship in equation (6.52). There is only one
explanatory variable on the right hand side, namely, time,
t = 1, 2,… , T. Thus, the logistic growth model is designed
to capture the rate of adoption of technological change, or,
in some examples, the rate of growth of market share. An
example of a logistic curve is depicted in Figure 6.2. In
this example, the rate of growth increases at first, to a point
of inflection that occurs at t = −β∕δ = 20. Then the rate
of growth declines, leveling off to a saturation proportion
given by α = 0.8. Since y0 = α∕(1 + exp(−β)), the parameter
β determines how far the share is below saturation level at
time zero. The parameter δ controls the speed at which the
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FIGURE 6.2 A Logistic Growth Curve.

point of inflection, and the saturation level, are reached.
The curve is such that the share at the point of inflection is
α∕2 = 0.4, half the saturation level.

Traditional technology for steel making, involving blast
and oxygen furnaces and the use of iron ore, is being dis-
placed by newer electric arc furnace technology that utilizes
scrap steel. This displacement has implications for the sup-
pliers of raw materials such as iron ore. Thus, prediction of
the future electric arc furnace share of steel production is of
vital importance to mining companies. The file steel contains
annual data on the electric arc furnace share of U.S. steel pro-
duction from 1970 to 2015. Using this data to find nonlinear
least squares estimates of a logistic growth curve yields the
following estimates (standard errors):

α̂ = 0.8144 (0.0511) β̂ = −1.3777 (0.0564)
δ̂ = 0.0572 (0.0043)

Quantities of interest are the inflection point at which the rate
of growth of the share starts to decline, −β∕δ; the saturation
proportion α; the share at time zero, y0 = α∕(1 + exp(−β));
and prediction of the share for various years in the future. In
Exercise 6.21, you are invited to find interval estimates for
these quantities.

............................................................................................................................................
13For other possible models, see Exercises 4.15 and 4.17.
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6.7 Exercises

6.7.1 Problems
6.1 When using N = 50 observations to estimate the model yi = β1 + β2xi + β3zi + ei, you obtain

SSE = 2132.65 and sy = 9.8355.
a. Find R2.
b. Find the value of the F-statistic for testing H0∶β2 = 0, β3 = 0. Do you reject or fail to reject H0

at a 1% level of significance?
c. After augmenting this model with the squares and cubes of predictions ŷ2

i and ŷ3
i , you obtain

SSE = 1072.88. Use RESET to test for misspecification at a 1% level of significance.
d. After estimating the model yi = β1 + β2xi + β3zi + β4z2

i + ei, you obtain SSE = 401.179. What is
the R2 from estimating this model?

e. After augmenting the model in (d) with the squares and cubes of predictions ŷ2
i and ŷ3

i , you obtain
SSE = 388.684. Use RESET to test for misspecification at a 5% level of significance.

6.2 Consider the following model that relates the percentage of a household’s budget spent on alcohol
WALC to total expenditure TOTEXP, age of the household head AGE, and the number of children in
the household NK.

WALC = β1 + β2ln(TOTEXP) + β3NK + β4AGE + β5AGE2 + e

Using 1200 observations from a London survey, this equation was estimated with and without the AGE
variables included, giving the following results:

WALC
⋀

= 8.149 + 2.884ln(TOTEXP) − 1.217NK − 0.5699AGE + 0.005515AGE2

(se) (0.486) (0.382) (0.1790) (0.002332) σ̂ = 6.2048

WALC
⋀

= −1.206 + 2.152ln(TOTEXP) − 1.421NK
(se) (0.482) (0.376) σ̂ = 6.3196

a. Use an F-test and a 5% significance level to test whether AGE and AGE2 should be included in the
equation.

b. Use an F-test and a 5% significance level to test whether NK should be included in the first equation.
[Hint: F = t2]

c. Use an F-test, a 5% significance level and the first equation to test H0∶β2 = 3.5 against the alter-
native H1∶β2 ≠ 3.5.

d. After estimating the following equation, we find SSE = 46086.

WALC − 3.5ln(TOTEXP) + NK = β1 −
(
2β5 × 50

)
AGE + β5AGE2 + e

Relative to the original equation with all variables included, for what null hypothesis is this equation
the restricted model? Test this null hypothesis at a 5% significance level.

e. What is the χ2-value for the test in part (d)? In this case, is there a reason why a χ2-test might be
preferred to an F-test?

6.3 Consider the regression model yi = β1 + β2xi + β3zi + ei, where E
(
ei|#

)
= 0, var

(
ei|#

)
= σ2, and

E
(
eiej|#

)
= 0 for i ≠ j, with X representing all observations on x and z. Suppose zi is omitted from

the equation, so that we have the least squares estimator for β2 as

b∗2 =
∑(

xi − x
)(

yi − y
)

∑(
xi − x

)2
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Prove that
a. b∗2 = β2 + β3

∑
wizi +

∑
wiei, where wi =

(
xi − x

)/∑(
xi − x

)2.
b. E

(
b∗2|X

)
= β2 + β3cov

⋀

(x, z)
/

var
⋀

(x)

c. var
(
b∗2|X

)
= σ2

/(
Nvar
⋀

(x)
)

d. var
(
b∗2|X

) ≤ var
(
b2|X

)
, where b2 is the least squares estimator with both x and z included. [Hint:

check out equation (5.13).]
6.4 Consider the regression model yi = β1 + β2xi + β3zi + β4qi + ei, where E

(
ei|X

)
= 0, with X represent-

ing all observations on x, z, and q. Suppose zi is unobservable and omitted from the equation, but
conditional mean independence E

(
zi|xi, qi

)
= E

(
zi|qi

)
holds, with E

(
zi|qi

)
= δ1 + δ2qi.

a. Show that E
(
yi|xi, qi

)
=
(
β1 + β3δ1

)
+ β2xi +

(
β3δ2 + β4

)
qi.

b. i. Is it possible to get a consistent estimate of the causal effect of xi on yi?
ii. Is it possible to get a consistent estimate of the causal effect of zi on yi?

iii. Is it possible to get a consistent estimate of the causal effect of qi on yi?
6.5 Consider the following wage equation where EDUC = years of education and EXPER = years of

experience:
ln(WAGE) = β1 + β2EDUC + β3EXPER + β4EXPER2 + e

Suppose that observations on EXPER are not available, and so you decide to use the variables AGE
and AGE2 instead. What assumptions are sufficient for the least squares estimate for β2 to be given a
causal interpretation?

6.6 Use an F-test to jointly test the relevance of the two variables XTRA_X5 and XTRA_X6 for the family
income equation in Example 6.12 and Table 6.1.

6.7 In Example 6.15 a prediction interval for SALES from Big Andy’s Burger Barn was computed for the
settings PRICE0 = 6, ADVERT0 = 1.9. Find point and 95% interval estimates for

E(SALES|PRICE = 6,ADVERT = 1.9)

Contrast your answers with the point and interval predictions that were obtained in Example 6.15.
[Hint: The easiest way to calculate the standard error for your point estimate is to utilize some of the
calculations given in Example 6.15.]

6.8 Consider the wage equation

ln(WAGE) = β1 + β2EDUC + β3EDUC2 + β4EXPER + β5EXPER2 + β6(EDUC × EXPER) + e

where the explanatory variables are years of education (EDUC) and years of experience (EXPER).
Estimation results for this equation, and for modified versions of it obtained by dropping some
of the variables, are displayed in Table 6.10. These results are from 200 observations in the file
cps5_small.
a. What restriction on the coefficients of Eqn (A) gives Eqn (B)? Use an F-test to test this restriction.

Show how the same result can be obtained using a t-test.
b. What restrictions on the coefficients of Eqn (A) give Eqn (C)? Use an F-test to test these restrictions.

What question would you be trying to answer by performing this test?
c. What restrictions on the coefficients of Eqn (B) give Eqn (D)? Use an F-test to test these restrictions.

What question would you be trying to answer by performing this test?
d. What restrictions on the coefficients of Eqn (A) give Eqn (E)? Use an F-test to test these restrictions.

What question would you be trying to answer by performing this test?
e. Based on your answers to parts (a)–(d), which model would you prefer? Why?
f. Compute the missing AIC value for Eqn (D) and the missing SC value for Eqn (A). Which model

is favored by the AIC? Which model is favored by the SC?
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T A B L E 6.10 Wage Equation Estimates for Exercise 6.8

Coefficient Estimates and (Standard Errors)
Variable Eqn (A) Eqn (B) Eqn (C) Eqn (D) Eqn (E)
C 0.403 1.483 1.812 2.674 1.256

(0.771) (0.495) (0.494) (0.109) (0.191)
EDUC 0.175 0.0657 0.0669 0.0997

(0.091) (0.0692) (0.0696) (0.0117)
EDUC2 −0.0012 0.0012 0.0010

(0.0027) (0.0024) (0.0024)
EXPER 0.0496 0.0228 0.0314 0.0222

(0.0172) (0.0091) (0.0104) (0.0090)
EXPER2 −0.00038 −0.00032 −0.00060 −0.00031

(0.00019) (0.00019) (0.00022) (0.00019)
EXPER × EDUC −0.001703

(0.000935)
SSE 37.326 37.964 40.700 52.171 38.012
AIC −1.619 −1.612 −1.562 −1.620
SC −1.529 −1.513 −1.264 −1.554

6.9 RESET suggests augmenting an existing model with the squares or the squares and higher powers of
the predictions ŷi. For example,

(
ŷ2

i

)
or
(

ŷ2
i , ŷ

3
i

)
or
(

ŷ2
i , ŷ

3
i , ŷ

4
i

)
. What would happen if you augmented

the model with the predictions ŷi?
6.10 Reconsider Example 6.19 where we used nonlinear least squares to estimate the model yi = βxi1 +

β2xi2 + ei by minimizing the sum of squares function S(β) = ∑N
i=1
(
yi − βxi1 − β2xi2

)2.

a. Show that dS
dβ = −2

N∑
i=1

xi1yi + 2β
( N∑

i=1
x2

i1 − 2
N∑

i=1
xi2yi

)
+ 6β2

N∑
i=1

xi1xi2 + 4β3
N∑

i=1
x2

i2

b. Show that d2S
dβ2 = 2

( N∑
i=1

x2
i1 − 2

N∑
i=1

xi2yi

)
+ 12β

N∑
i=1

xi1xi2 + 12β2
N∑

i=1
x2

i2

c. Given that ∑N
i=1 x2

i1 = 10.422155, ∑N
i=1 x2

i2 = 3.586929, ∑N
i=1 xi1xi2 = 4.414097, ∑N

i=1 xi1yi =

16.528022, and ∑N
i=1 xi2yi = 10.619469, evaluate dS∕dβ at both the global minimum β = 1.161207

and at the local minimum β = −2.029494. What have you discovered?
d. Evaluate d2S∕dβ2 at both β = 1.161207 and β = −2.029494.
e. At the global minimum, we find σ̂G = 0.926452 whereas, if we incorrectly use the local minimum,

we find σ̂L = 1.755044. Evaluate
q = σ̂

√
2

d2S∕dβ2

at both the global and local minimizing values for β and σ̂. What is the relevance of these values
of q? Go back and check Example 6.19 to see what you have discovered.

6.11 In Example 6.7 we tested the joint null hypothesis
H0∶β3 + 3.8β4 = 1, β1 + 6β2 + 1.9β3 + 3.61β4 = 80

in the model
SALES = β1 + β2PRICE + β3ADVERT + β4ADVERT2 + ei

By substituting the restrictions into the model and rearranging variables, show how the model can be
written in a form where least squares estimation will yield restricted least squares estimates.
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6.12 This exercise uses data on 850 houses sold in Baton Rouge, Louisiana during mid-2005. We will be
concerned with the selling price in thousands of dollars (PRICE), the size of the house in hundreds
of square feet (SQFT), the number of bathrooms (BATHS), and the number of bedrooms (BEDS).
Consider the following conditional expectations

E(PRICE|BEDS) = α1 + α2BEDS (XR6.12.1)

E(PRICE|BEDS, SQFT ) = β1 + β2BEDS + β3SQFT (XR6.12.2)

E(SQFT|BEDS) = γ1 + γ2BEDS (XR6.12.3)

E(PRICE|BEDS, SQFT,BATHS) = δ1 + δ2BEDS + δ3SQFT + δ4BATHS (XR6.12.4)

E(BATHS|BEDS, SQFT ) = θ1 + θ2BEDS + θ3SQFT (XR6.12.5)

a. Express α1 and α2 in terms of the parameters
(
β1, β2, β3, γ1, γ2

)
.

b. Express β1, β2, and β3 in terms of the parameters
(
δ1, δ2, δ3, δ4, θ1, θ2, θ3

)
.

c. Use the information in Table 6.11 and a 1% significance level to test whether

E(PRICE|BEDS, SQFT,BATHS) = E(PRICE|BEDS)

d. Show that the estimates in Table 6.11 satisfy the expressions you derived in parts (a) and (b).
e. Can you explain why the coefficient of BEDS changed sign when SQFT was added to

equation (XR6.12.1).
f. Suppose that E(BATHS|BEDS) = λ1 + λ2BEDS. Use the results in Table 6.11 to find estimates for

λ1 and λ2.
g. Use the estimates from part (f) and the estimates for equations (XR6.12.3) and (XR6.12.4) to find

estimates of α1 and α2. Do they agree with the estimates in Table 6.11?
h. Would you view any of the parameter estimates as causal?

T A B L E 6.11 Estimates for House Price Equations for Exercise 6.12

Coefficient Estimates and (Standard Errors)
(XR6.12.1) (XR6.12.2) (XR6.12.3) (XR6.12.4) (XR6.12.5)

PRICE PRICE SQFT PRICE BATHS

C −71.873 −0.1137 −6.7000 −24.0509 0.67186
(16.502) (11.4275) (1.1323) (11.7975) (0.06812)

BEDS 70.788 −28.5655 9.2764 −32.649 0.1146
(5.041) (4.6504) (0.3458) (4.593) (0.0277)

SQFT 10.7104 9.2648 0.04057
(0.3396) (0.4032) (0.00202)

BATHS 35.628
(5.636)

SSE 8906627 4096699 41930.6 3911896 145.588

6.13 Do gun buybacks save lives? Following the “Port Arthur massacre” in 1996, the Australian government
introduced a gun buyback scheme in 1997. The success of that scheme has been investigated by Leigh
and Neill.14 Using a subset of their data on the eight Australian states and territories for the years

............................................................................................................................................................
14Leigh, A. and C. Neill (2010), “Do Gun Buybacks Save Lives? Evidence from Panel Data?”, American Law and
Economics Review, 12(2), p. 509–557.
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1980–2006, with 1996 and 1997 omitted, making a total of N = 200 observations, we estimate the
following model

SUIC_ RATE = β1 + β2GUNRATE + β3URATE + β4CITY + β5YEAR + e

Three equations are considered, one where SUIC_ RATE denotes the firearm suicide rate, one where
it represents the non-firearm suicide rate and one for the overall suicide rate, all measured in terms of
deaths per million population. For the years after 1997, the variable GUNRATE is equal to the number
of guns bought back during 1997, per thousand population; it is zero for the earlier years; URATE is
the unemployment rate, CITY is the proportion of the population living in an urban area and YEAR is
included to capture a possible trend. The estimated equations are given in Table 6.12.

T A B L E 6.12 Estimates for Gun Buyback Equations for Exercise 6.13
Coefficient Estimates and (Standard Errors)

Firearm Suicide Rate Non-firearm Suicide Rate Overall Suicide Rate
C 1909 –1871 38.37

(345) (719) (779.76)
GUNRATE –0.223 0.553 0.330

(0.069) (0.144) (0.156)
URATE –0.485 1.902 1.147

(0.534) (1.112) (1.206)
CITY –0.628 0.053 –0.576

(0.057) (0.118) (0.128)
YEAR –0.920 0.976 0.056

(0.174) (0.362) (0.393)
SSE 29745 129122 151890
SSER 50641 131097 175562

a. Is there evidence that the gun buyback has reduced firearm suicides? Has there been substitution
away from firearms to other means of suicide? Is there a trend in the suicide rate?

b. Is there evidence that greater unemployment increases the suicide rate?
c. Test jointly whether URATE and CITY contribute to the each of the equations. The sums of squared

errors for the equations without these variables are given in the row SSER.
6.14 Do gun buybacks save lives? Following the “Port Arthur massacre” in 1996, the Australian govern-

ment introduced a gun buyback scheme in 1997. As mentioned in Exercise 6.13, the success of that
scheme has been investigated by Leigh and Neill. Using a subset of their data on the eight Australian
states and territories for the years 1980–2006, with 1996 and 1997 omitted, making a total of N = 200
observations, we estimate the following model

HOM_ RATE = β1 + β2GUNRATE + β3YEAR + e

Three equations are considered, one where HOM_ RATE is the homicide rate from firearms, one where
it represent the non-firearm homicide rate and one for the overall homicide rate, all measured in terms of
deaths per million population. For the years after 1997, the variable GUNRATE is equal to the number
of guns bought back during 1997, per thousand population; it is zero for the earlier years; YEAR is
included to capture a possible trend. The estimated equations are given in Table 6.13.
a. Is there evidence that the gun buyback has reduced firearm homicides? Has there been an increase

or a decrease in the homicide rate?
b. Using a joint test on the coefficients of GUNRATE and YEAR, test whether each of the homicide

rates has remained constant over the sample period.
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T A B L E 6.13 Estimates for Gun Buyback Equations for Exercise 6.14
Coefficient Estimates and (Standard Errors)

Firearm Homicide Rate Non-firearm Homicide Rate Overall Homicide Rate
C 694 1097 1791

(182) (816) (907)
GUNRATE 0.0181 0.0787 0.0968

(0.0352) (0.1578) (0.1754)
YEAR –0.346 –0.540 –0.886

(0.092) (0.410) (0.456)
SSE 9017 181087 223842
sy 7.1832 30.3436 34.0273

6.15 The following equation estimates the dependence of CANS (the weekly number of cans of brand A tuna
sold in thousands) on the price of brand A in dollars (PRA) and the prices of two competing brands B
and C (PRB and PRC). The equation was estimated using 52 weekly observations.

E
⋀

(CANS|PRA,PRB,PRC) = 22.96 − 47.08PRA + 9.30PRB + 16.51PRC SSE = 1358.7

a. When PRB and PRC are omitted from the equation, the sum of squared errors increases to 1513.6.
Using a 10% significance level, test whether the prices of the competing brands should be included
in the equation.

(
F(0.9, 2,48) = 2.417

)

b. Consider the following two estimated equations: E
⋀

(PRB|PRA) = 0.5403 + 0.3395PRA and
E
⋀

(PRC|PRA) = 0.7708 + 0.0292PRA. If PRB and PRC are omitted from the original equation for
CANS, by how much will the coefficient estimate for PRA change? By how much will the intercept
estimate change?

c. Find point and 95% interval estimates of E(CANS|PRA = 0.91, PRB = 0.91, PRC = 0.90) using
the original equation. The required standard error is 1.58.

d. Find a point estimate for E(CANS|PRA = 0.91) using the equation you constructed in part (b). Can
you suggest why the point estimates in (c) and (d) are different? Are there values for PRB and PRC
for which they would be identical?

e. Find a 95% prediction interval for CANS when PRA = 0.91, PRB = 0.91 and PRC = 0.90. If you
were a statistical consultant to the supermarket selling the tuna, how would you report this interval?

f. When CANS
⋀2 is added to the original equation as a regressor the sum of squared errors decreases

to 1198.9. Is there any evidence that the equation is misspecified?
6.16 Using 28 annual observations on output (Y), capital (K), labor (L) and intermediate materials (M) for

the U.S manufacturing sector, to estimate the Cobb–Douglas production function

ln(Y) = β1 + β2 ln(K) + β3 ln(L) + β4 ln(M) + e

gave the following results

b2 = 0.1856 b3 = 0.3990 b4 = 0.4157 SSE = 0.05699 sln(Y) = 0.23752

The standard deviations of the explanatory variables are sln(K) = 0.28108, sln(L) = 0.17203, and
sln(M) = 0.27505. The sums of squared errors from running auxiliary regressions on the explanatory
variables are (the subscript refers to the dependent variable in the auxiliary regression)

SSEln(K) = 0.14216 SSEln(L) = 0.02340 SSEln(M) = 0.04199

a. Find (i) the standard errors for b2, b3, and b4, (ii) the R2’s for each of the auxiliary regressions, and
(iii) the variance inflation factors for b2, b3, and b4.

b. Test the significance of b2, b3, and b4 using a 5% level of significance.
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c. Use a 5% level of significance to test the following hypotheses: (i) H0∶β2 = 0, β3 = 0,
(ii) H0∶β2 = 0, β4 = 0, (iii) H0∶β3 = 0, β4 = 0, and (iv) H0∶β2 = 0, β3 = 0, β4 = 0. The restricted
sums of squared errors for the first three hypotheses are (i) SSER = 0.0551, (ii) SSER = 0.08357
and (iii) SSER = 0.12064.

d. Comment on the presence and impact of collinearity.

6.7.2 Computer Exercises
6.17 Reconsider Example 6.16 in the text. In that example a number of models were assessed on their

within-sample and out-of-sample predictive ability using data in the file br5. Of the models considered,
the one with the best within-sample performance, as judged by the R

2, AIC and SC criteria was
ln(PRICE) = β1 + β2AGE + β3SQFT + β4AGE2 + e (XR6.17)

In this exercise we investigate whether we can improve on this function by adding the number of
bathrooms (BATHS) and the number of bedrooms (BEDROOMS). Estimate the equations required to
fill in the following table. The models have been numbered from 9 to 12 as extensions of those in
Table 6.3. Model 2 is the same as equation (XR6.17). For the subsequent models extra variables are
added, with model 12 being the last one considered. For the RMSE values, use the last 100 observations
as the hold-out sample. Discuss the results. Include in your discussion a comparison with the results
in Table 6.3.

Model Variables included in addition to those in (XR6.17) R
2 AIC SC RMSE

2 None
9 BATHS

10 BATHS, BEDROOMS
11 BATHS, BEDROOMS × SQFT
12 BATHS, BEDROOMS × SQFT, BATHS × SQFT

6.18 Consider Example 6.17 where the rice production function

ln(PROD) = β1 + β2ln(AREA) + β3ln(LABOR) + β4ln(FERT) + e

was estimated using data from the file rice5.
a. Using data from 1994 only, contrast the outcomes of the following hypothesis tests.

i. H0∶β2 = 0 versus H1∶β2 ≠ 0,
ii. H0∶β3 = 0 versus H1∶β3 ≠ 0,

iii. H0∶β2 = β3 = 0 versus H1∶β2 ≠ 0 or β3 ≠ 0 or both β2 and β3 are nonzero.
b. Show that the restricted model corresponding to the restriction β2 + β3 + β4 = 1 is given by

ln
(PROD

AREA

)
= β1 + β3ln

(LABOR
AREA

)
+ β4ln

(FERT
AREA

)
+ e

c. Some output from estimating the equation in part (b) using 1994 data is given in Table 6.6. It
includes point and interval estimates for β2, se(b2), and a p-value for testing H0∶β2 = 0 against
H1∶β2 ≠ 0. Describe how these results can be obtained and verify that they are correct.

d. Estimate a constant-returns-to-scale production function using data from both 1993 and 1994.
Compare the standard errors and 95% interval estimates with those in Table 6.7 where both years
of data were used, but constant returns to scale was not imposed. Include all coefficients in your
comparison. What are the auxiliary R2’s for the two variables in the restricted model?

6.19 Consider the following expenditure share equation where WFOOD is the proportion of household total
expenditure allocated to food, TOTEXP is total weekly household expenditure in British pounds (£),
and NK is the number of children in the household. Conditions MR1–MR5 are assumed to hold. We
will be using data from the file london5.

WFOOD = β1 + β2ln(TOTEXP) + β3NK + β4
[
NK × ln(TOTEXP)

]
+ e
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a. For a household with the median total expenditure of £90, show that the change in
E(WFOOD|TOTEXP, NK) from adding an extra child is β3 + β4ln(90).

b. For a household with two children, show that the change in E(WFOOD|TOTEXP, NK) from an
increase in total expenditure from £80/week to £120/week is β2ln(1.5) + 2β4ln(1.5).

c. For a household with two children and total expenditure of £90/week, show that

E(WFOOD|TOTEXP,NK) = β1 + β2ln(90) + 2β3 + 2β4ln(90)

d. Consider the following three statements:
A. β3 + β4ln(90) = 0.025
B. β2ln(1.5) + 2β4ln(1.5) = −0.04
C. β1 + β2ln(90) + 2β3 + 2β4ln(90) = 0.37
We will be concerned with using F and χ2 tests to test the following three null hypotheses:
H(1)

0 : A is true; H(2)
0 : A and B are true; H(3)

0 : A and B and C are true. The alternative hypothesis in
each case is that H(i)

0 is not true.
What are the relationships between the F and χ2 tests for each of the three hypotheses? For H(1)

0 ,
what is the relationship between the t and F tests?

e. Find the p-values for the F and χ2 tests for H(1)
0 , H(2)

0 , and H(3)
0 , first using the first 100 observations

in london5, then using the first 400 observations, and then using all 850 observations.
f. Comment on how changing the sample size, and adding more hypotheses, affects the results of the

tests. Are there any dramatic differences between the F-test outcomes and the χ2-test outcomes?
6.20 In Example 6.18, using 900 observations from the data file br5, we identified three potentially influ-

ential observations in the estimation of the model

ln(PRICE) = β1 + β2SQFT + β3AGE + β4AGE2 + e

Those observations were numbers 150, 411 and 540.
a. Estimate the model with (i) all observations, (ii) observation 150 excluded, (iii) observation 411

excluded, (iv) observation 540 excluded, and (v) observations 150, 411, and 540 excluded. Report
the results and comment on their sensitivity to the omission of the observations.

b. Using the estimates from all observations, find the forecast errors corresponding to the within
sample predictions at observations 150, 411, and 540.

c. Using the estimates obtained when observation 150 is excluded, find the out-of-sample forecast
error for observation 150.

d. Using the estimates obtained when observation 411 is excluded, find the out-of-sample forecast
error for observation 411.

e. Using the estimates obtained when observation 540 is excluded, find the out-of-sample forecast
error for observation 540.

f. Using the estimates obtained when observations 150, 411, and 540 are excluded, find the
out-of-sample forecast errors for observations 150, 411, and 540.

g. Compare the forecast errors obtained in parts (b)–(f) and comment on their sensitivity to the omis-
sion of the observations.

6.21 Reconsider Example 6.20 where a logistic growth curve for the share of U.S. steel produced by electric
arc furnace (EAF) technology was estimated. The curve is given by the equation

yt =
α

1 + exp(−β − δt) + et

a. Find 95% interval estimates for the following:
i. The saturation level α.

ii. The inflection point tI = −β∕δ at which the rate of growth starts to decline. What years does
the interval correspond to?

iii. The EAF share in 1969.
iv. The predicted EAF shares from 2016 to 2050. Plot the predictions and their 95% bounds. Com-

ment on how far the predictions are from the saturation level and on the behavior of the 95%
bounds.

b. Use a 5% significance level to test the joint null hypothesis that the saturation level is 0.85 and the
point of inflection is at tI = 25. Set up the null hypothesis for the point of inflection so that it is
linear in the parameters β and δ. Given the interval estimates you found in (a)(i) and (a)(ii), does
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the result surprise you? What extra information does the test use that was not used in (a)(i) and
(a)(ii)?

c. Estimate the model with the restrictions implied by the null hypothesis in (b) imposed. Find the sum
of squared errors and test the null hypothesis with an F-test that uses the restricted and unrestricted
sums of squared errors. How does this result compare with that from the automatic test command
that you used for part (b)?

6.22 To examine the quantity theory of money, Brumm15 specifies the equation
INFLAT = β1 + β2MONEY + β3OUTPUT + e

where INFLAT is the growth rate of the general price level, MONEY is the growth rate of the money
supply, and OUTPUT is the growth rate of national output. According to theory we should observe
that β1 = 0, β2 = 1, and β3 = −1. The data in the data file brumm are on 76 countries for the year 1995.
a. Using a 5% significance level, test

i. the strong joint hypothesis that β1 = 0, β2 = 1, and β3 = −1.
ii. the weak joint hypothesis β2 = 1 and β3 = −1.

b. Using the DFFITS criterion, find the four most influential observations.
c. Repeat the two tests with the four most influential observations omitted. Does omission of these

four observations change the test outcome?
d. Moroney16 has argued that β2 is likely to be different for different countries. Suppose that

β2 = α1 + α2MONEY + α3OUTPUT. Substitute this equation into the original model and, omitting
the same four influential observations, estimate the new model.

e. Repeat the two tests for the model estimated in (d) for a hypothetical country with the sample
median values MONEY = 16.35 and OUTPUT = 2.7.

6.23 For two inputs X1 and X2 and output Y , a constant elasticity of substitution (CES) production function
is given by

Y = α
[
δX−ρ

1 + (1 − δ)X−ρ
2
]−η∕ρ

where α > 0 is an efficiency parameter, η > 0 is a returns to scale parameter, ρ > −1 is a substitution
parameter, and 0 < δ < 1 is a distribution parameter that relates the share of output to each of the two
inputs. The elasticity of substitution between the two inputs is given by ε = 1∕(1 + ρ). If η = 1 and
ρ = 0 (ε = 1), then the CES production function simplifies to the constant-returns-to-scale Cobb–
Douglas production function Y = αXδ

1X1−δ
2 .17 Using the data in the file rice5, define Y = PROD∕AREA,

X1 = LABOR∕AREA and X2 = FERT∕AREA.
a. Using nonlinear least squares, estimate the following log form of the CES function

ln(Y) = β − ηρ ln
[
δX−ρ

1 +(1 − δ)X−ρ
2
]
+ e

where β = ln(α). Report your results and standard errors. [Hint: If you run into difficulties, try using
0.5 as the starting value for all of your parameters.]

b. Find 95% interval estimates for α, η, ε, and δ.
c. Using a 5% significance level, test the null hypothesis H0∶η = 1, ρ = 0 against the alternative

H1∶η ≠ 1 or ρ ≠ 0. Does a constant-returns-to-scale Cobb–Douglas function appear to be
adequate?

6.24 Using the data in the file br5, find least squares estimates of the following house-price relationships
for houses sold in Baton Rouge during 2005.

ln(PRICE) = α1 + α2BEDROOMS + e1

ln(PRICE) = β1 + β2BEDROOMS + β3SQFT + e2

SQFT = γ1 + γ2BEDROOMS + u1

............................................................................................................................................................
15Brumm, H.J. (2005) “Money Growth, Output Growth, and Inflation: A Reexamination of the Modern Quantity
Theory’s Linchpin Prediction,” Southern Economic Journal, 71(3), 661–667.
16Moroney, J.R. (2002), “Money Growth, Output Growth and Inflation: Estimation of a Modern Quantity Theory,”
Southern Economic Journal, 69(2), 398–413.
17Proving this result requires some advanced calculus. You need to take natural logarithms of both sides, set η = 1 and
use l’Hôpital’s rule to take limits as ρ→ 0.
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a. Report the coefficient estimates and their standard errors.
b. Show how the estimates

(
α̂1, α̂2

)
can be found from the parameter estimates in the other two

equations. How does the interpretation of β̂2 differ from the interpretation of α̂2? What would you
characterize as the omitted variable bias when estimating α2? Is there evidence that BEDROOMS
has a direct effect on ln(PRICE)?

c. Estimate the equation ln(PRICE) = θ1 + θ2SQFT + e3. Compare the estimates θ̂2 and β̂3. What was
the effect of omitting BEDROOMS on the estimated coefficient for SQFT? What assumption about
e3 is necessary for θ2 to be given the causal interpretation: an increase in house size of 100 square
feet leads to a θ2 increase in ln(PRICE), when all other variables are held constant?

d. We will investigate whether this assumption might be violated. Estimate the following equation
and report the results

ln(PRICE) = δ1 + δ2SQFT + δ3AGE + δ4AGE2 + e4

e. A comparison of this equation with that in part (c) suggests e3 = δ3AGE + δ4AGE2 + e4.
Assume E

(
e4|SQFT, AGE

)
= 0. We wish to investigate whether E

(
e3|SQFT

)
= 0. Show that

E
(
e3|SQFT

)
= 0 if δ3 = δ4 = 0 or if E(AGE|SQFT) = 0 and E

(
AGE2|SQFT

)
= 0.

f. Test the hypothesis H0∶δ3 = δ4 = 0 at a 5% significance level.
g. Estimate the equations AGE = λ1 + λ2SQFT + u2 and AGE2 = ϕ1 + ϕ2SQFT + u3. Use a 5% sig-

nificance level to test the hypotheses H0∶λ2 = 0 and H0∶ϕ2 = 0.
h. What do you conclude about the assumption E

(
e3|SQFT

)
= 0?

6.25 Using the data in the file br5, estimate the equation

ln(PRICE) = β1 + β2SQFT + β3AGE + β4AGE2 + e

where PRICE is the selling price in thousands of dollars for houses sold in Baton Rouge, Louisiana,
in 2005, SQFT is the size of each house in hundreds of square feet and AGE is the age of each house
in years.
a. Report the coefficient estimates and their standard errors.
b. Graph the estimate of E[ln(PRICE)|SQFT = 22,AGE] against AGE. (In the sample the median

and average values for SQFT are 21.645 and 22.737, respectively.)
c. In part (b), you will have noticed that the higher-priced houses are the very new ones and the

very old ones. Using a 5% significance level test the joint null hypothesis that (i) two houses of
the same size, a 5-year old house and an 80-year old house, have the same expected log-price, and
(ii) a 5-year old house with 2000 square feet has the same expected log-price as a 30-year old house
with 2800 square feet.

d. Using a 5% significance level, test the joint null hypothesis that (i) houses start becoming more
expensive with age when they are 50 years old, and (ii) a 2200 square feet house that is 50 years
old has an expected log-price that corresponds to $100,000.

e. Add the variables BATHS and SQFT × BEDROOMS to the model with coefficients β5 and β6,
respectively. Estimate this model and report the results.

f. Using a 5% significance level, test whether adding these two variables has improved the predictive
ability of the model.

g. You are building a new 2300 square-feet house (AGE = 0) with three bedrooms and two bathrooms.
Adding one extra bedroom and bathroom will increase its size by 260 square feet. Estimate the
increase in value of the house from the extra bedroom and bathroom. (Use the natural predictor.)

h. What do you estimate will be the extra value of the house in 20 years’ time?
6.26 Each morning between 6:30AM and 8:00AM Bill leaves the Melbourne suburb of Carnegie to drive

to work at the University of Melbourne. The time it takes Bill to drive to work (TIME), depends on
the departure time (DEPART), the number of red lights that he encounters (REDS), and the number
of trains that he has to wait for at the Murrumbeena level crossing (TRAINS). Observations on these
variables for the 249 working days in 2015 appear in the data file commute5. TIME is measured in
minutes. DEPART is the number of minutes after 6:30AM that Bill departs. Consider the equation

TIME = β1 + β2DEPART + β3REDS + β4TRAINS + e

and suppose assumptions MR1–MR5 hold.
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a. Test the following joint hypotheses using a 5% significance level:
i. The expected delay from a red light is 1.8 minutes and the expected delay from a train is

3.2 minutes.
ii. The expected delay from a red light is 2 minutes and the expected delay from a train is

3 minutes.
iii. The expected delay from a train is 3.5 minutes and the delay from a train is double that from a

red light.
iv. The expected delay from a train is 3.5 minutes and the delay from a train is double that from a

red light and leaving at 7:30AM instead of 7:00AM makes the trip 10 minutes longer.
b. Bill suspects that the later he leaves, the more likely he is to encounter a train. Test this hypothesis

at a 5% significance level using estimates from the model

E(TRAINS|DEPART,REDS) = α1 + α2DEPART + α3REDS

Is there any evidence of a relationship between the number of trains and the number of red lights?
c. Show that

E(TIME|DEPART,REDS) =
(
β1 + β4α1

)
+
(
β2 + β4α2

)
DEPART +

(
β3 + β4α3

)
REDS

d. Regress TIME on DEPART and REDS to get estimates for δ1 = β1 + β4α1, δ2 = β2 + β4α2, and
δ3 = β3 + β4α3. Using these estimates and those from (a) and (c), show that δ̂1 = b1 + b4α̂1,
δ̂2 =

(
b2 + b4α̂2

)
, and δ̂3 = b3 + b4α̂3, where bk denotes an OLS estimate from the original

equation.
e. Interpret b2 and δ̂2. Why are they different? How would you characterize any omitted variable bias?

6.27 It has been claimed that an extra year of experience increases wage by 0.8% and that an extra year
of education is worth 14 extra years of experience. Doing the calculation, this would mean an extra
year of education increases wage by 11.2%. We will investigate this hypothesis using data in the file
cps5_small. Only those observations for which years of education exceeds 7 will be used. Perform all
tests at a 5% level of significance.
a. Estimate the model ln(WAGE) = β1 + β2EDUC + β3EXPER + e and jointly test the claims about

the marginal effects of EDUC and EXPER.
b. Use RESET to test the adequacy of the model; perform the test with the squares of the predictions

and the squares and cubes of the predictions.
c. After estimating the model

ln(WAGE) = β1 + β2EDUC + β3EXPER + β4EDUC2 + β5EXPER2 + β6(EDUC × EXPER) + e

jointly test the claims about the marginal effects of EDUC and EXPER at the following levels of
EDUC and EXPER:

i. EDUC = 10, EXPER = 5
ii. EDUC = 14, EXPER = 24

iii. EDUC = 18, EXPER = 40
d. Use RESET to test the adequacy of the model; perform the test with the squares of the predictions

and the squares and cubes of the predictions.
e. How would you respond to the claim about the marginal effects of EDUC and EXPER?

6.28 Using time-series data on five different countries, Atkinson and Leigh18 investigate the impact of the
marginal tax rate paid by high-income earners on the level of inequality. A subset of their data can be
found in the file inequality.
a. Using data on Australia, estimate the equation SHARE = β1 + β2TAX + e where SHARE is the

percentage income share of the top 1% of incomes, and TAX is the median marginal tax rate (as a
percentage) paid on wages by the top 1% of income earners. Interpret your estimate for β2. Would
you interpret this as a causal relationship?

............................................................................................................................................................
18Atkinson, A.B. and A. Leigh (2013), “The Distribution of Top Incomes in Five Anglo-Saxon Countries over the Long
Run,” Economic Record, 89, 1–17.
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b. It is generally recognized that inequality was high prior to the great depression, then declined during
the depression and World War II, increasing again toward the end of the sample period. To capture
this effect, estimate the following model with a quadratic trend

SHARE = α1 + α2TAX + α3YEAR + α4YEAR2 + e

where YEAR is defined as 1 = 1921, 2 = 1922,… , 80 = 2000. Interpret the estimate for α2. Has
adding the trend changed the effect of the marginal tax rate? Can the change in this estimate, or
lack of it, be explained by the correlations between TAX and YEAR and TAX and YEAR2?

c. In what year do you estimate that expected SHARE will be smallest? Find a 95% interval estimate
for this year. Does the actual year with the smallest value for SHARE fall within the interval?

d. The top marginal tax rate in 1974 was 64%. Test the hypothesis that, in the year 2000, the
expected income share of the top 1% would have been 6% if the marginal tax rate had been 64%
at that time.

e. Test jointly the hypothesis in (d) and that a marginal tax rate of 64% in 1925 would have led to an
expected income share of 6% for the top 1% of income earners.

f. Add the growth rate (GWTH) to the equation in part (b) and reestimate. Interpret the estimated
coefficient for TAX.

g. Using the equation estimated in part (f), estimate the year when SHARE will be smallest? Find a
95% interval estimate for this year. Does the actual year with the smallest value for SHARE fall
within the interval?

h. Using the equation estimated in part (f), test the hypothesis that, in the year 2000, the expected
income share of the top 1% would have been 6% if the marginal tax rate had been 64%
at that time.

i. Using the equation estimated in part (f), test jointly the hypothesis in (h) and that a marginal tax
rate of 64% in 1925 would have led to an expected income share of 6% for the top 1% of income
earners.

j. Has adding the variable GWTH led to substantial changes to your estimates and test results? Can the
changes, or lack of them, be explained by the correlations between GWTH and the other variables
in the equation?

6.29 Using time-series data on five different countries, Atkinson and Leigh investigate the impact of the
marginal tax rate paid by high-income earners on the level of inequality. A subset of their data can be
found in the file inequality.
a. Using data on the United States, estimate the equation ln(SHARE) = β1 + β2TAX + e where SHARE

is the percentage income share of the top 1% of incomes, and TAX is the median marginal tax rate
(as a percentage) paid on wages by the top 1% of income earners. Interpret your estimate for β2.
Would you interpret this as a causal relationship?

b. It is generally recognized that inequality was high prior to the great depression, then declined during
the depression and World War II, increasing again toward the end of the sample period. To capture
this effect, estimate the following model with a quadratic trend

ln(SHARE) = α1 + α2TAX + α3YEAR + α4YEAR2 + e

where YEAR is defined as 1 = 1921, 2 = 1922,… , 80 = 2000. Interpret the estimate for α2. Has
adding the trend changed the effect of the marginal tax rate? Can the change in this estimate, or
lack of it, be explained by the correlations between TAX and YEAR and TAX and YEAR2?

c. In what year do you estimate that SHARE will be smallest? Find a 95% interval estimate for this
year. Does the actual year with the smallest value for SHARE fall within the interval?

d. The top marginal tax rate in 1974 was 50%. Test the hypothesis that, in the year 2000, the expected
log income share of the top 1% would have been ln(12) if the marginal tax rate had been 50% at
that time.

e. Test jointly the hypothesis in (d) and that a marginal tax rate of 50% in 1925 would have led to an
expected log income share of log(12) for the top 1% of income earners.

f. Add the growth rate (GWTH) to the equation in part (b) and re-estimate. Has adding this
variable GWTH led to substantial changes to your estimates and test results? Can the changes,
or lack of them, be explained by the correlations between GWTH and the other variables in
the equation?
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g. Using the results from part (f ), find point and 95% interval estimates for the marginal tax rate
that would be required to reduce the income share of the top 1% to 12% in 2001, assuming
GWTH2001 = 3.

6.30 Consider a translog production function where output is measured as firm sales and there are three
inputs: capital, labor, and materials. This function can be written as

LSALES = βC + βKK + βLL + βMM + βKKK2 + βLLL2 + βMMM2

+ βKL(K × L) + βKM(K ×M) + βLM(L ×M) + e

where LSALES is the log of sales, and K, L, and M are the logs of capital, labor and materials, respec-
tively. The translog function is often known as a flexible functional form, intended to approximate a
variety of possible functional forms. There are two hypotheses that are likely to be of interest:

H(1)
0 ∶βKK = 0, βLL = 0, βMM = 0, βKL = 0, βKM = 0, βLM = 0

(A Cobb–Douglas function is adequate)

H(2)
0 ∶

⎧
⎪
⎪
⎨
⎪
⎪⎩

βK + βL + βM = 1
2βKK + βKL + βKM = 0
βKL + 2βLL + βLM = 0
βKM + βLM + 2βMM = 0

(constant returns to scale)

The data file chemical_small contains observations on 1200 firms in China’s chemical industry, taken
in the year 2006. It is a subset of the data used by Baltagi, Egger, and Kesina19.
a. Use these data to estimate the translog production function. Are all the coefficient estimates sig-

nificant at a 5% level of significance?
b. Test H(1)

0 at a 5% level of significance.
c. Test H(2)

0 at a 5% level of significance. What would be the test outcome if you used a 1% level of
significance?

d. Does RESET suggest the translog function is adequate?
e. Estimate the model with the restrictions implied by constant returns to scale

(
H(2)

0

)
imposed.

Obtain estimates and standard errors for all 10 coefficients.
f. Compare the estimates and standard errors from parts (a) and (e).
g. Does RESET suggest the restricted model is adequate?

6.31 Everaert and Pozzi20 develop a model to examine the predictability of consumption growth in 15 OECD
countries. Their data is stored in the file oecd. The variables used are growth in real per capita private
consumption (CSUMPTN), growth in real per capita government consumption (GOV), growth in per
capita hours worked (HOURS), growth in per capita real disposable labor income (INC), and the real
interest rate (R). Using only the data for Japan, answer the following questions:
a. Estimate the following model and report the results

CSUMPTN = β1 + β2HOURS + β3GOV + β4R + β5INC + e

Are there any coefficient estimates that are not significantly different from zero at a 5% level?
b. The coefficient β2 could be positive or negative depending on whether hours worked and private

consumption are complements or substitutes. Similarly, β3 could be positive or negative depending
on whether government consumption and private consumption are complements or substitutes.
What have you discovered? What does a test of the hypothesis H0∶β2 = 0, β3 = 0 reveal?

c. Re-estimate the equation with GOV omitted and, for the coefficients of the remaining variables,
comment on any changes in the estimates and their significance.

d. Estimate the equation
GOV = α1 + α2HOURS + α3R + α4INC + v

and use these estimates to reconcile the estimates in part (a) with those in part (c).
............................................................................................................................................................
19Baltagi, B.H., P. H. Egger and M. Kesina (2016), “Firm-level Productivity Spillovers in China’s Chemical Industry:
A Spatial Hausman-Taylor Approach,” Journal of Applied Econometrics, 31(1), 214–248.
20Everaert, G. and L. Ponzi (2014), “The Predictability of Aggregate Consumption Growth in OECD Countries:
A Panel Data Analysis,” Journal of Applied Econometrics, 29(3), 431–453.
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e. Re-estimate the models in parts (a) and (c) with the year 2007 omitted and use each of the estimated
models to find point and 95% interval forecasts for consumption growth in 2007.

f. Which of the two models, (a) or (c), produced the more accurate forecast for 2007?
6.32 In their study of the prices of Californian and Washington red wines, Costanigro, Mittelhammer and

McCluskey21 categorize the wines into commercial, semipremium, premium, and ultrapremium. Their
data for premium wines are stored in the file wine1; those for ultrapremium wines are in the file wine2.
We will be concerned with the variables PRICE (bottle price, CPI adjusted), SCORE (score out of 100
given by the Wine Spectator Magazine), AGE (years of aging), and CASES (number of cases produced
in thousands).
a. What signs would you expect on the coefficients

(
β2, β3, β4

)
in the following model? Why?

ln(PRICE) = β1 + β2SCORE + β3AGE + β4CASES + e

b. Estimate separate equations for premium and ultrapremium wine, and discuss the results. Do the
coefficients have the expected signs? If not is there an alternative explanation? Is SCORE more
important for premium wines or ultrapremium wines? Is AGE more important for premium wines
or ultrapremium wines?

c. Find point and 95% interval estimates for
i. E[ln(PRICE)|SCORE = 90, AGE = 2, CASES = 2] for premium wines, and

ii. E[ln(PRICE)|SCORE = 93, AGE = 3, CASES = 1] for ultrapremium wines.
Do the intervals overlap, or is there a clear price distinction between the two classes?

d. Using the “corrected predictor”—see Section 4.5.3—predict the prices for premium and ultra-
premium wines for the settings in parts c(i) and c(ii), respectively.

e. Suppose that you are a wine producer choosing between producing 1000 cases of ultrapremium
wine that has to be aged three years and is likely to get a score of 93, and 2000 cases of pre-
mium wine that is aged two years and is likely to get a score of 90. Which choice gives the higher
expected bottle price? Which choice gives the higher expected revenue? (There are 12 bottles in a
case of wine.)

6.33 In this exercise we reconsider the premium wine data in the file wine1. Please see Exercise 6.32 and
wine1.def for details.
a. Estimate the following equation using (i) only cabernet wines, (ii) only pinot wines, and (iii) all

other varieties:
ln(PRICE) = β1 + β2SCORE + β3AGE + β4CASES + e

Using casual inspection, do you think separate equations are needed for the different varieties?
b. We can develop an F-test to test whether there is statistical evidence to suggest the coefficients in

the three equations are different. The unrestricted sum of squared errors for such a test is
SSEU = SSECABERNET + SSEPINOT + SSEOTHER

Compute SSEU.
c. What is the total number of parameters from the three equations? How many parameters are there

when we estimate one equation for all varieties? How many parameter restrictions are there if we
restrict corresponding coefficients for all varieties to be equal?

d. Estimate one equation for all varieties. This is the restricted model where corresponding coefficients
for the different varieties are assumed to be equal.

e. Using a 5% significance level, test whether there is evidence to suggest there should be different
equations for different varieties. What is the null hypothesis for this test? Develop some notation
that enables you to state the null hypothesis clearly and precisely.

............................................................................................................................................
21Costanigro, M., R.C. Mittelhammer and J.J.McCluskey (2009), “Estimating Class Specific Parametric Models Under
Class Uncertainty: Local Polynomial Regression Clustering in an Hedonic Analysis Of Wine Markets” Journal of
Applied Econometrics, 24(7), 1117–1135.
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Appendix 6A The Statistical Power of F-Tests
In Appendix 3B, we explored the factors that lead us to reject a null hypothesis about the slope
parameter in a simple regression using a t-test. The probability of rejecting a false null hypoth-
esis is positively related to the magnitude of the hypothesis error, and the total variation in the
explanatory variable, and inversely related to the size of σ2, the error variance. These are compo-
nents of the noncentrality parameter, (3B.2), for the t-statistic, (3B.1), when the null hypothesis
is false.

Here we show that the factors that lead us to reject a false joint null hypothesis are much the
same. Consider the simple regression model yi = β1 + β2xi + ei under assumptions SR1–SR6.
We will test the joint null hypothesis H0∶β1 = c1, β2 = c2 using an F-test. In practice the test is
carried out using (6.4) in the usual way. To study the power of the F-test we will test an equivalent
joint null hypothesis H0∶β1 + β2x = c1 + c2x, β2 = c2. If the first pair of hypotheses is true
then the second pair of hypotheses is true and vice versa. They are completely equivalent. This
is not what you would do in practice but this approach will lead us to a form of the F-test that
is theoretically useful. In the following steps, we will derive the F-statistic by combining test
statistics for the separate hypotheses H1

0 ∶β1 + β2x = c1 + c2x and H2
0 ∶β2 = c2. There are quite a

few steps, but do not get discouraged. Each step is small and the reward at the end is substantial.
Now is a good time to review Appendix 3B on t-tests when the null hypothesis is false, Appendix
B.3.6, on the chi-square distribution, Appendix B.3.7, on the t-distribution, and Appendix B.3.8,
on the F-distribution.

If we were going to test the first hypothesis, H1
0 ∶β1 + β2x = c1 + c2x, what test statistic would

we use? Most commonly we use a t-test for a single hypothesis. For the present, however, assume
that we know the error variance σ2 so that we also know the true variances and covariance of the
least squares estimators that are given in equations (2.14)–(2.16). The test statistic is

Z1
0 =

b1 + b2x −
(
c1 + c2x

)
√

var
(
b1 + b2x

) =
y −

(
c1 + c2x

)
√
σ2/N

(6A.1)

with Z1
0 denoting the statistic for the null hypothesis H1

0 . We obtained the second equality by
taking advantage of the properties of the least squares estimators, recognizing that b1 + b2x = y,
and var

(
y
)
= σ2∕N, as shown in Appendix C, equation (C.6). If the null hypothesis is true, Z1

0 has
a standard normal distribution, N(0,1). Our objective is to study testing H1

0 ∶β1 + β2x = c1 + c2x
when it is not true. To accomplish this rewrite Z1

0 by adding and subtracting
(
β1 + β2x

)
to the

numerator in (6A.1) yielding

Z1
0 =

b1 + b2x −
(
β1 + β2x

)
+
(
β1 + β2x

)
−
(
c1 + c2x

)
√
σ2/N

=
(
b1 − β1

)
+
(
b2 − β2

)
x

√
σ2/N

+
(
β1 − c1

)
+
(
β2 − c2

)
x

√
σ2/N

(6A.2)

= Z1 + δ1

The first term, Z1, has a standard normal distribution; it is the test statistic calculated using the
true parameter values,

Z1 =
(
b1 − β1

)
+
(
b2 − β2

)
x

√
σ2/N

∼ N(0, 1) (6A.3)

The second term

δ1 =
(
β1 − c1

)
+
(
β2 − c2

)
x

√
σ2/N

(6A.4)
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is the specification error in the hypothesis H1
0 ∶β1 + β2x = c1 + c2x. If the null hypothesis is true

then δ1 = 0. If the null hypothesis H1
0 is not true, then δ1 ≠ 0, and we must account for the fact that

δ1 depends on the sample values, x. In Appendix B.3.6 we define noncentral chi-square random
variables. The random variable Z1

0 |x = Z1 + δ1 ∼ N
(
δ1, 1

)
and V1

0 |x =
(
Z1

0 |x
)2 =

(
Z1 + δ1

)2 ∼
χ2
(1, δ2

1)
has a noncentral chi-square distribution with one degree of freedom, and noncentrality

parameter δ = δ2
1. If the null hypothesis is true then δ1 = 0 and V1

0 has the chi-square distribution,
V1

0 ∼ χ
2
(1, δ2

1=0) = χ
2
(1).

The second piece of the puzzle is similar to the first and follows the steps in Appendix 3B.
To test H2

0 ∶β2 = c2, assuming σ2 is known, use the test statistic

Z2
0 =

b2 − c2√
var

(
b2
) =

b2 − c2√
σ2/∑(

xi − x
)2

(6A.5)

If the null hypothesis is true, Z2
0 has a standard normal distribution, N(0,1). Our objective is

to study testing H2
0 ∶β2 = c2 when it is not true. To accomplish this rewrite Z2

0 by adding and
subtracting β2 to the numerator, obtaining

Z2
0 =

b2 − β2 + β2 − c2√
σ2/∑(

xi − x
)2

=
b2 − β2√

σ2/∑(
xi − x

)2
+

β2 − c2√
σ2/∑(

xi − x
)2

= Z2 + δ2 (6A.6)

The first term, Z2, has a standard normal distribution; it is the test statistic calculated using the
true parameter value

Z2 =
b2 − β2√

σ2/∑(
xi − x

)2
∼ N(0, 1) (6A.7)

The second term

δ2 =
β2 − c2√

σ2/∑(
xi − x

)2
(6A.8)

is the specification error in the hypothesis H2
0 ∶β2 = c2. If the null hypothesis is true then δ2 = 0;

if the null hypothesis H2
0 is not true, then δ2 ≠ 0. The random variable Z2

0 |x = Z2 + δ2 ∼ N
(
δ2, 1

)

and V2
0 |x =

(
Z2

0 |x
)2 =

(
Z2 + δ2

)2 ∼ χ2
(1, δ2

2)
has a noncentral chi-square distribution with one

degree of freedom, and noncentrality parameter δ = δ2
2. If the null hypothesis is true, then δ2 = 0

and V2
0 has the chi-square distribution, V2

0 ∼ χ
2
(1, δ2

2=0) = χ
2
(1).

What is the distribution of V1 = V1
0 + V2

0 =
(
Z1 + δ1

)2 +
(
Z2 + δ2

)2? If Z1 and Z2 are statis-
tically independent then V1|x ∼ χ2

(2, δ) with noncentrality parameter δ = δ2
1 + δ

2
2. Because Z1 and

Z2 are normally distributed random variables, we can prove they are independent by showing that
their correlation, or covariance, is zero. Their covariance is

cov
(
Z1, Z2

)
= E

{[
Z1 − E

(
Z1
)][

Z2 − E
(
Z2
)]}

= E
(
Z1Z2

)
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because Z1 and Z2 have zero mean, E
(
Z1
)
= E

(
Z2
)
= 0. We will show that E

(
Z1Z2|!

)
= 0 from

which it follows that E
(
Z1Z2

)
= 0.

E
(
Z1Z2|x

)
= E

⎧
⎪
⎨
⎪⎩

⎡
⎢
⎢
⎢⎣

(
b1 − β1

)
+
(
b2 − β2

)
x

√
σ2/N

⎤
⎥
⎥
⎥⎦

⎡
⎢
⎢
⎢⎣

b2 − β2√
σ2/∑(

xi − x
)2

⎤
⎥
⎥
⎥⎦

||||||||
x
⎫
⎪
⎬
⎪⎭

= E
⎧
⎪
⎨
⎪⎩

√
N
σ

[(
b1 − β1

)
+
(
b2 − β2

)
x
]
√∑(

xi − x
)2

σ
(
b2 − β2

)
||||||||
x
⎫
⎪
⎬
⎪⎭

(6A.9)

=

√
N
√∑(

xi − x
)2

σ2 E
{[(

b1 − β1
)
+
(
b2 − β2

)
x
](

b2 − β2
)||x

}

The key component in the last equality is, using (2.15) and (2.16),

E
[(

b1 − β1
)(

b2 − β2
)
+
(
b2 − β2

)2x|||x
]
=
[
cov

(
b1, b2|x

)
+ xvar

(
b2|x

)]

= −xσ2
∑(

xi − x
)2 + xσ2

∑(
xi − x

)2 = 0

Since the covariance between Z1 and Z2 is zero, they are statistically independent. Thus,
V1|x ∼ χ2

(2, δ) where δ = δ2
1 + δ

2
2 and

δ = δ2
1 + δ

2
2 =

⎡
⎢
⎢
⎢⎣

(
β1 − c1

)
+
(
β2 − c2

)
x

√
σ2/N

⎤
⎥
⎥
⎥⎦

2

+
⎡
⎢
⎢
⎢⎣

β2 − c2√
σ2/∑(

xi − x
)2

⎤
⎥
⎥
⎥⎦

2

= N
⎧
⎪
⎨
⎪⎩

[(
β1 − c1

)
+
(
β2 − c2

)
x
]2

σ2

⎫
⎪
⎬
⎪⎭
+
(
β2 − c2

)2∑N
i=1
(
xi − x

)2

σ2 (6A.10)

The final step is to use V2 from Section 6.1.5, and that V1 and V2 are statistically independent.
Following a similar procedure to that in (6.13), we form the F-ratio

F|x =
V1∕2

V2∕(N − 2) ∼ F(2,N−2,δ)

In Figure B.9b we show that increases in the noncentrality parameter δ shifts the F-density to the
right, increasing the probability that it exceeds the appropriate critical value Fc, and increasing
the probability of rejecting a false null hypothesis.

Examining the noncentrality parameter δ in (6A.10) we first note that δ ≥ 0, and δ = 0 only
if the joint null hypothesis H0∶β1 + β2x = c1 + c2x, β2 = c2, or H0∶β1 = c1, β2 = c2, is true. The
factors that cause δ to increase are as follows:

1. The magnitude of the hypothesis error. In this example the hypothesis error includes two
components,

[(
β1 − c1

)
+
(
β2 − c2

)
x
]2 and

(
β2 – c2

)2. The larger these specification errors
the higher the probability that the null hypothesis will be rejected. The first term is related
to the intercept parameter where the errors in hypotheses about both β1 and β2 are contrib-
utors, as well as the sample mean, x. If the sample mean x = 0, then only the magnitude of(
β1 – c1

)2 matters.
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2. The sample size, N. As the sample size N increases the value of δ increases not only because
it multiplies the first component of δ but also because the data variation ∑N

i=1
(
xi − x

)2

increases, or at worst stays the same, as N increases. This is very reassuring and a rea-
son to prefer larger samples to smaller ones. The probability of rejecting a false hypothesis
approaches one as N → ∞.

3. The variation in the explanatory variable. In the simple regression model the data variation∑N
i=1
(
xi − x

)2 is directly related to the probability of rejecting the joint null hypothesis. The
larger the data variation, the smaller the variance of b2, and the more likely we are to detect
the discrepancy between β2 and the hypothesized value c2.

4. The error variance σ2. The smaller the error variance, the smaller the uncertainty in the
model, and the larger δ becomes, and the higher the probability of rejecting a false joint
hypothesis.

For a numerical example we use values arising from the simulation experiment used in
Appendix 2H and Appendix 3B. In the first Monte Carlo sample, data file mc1_ fixed_x, the
x-values consist of xi = 10, i = 1,… , 20 and xi = 20, i = 21,… , 40. The sample mean is x = 15
so that ∑(

xi − x
)2 = 40 × 52 = 1000. Also, σ2 = 2500. The true parameter values in the simula-

tion experiment are β1 = 100 and β2 = 10. We now test the joint hypothesis H0∶β1 = 100, β2 = 9
against the alternative H1∶β1 ≠ 100 and/or β2 ≠ 9. At the 5% level of significance we reject the
joint null hypothesis if the F-test statistic is greater than the critical value F(0.95, 2, 38) = 3.24482.
You can confirm that the calculated value of the F-statistic is 4.96, so that, at the 5% level of
significance, we correctly reject H0∶β1 = 100, β2 = 9.

The noncentrality parameter is

δ = N
⎧
⎪
⎨
⎪⎩

[(
β1 − c1

)
+
(
β2 − c2

)
x
]2

σ2

⎫
⎪
⎬
⎪⎭
+
(
β2 − c2

)2∑N
i=1
(
xi − x

)2

σ2

= 40
{[

(100 − 100) +(10 − 9) 15
]2

2500

}
+ (10 − 9)21000

2500 =
(
40 × 152) + 1000

2500
= 4

The probability of rejecting the joint null hypothesis is the probability that a value from a non-
central F-distribution with noncentrality parameter δ = 4 will exceed F(0.95, 2, 38) = 3.24482. The
test power is P

[
F(m1=2, m2=38, δ=4) > 3.24482

]
= 0.38738.

As another illustration let us test the null hypothesis H0∶β2 = 9 against H1∶β2 ≠ 9 using an
F-test. The test critical value is the 95th percentile of the F-distribution, F(0.95, 1, 38) = 4.09817.
The calculated F-test value is 4.91 which exceeds the 5% critical value, so once again we cor-
rectly reject the null hypothesis. The noncentrality parameter of the F-distribution for this single
hypothesis is the square of δ2 in (6A.8),

δ = δ2
2 =

(
β2 − c2

)2

σ2/∑(
xi − x

)2 = 1
2500∕1000 = 0.4

Thus the probability of rejecting the null hypothesis H0∶β2 = 9 versus H1∶β2 ≠ 9 when the true
value of β2 = 10 is P

[
F(m1=1, m2=38, δ=0.4) > 4.09817

]
= 0.09457.

We note three lessons from this exercise. First, using an F-test, the probability of rejecting
the joint hypothesis H0∶β1 = 100, β2 = 9 is greater than the probability of rejecting the sin-
gle hypothesis H0∶β2 = 9. Second, in Appendix 3B we found that the probability of rejecting
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H0∶β2 = 9 versus H1∶β2 > 9 using a one-tail t-test was 0.15301, with noncentrality parameter
0.63246. The power of a one-tail test, when it can be appropriately used, is greater than the power
of a two-tail test. Third, when using a two-tail t-test the rejection probability must be computed
with care because the noncentral t-distribution is not symmetric about zero. The probability of
rejecting the hypothesis is

P
(
t(38, 0.63246) ≤ −1.686

)
+
[
1 − P

(
t(38, 0.63246) ≥ 1.686

)]
= 0.0049866 + 0.0895807 = 0.09457

Appendix 6B Further Results from the FWL Theorem
In Section 5.2.4, we saw that, from the FWL theorem, the least squares estimate of a coefficient
of a particular explanatory variable, say x2, can be obtained by “partialing out” the effects of the
other variables on x2 and on y, and running a regression with the partialed-out versions of y and x2.
We now consider some further results from the FWL theorem. In particular, we show how the
variance of the least squares estimator can be written in terms of a simple expression that depends
on x2 and the partialed-out version of x2.

Consider the multiple regression model with two explanatory variables, yi = β1 + β2xi2 +
β3xi3 + ei. Partial-out x3 using the Frisch–Waugh–Lovell (FWL) approach. First, the auxiliary
regression of y on x3 is yi = a1 + a3xi3 + ri and the least squares residual is ÿi = yi − ã1 − ã3xi3 =
yi − ỹi, where ỹi = ã1 + ã3xi3 is the fitted value from the auxiliary regression. The auxiliary regres-
sion of x2 on x3 is xi2 = c1 + c3xi3 + ri2 and the least squares residual is ẍi2 = xi2 − c̃1 − c̃3xi3 =
xi2 − x̃i2, where x̃i2 = c̃1 + c̃3xi3 is the fitted value from the auxiliary regression for x2. The FWL
theorem says that by estimating the model ÿi = β2ẍ i2 + ëi, we can obtain the same least squares
estimator as from the full model. Because the partialed-out model has no explicit intercept, the
least squares estimator is

b2 = ∑
ẍi2ÿi∕

∑
ẍ2

i2 = ∑(
xi2 − x̃i2

)(
yi − ỹi

)/∑(
xi2 − x̃i2

)2

Note that

• x̃i2 is an estimate of E
(
x2|x3

)
and ỹi is an estimate of E

(
y|x3

)
. Thus, when x3 has been par-

tialed out, we use the conditional means in b2 = ∑(
xi2 − x̃i2

)(
yi − ỹi

)/∑(
xi2 − x̃i2

)2. When
x3 has not been partialed out we use the unconditional means. A similar statement holds for
the variance.

• If we replace ỹi by yi and replace xi2 − x̃i2 by xi − xi, we have the usual expression for the
least squares estimator in the simple regression model.

• Further note that the OLS estimator b2 in the multiple regression model depends on x2 and
y after removing the linear influence of x3. In addition, the formula above is valid when the
multiple regression model contains any number of variables, with the understanding that
ỹi and x̃i2 are fitted values from auxiliary regressions containing all explanatory variables
except x2. Very neat!

Let us take the numerator ∑(
xi2 − x̃i2

)(
yi − ỹi

)
and work with it.

∑(
xi2 − x̃i2

)(
yi − ỹi

)
= ∑(

xi2 − x̃i2
)(

yi − ã1 − ã3xi3
)

= ∑(
xi2 − x̃i2

)
yi − ã1

∑(
xi2 − x̃i2

)
− ã3

∑(
xi2 − x̃i2

)
xi3

The term ∑(
xi2 − x̃i2

)
= 0 because it is the sum of least squares residuals from the auxiliary

regression that includes an intercept. Also ∑(
xi2 − x̃i2

)
xi3 = 0 because least squares residuals

are uncorrelated with model explanatory variables. See Exercises 2.1 and 2.3. Thus
∑(

xi2 − x̃i2
)(

yi − ỹi
)
= ∑(

xi2 − x̃i2
)
yi
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The resulting simplified estimator b2 is

b2 = ∑
ẍi2ÿi

/∑
ẍ2

i2 = ∑(
xi2 − x̃i2

)
yi
/∑(

xi2 − x̃i2
)2

Computationally this is very nice because it is the estimated least squares coefficient from the
model yi = β2ẍi2 + ëi, where ẍi2 = xi2 − x̃i2 is a least squares residual.

Now, as in Chapter 2, we can make theoretical progress by further work on the computational
form of the least squares estimator. Substitute yi = β1 + β2xi2 + β3xi3 + ei into the computational
form and simplify.

b2 =
∑(

xi2 − x̃i2
)
yi

∑(
xi2 − x̃i2

)2 =
∑(

xi2 − x̃i2
)(
β1 + β2xi2 + β3xi3 + ei

)
∑(

xi2 − x̃i2
)2

= 1
∑(

xi2 − x̃i2
)2

[∑(
xi2 − x̃i2

)(
β1 + β2xi2 + β3xi3 + ei

)]

= 1
∑(

xi2 − x̃i2
)2

[
β1
∑(

xi2 − x̃i2
)
+ β2

∑(
xi2 − x̃i2

)
xi2 + β3

∑(
xi2 − x̃i2

)
xi3 +

∑(
xi2 − x̃i2

)
ei

]

Again ∑(
xi2 − x̃i2

)
= 0 and ∑(

xi2 − x̃i2
)
xi3 = 0. Now, being clever and using ∑(

xi2 − x̃i2
)
= 0,

we can say
∑(

xi2 − x̃i2
)
xi2 = ∑(

xi2 − x̃i2
)
xi2 − x̃i2

∑(
xi2 − x̃i2

)
= ∑(

xi2 − x̃i2
)2

Plugging all this in, we have

b2 = β2 +
∑(

xi2 − x̃i2
)
ei

∑(
xi2 − x̃i2

)2

Then, if errors are homoskedastic and serially uncorrelated

var
(
b2|X

)
= var

[∑(
xi2 − x̃i2

)
ei

∑(
xi2 − x̃i2

)2
||||X

]
=

∑(
xi2 − x̃i2

)2var
(
ei|X

)
[∑(

xi2 − x̃i2
)2]2 =

∑(
xi2 − x̃i2

)2σ2

[∑(
xi2 − x̃i2

)2]2

= σ2
∑(

xi2 − x̃i2
)2


	Chapter 6: Further Inference in the Multiple Regression Model
	6.1 Testing Joint Hypotheses: The F-test�����������������������������������������������
	6.1.1 Testing the Significance of the Model��������������������������������������������������
	6.1.2 The Relationship Between t- and F-Tests����������������������������������������������������
	6.1.3 More General F-Tests���������������������������������
	6.1.4 Using Computer Software������������������������������������
	6.1.5 Large Sample Tests�������������������������������

	6.2 The Use of Nonsample Information�������������������������������������������
	6.3 Model Specification������������������������������
	6.3.1 Causality versus Prediction����������������������������������������
	6.3.2 Omitted Variables������������������������������
	6.3.3 Irrelevant Variables���������������������������������
	6.3.4 Control Variables������������������������������
	6.3.5 Choosing a Model�����������������������������
	6.3.6 RESET������������������

	6.4 Prediction���������������������
	6.4.1 Predictive Model Selection Criteria������������������������������������������������

	6.5 Poor Data, Collinearity, and Insignificance������������������������������������������������������
	6.5.1 The Consequences of Collinearity���������������������������������������������
	6.5.2 Identifying and Mitigating Collinearity����������������������������������������������������
	6.5.3 Investigating Influential Observations���������������������������������������������������

	6.6 Nonlinear Least Squares����������������������������������
	6.7 Exercises
	6.7.1 Problems
	6.7.2 Computer Exercises

	Appendix 6A The Statistical Power of F-Tests
	Appendix 6B Further Results from the FWL Theorem


