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CHAPTER 5

The Multiple Regression
Model

L E A R N I N G O B J E C T I V E S

Based on the material in this chapter, you should be able to

1. Recognize a multiple regression model and be
able to interpret the coefficients in that model.

2. Understand and explain the meanings of the
assumptions for the multiple regression model.

3. Use your computer to find least squares
estimates of the coefficients in a multiple
regression model, and interpret those estimates.

4. Explain the meaning of the Gauss–Markov
theorem.

5. Compute and explain the meaning of R2 in a
multiple regression model.

6. Explain the Frisch–Waugh–Lovell Theorem and
estimate examples to show how it works.

7. Use your computer to obtain variance and
covariance estimates, and standard errors, for
the estimated coefficients in a multiple
regression model.

8. Explain the circumstances under which
coefficient variances (and standard errors) are
likely to be relatively high, and those under
which they are likely to be relatively low.

9. Find interval estimates for single coefficients
and linear combinations of coefficients, and
interpret the interval estimates.

10. Test hypotheses about single coefficients and
about linear combinations of coefficients in a
multiple regression model. In particular,
a. What is the difference between a one-tail and

a two-tail test?
b. How do you compute the p-value for a

one-tail test, and for a two-tail test?
c. What is meant by ‘‘testing the significance of

a coefficient’’?
d. What is the meaning of the t-values and

p-values that appear in your computer
output?

e. How do you compute the standard error
of a linear combination of coefficient
estimates?

11. Estimate and interpret multiple regression
models with polynomial and interaction
variables.

12. Find point and interval estimates and test
hypotheses for marginal effects in polynomial
regressions and models with interaction
variables.

13. Explain the difference between finite and large
sample properties of an estimator.

14. Explain what is meant by consistency and
asymptotic normality.
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15. Describe the circumstances under which we can
use the finite sample properties of the least
squares estimator, and the circumstances
under which asymptotic properties are
required.

16. Use your computer to compute the standard
error of a nonlinear function of estimators. Use
that standard error to find interval estimates
and to test hypotheses about nonlinear
functions of coefficients.

K E Y W O R D S
asymptotic normality
BLU estimator
consistency
covariance matrix of least squares

estimators
critical value
delta method
error variance estimate
error variance estimator
explained sum of squares
FWL theorem

goodness-of-fit
interaction variable
interval estimate
least squares estimates
least squares estimation
least squares estimators
linear combinations
marginal effect
multiple regression model
nonlinear functions
one-tail test

p-value
polynomial
regression coefficients
standard errors
sum of squared errors
sum of squares due to regression
testing significance
total sum of squares
two-tail test

The model in Chapters 2–4 is called a simple regression model because the dependent variable y is
related to only one explanatory variable x. Although this model is useful for a range of situations,
in most economic models there are two or more explanatory variables that influence the dependent
variable y. For example, in a demand equation the quantity demanded of a commodity depends
on the price of that commodity, the prices of substitute and complementary goods, and income.
Output in a production function will be a function of more than one input. Aggregate money
demand will be a function of aggregate income and the interest rate. Investment will depend on
the interest rate and on changes in income.

When we turn an economic model with more than one explanatory variable into its corre-
sponding econometric model, we refer to it as a multiple regression model. Most of the results
we developed for the simple regression model in Chapters 2–4 can be extended naturally to this
general case. There are slight changes in the interpretation of the β parameters, the degrees of free-
dom for the t-distribution will change, and we will need to modify the assumption concerning the
characteristics of the explanatory (x) variables. These and other consequences of extending the
simple regression model to a multiple regression model are described in this chapter.

As an example for introducing and analyzing the multiple regression model, we begin with
a model used to explain sales revenue for a fast-food hamburger chain with outlets in small
U.S. cities.

5.1 Introduction
5.1.1 The Economic Model

We will set up an economic model for a hamburger chain that we call Big Andy’s Burger Barn.1
Important decisions made by the management of Big Andy’s include its pricing policy for dif-
ferent products and how much to spend on advertising. To assess the effect of different price

............................................................................................................................................
1The data we use reflect a real fast-food franchise whose identity we disguise under the name Big Andy’s.
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structures and different levels of advertising expenditure, Big Andy’s Burger Barn sets different
prices, and spends varying amounts on advertising, in different cities. Of particular interest to
management is how sales revenue changes as the level of advertising expenditure changes. Does
an increase in advertising expenditure lead to an increase in sales? If so, is the increase in sales
sufficient to justify the increased advertising expenditure? Management is also interested in pric-
ing strategy. Will reducing prices lead to an increase or decrease in sales revenue? If a reduction
in price leads only to a small increase in the quantity sold, sales revenue will fall (demand is
price-inelastic); a price reduction that leads to a large increase in quantity sold will produce an
increase in revenue (demand is price-elastic). This economic information is essential for effective
management.

The first step is to set up an economic model in which sales revenue depends on one or more
explanatory variables. We initially hypothesize that sales revenue is linearly related to price and
advertising expenditure. The economic model is

SALES = β1 + β2PRICE + β3ADVERT (5.1)
where SALES represents monthly sales (total) revenue in a given city, PRICE represents price in
that city, and ADVERT is monthly advertising expenditure in that city. Both SALES and ADVERT
are measured in terms of thousands of dollars. Because sales in bigger cities will tend to be greater
than sales in smaller cities, we focus on smaller cities with comparable populations.

Since a hamburger outlet sells a number of products—burgers, fries, and shakes—and each
product has its own price, it is not immediately clear what price should be used in (5.1). What
we need is some kind of average price for all products and information on how this average price
changes from city to city. For this purpose, management has constructed a single price index
PRICE, measured in dollars and cents, that describes overall prices in each city.

The remaining symbols in (5.1) are the unknown parameters β1, β2, and β3 that describe the
dependence of sales (SALES) on price (PRICE) and advertising (ADVERT). To be more precise
about the interpretation of these parameters, we move from the economic model in (5.1) to an
econometric model that makes explicit assumptions about the way the data are generated.

5.1.2 The Econometric Model
When we collect data on SALES, PRICE, and ADVERT from the franchises in different cities,
the observations will not exactly satisfy the linear relationship described in equation (5.1). The
behavior of Andy’s customers in different cities will not be such that the same prices and the same
level of advertising expenditure will always lead to the same sales revenue. Other factors not in
the equation likely to affect sales include the number and behavior of competing fast-food outlets,
the nature of the population in each city—their age profile, income, and food preferences—and the
location of Andy’s burger barns—near a busy highway, downtown, and so on. To accommodate
these factors, we include an error term e in the equation so that the model becomes

SALES = β1 + β2PRICE + β3ADVERT + e (5.2)
As discussed in Chapter 2, the way in which data are collected has a bearing on what assumptions
are relevant and realistic for the error term e, the explanatory variables PRICE and ADVERT , and
the dependent variable SALES. These assumptions in turn affect how we make inferences about
the parameters β1, β2, and β3.

Assume we take a random sample of 75 franchises in similar-sized cities in which Big Andy
operates, and we observe their monthly sales, prices, and advertising expenditure. Thus, we have
observations

(
SALESi,PRICEi,ADVERTi

)
for i = 1, 2,… , 75. Because we do not know which

cities will be chosen before we randomly sample, the triplet
(
SALESi,PRICEi,ADVERTi

)
is a

three-dimensional random variable with a joint probability distribution. Also, the fact that we
have a random sample implies that the observations from different cities are independent. That is,
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(
SALESi,PRICEi,ADVERTi

)
is independent of

(
SALESj,PRICEj,ADVERTj

)
for i ≠ j. Associ-

ated with each observation is another random variable, the unobservable error term ei that reflects
the effect of factors other than PRICE and ADVERT on SALES. The model for the ith observation
is written as

SALESi = β1 + β2PRICEi + β3ADVERTi + ei (5.3)
We assume that the effect of ei on sales, averaged over all cities in the population, is zero, and
that knowing PRICE and ADVERT for a given city does not help us predict the value of e for that
city. At each

(
PRICEi,ADVERTi

)
pair of values the average of the random errors is zero, that is,

E
(
ei|PRICEi, ADVERTi

)
= 0 (5.4)

This assumption, when combined with the assumption of independent observations generated
from a random sample, implies that ei is strictly exogenous. How do we check whether this is
a reasonable assumption? We need to ask whether ei includes any variables that have an effect
on SALES (are correlated with SALES), and are also correlated with PRICE or ADVERT . If the
answer is yes, strict exogeneity is violated. This might happen, for example, if the pricing and
advertising behavior of Andy’s competitors affects his sales, and is correlated with his own pricing
and advertising policies. At the moment, it is convenient if we abstract from such a situation and
continue with the strict exogeneity assumption.2

Using equations (5.3) and (5.4), we can write
E(SALES|PRICE, ADVERT ) = β1 + β2PRICE + β3ADVERT (5.5)

Equation (5.5) is the conditional mean or conditional expectation of SALES given PRICE and
ADVERT and is known as the multiple regression function or simply the regression function.
It shows how the population average or population mean value for SALES changes depending
on the settings for price and advertising expenditure. For given values of PRICE and ADVERT ,
some SALES values will fall above the mean and some below. We have dropped the subscript i
for convenience and to emphasize that we assume this relationship holds for all cities in the
population.

With this background, how do we interpret each of the parameters β1, β2, and β3? Mathemat-
ically, the intercept parameter β1 is the expected value of the dependent variable when each of the
independent, explanatory variables takes the value zero. However, in many cases this parameter
has no clear economic interpretation. In this particular case, it is not realistic to have a situation
in which PRICE = ADVERT = 0. Except in very special circumstances, we always include an
intercept in the model, even if it has no direct economic interpretation. Omitting it can lead to a
model that fits the data poorly and that does not predict well.

The other parameters in the model measure the change in the expected value of the dependent
variable given a unit change in an explanatory variable, all other variables held constant.

β2 = the change in expected monthly SALES ($1000) when the price index PRICE is in-
creased by one unit ($1), and advertising expenditure ADVERT is held constant

= ΔE(SALES|PRICE,ADVERT )
ΔPRICE

||||(ADVERT held constant)
= ∂E(SALES|PRICE,ADVERT )

∂PRICE

The symbol “∂” stands for “partial differentiation.” Those of you familiar with calculus may have
seen this operation. In the context above, the partial derivative of average SALES with respect to

............................................................................................................................................
2How to cope with violations of this assumption is considered in Chapter 10.
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PRICE is the rate of change of average SALES as PRICE changes, with other factors, in this case
ADVERT , held constant. Further details can be found in Appendix A.3.5. We will occasionally
use partial derivatives, but not to an extent that will disadvantage you if you have not had a course
in calculus. Rules for differentiation are provided in Appendix A.3.1.

The sign of β2 could be positive or negative. If an increase in price leads to an increase in sales
revenue, then β2 > 0, and the demand for the chain’s products is price-inelastic. Conversely, a
price-elastic demand exists if an increase in price leads to a decline in revenue, in which case
β2 < 0. Thus, knowledge of the sign of β2 provides information on the price-elasticity of demand.
The magnitude of β2 measures the amount of change in revenue for a given price change.

The parameter β3 describes the response of expected sales revenue to a change in the level
of advertising expenditure. That is,

β3 = the change in expected monthly SALES($1000)when advertising expenditure ADVERT
is increased by one unit ($1000), and the price index PRICE is held constant

= ΔE(SALES|PRICE,ADVERT )
ΔADVERT

||||(PRICE held constant)
= ∂E(SALES|PRICE,ADVERT )

∂ADVERT

We expect the sign of β3 to be positive. That is, we expect that an increase in advertising expen-
diture, unless the advertising is offensive, will lead to an increase in sales revenue. Whether or
not the increase in revenue is sufficient to justify the added advertising expenditure, as well as
the added cost of producing more hamburgers, is another question. With β3 < 1, an increase of
$1000 in advertising expenditure will yield an increase in revenue that is less than $1000. For
β3 > 1, it will be greater. Thus, in terms of the chain’s advertising policy, knowledge of β3 is very
important.

Critical to the above interpretations for β2 and β3 is the strict exogeneity assumption
E
(
ei|PRICEi,ADVERTi

)
= 0. It implies that β2, for example, can be interpreted as the effect of

PRICE on SALES, holding all other factors constant, including the unobservable factors that
form part of the error term e. We can say that a one-unit change in PRICE causes mean SALES
to change by β2 units. If the exogeneity assumption does not hold, the parameters cannot be
given this causal interpretation. When E

(
ei|PRICEi

) ≠ 0, a change in price is correlated with
the error term and hence the effect of a change in price cannot be captured by β2 alone. For
example, suppose that Big Andy’s main competitor is Little Jim’s Chicken House. And suppose
that every time Andy changes his burger price, Jim responds by changing his chicken price.
Because Jim’s chicken price is not explicitly included in the equation, but is likely to impact on
Andy’s sales, its effect will be included in the error term. Also, because Jim’s price is correlated
with Andy’s price, E

(
ei|PRICEi

) ≠ 0. Thus, a change in Andy’s price (PRICE) will impact on
SALES through both β2 and the error term. Note, however, if Jim’s price is added to the equation
as another variable, instead of forming part of the error term, and the new error term satisfies the
exogeneity assumption, then the causal interpretation of the parameter is retained.

Similar remarks can be made about the parameter for ADVERT , β3.

E X A M P L E 5.1 Data for Hamburger Chain

In the simple regression model in Chapters 2–4, the
regression function was represented graphically by a line
describing the relationship between E(y|x) and x. With the
multiple regression model with two explanatory variables,

equation (5.5) describes not a line but a plane. As illustrated
in Figure 5.1, the plane intersects the vertical axis at β1.
The parameters β2 and β3 measure the slope of the plane
in the directions of the “price axis” and the “advertising
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axis,” respectively. Representative observations for sales rev-
enue, price, and advertising for some cities are displayed in
Table 5.1. The complete set of observations can be found in

β3 = slope in ADVERT direction

β2 = slope in PRICE direction

SALES

ADVERT

PRICE

β1

E(SALES∣PRICE, ADVERT ) = β1 + β2PRICE + β3 ADVERT

FIGURE 5.1 The multiple regression plane.

T A B L E 5.1 Observations on Monthly Sales, Price, and Advertising

City
SALES

$1000 units
PRICE
$1 units

ADVERT
$1000 units

1 73.2 5.69 1.3
2 71.8 6.49 2.9
3 62.4 5.63 0.8
4 67.4 6.22 0.7
5 89.3 5.02 1.5
. . . .
. . . .
. . . .

73 75.4 5.71 0.7
74 81.3 5.45 2.0
75 75.0 6.05 2.2

Summary statistics

Sample mean 77.37 5.69 1.84
Median 76.50 5.69 1.80
Maximum 91.20 6.49 3.10
Minimum 62.40 4.83 0.50
Std. Dev. 6.49 0.52 0.83

the data file andy and is represented by the dots in Figure 5.1.
These data do not fall exactly on a plane but instead resemble
a “cloud.”
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5.1.3 The General Model
It is useful to digress for a moment and summarize how the concepts developed so far relate to
the general case. Working in this direction, let

yi = SALESi xi2 = PRICEi xi3 = ADVERTi

Then, equation (5.3) can be written as
yi = β1 + β2xi2 + β3xi3 + ei (5.6)

You might wonder why we have defined xi2 and xi3, and not xi1. We can think of the first term
on the right-hand side of the equation as β1xi1 where xi1 = 1, that is, xi1 is equal to 1 for all
observations; it is called the constant term.

In Chapter 2, we used the notation x to denote all sample observations on a single variable x.
Now that we have observations on two explanatory variables, we use the notation X to denote
all observations on both variables as well as the constant term xi1. That is, " =

{(
1, xi2, xi3

)
,

i = 1, 2,… ,N
}

. In the Burger Barn example, N = 75. Also, it will sometimes be convenient to
denote the ith observation as #i =

(
1, xi2, xi3

)
. Given this setup, the strict exogeneity assump-

tion for the Burger Barn example, where we have a random sample with independent xi, is
E
(
ei|#i

)
= 0. For more general data generating processes where the different sample observations

on xi are correlated with each other, the strict exogeneity assumption is written as E
(
ei|"

)
= 0.

If you need a refresher on the difference between E
(
ei|#i

)
= 0 and E

(
ei|"

)
= 0, please go

back and reread Section 2.2. Correlation between different observations
(
different #i

)
typically

exists when using time-series data. In the Burger Barn example, it could occur if our sample
was not random, but taken as a collection of Barns from each of a number of states, and the
pricing-advertising policies were similar for all Barns within a particular state.

We have noted the implications of the strict exogeneity assumption for the interpretation of
the parameters β2 and β3. Later, we discuss the implications for estimator properties and inference.

There are many multiple regression models where we have more than two explanatory vari-
ables. For example, the Burger Barn model could include the price of Little Jim’s Chicken, and
an indicator variable equal to 1 if a Barn is near a major highway interchange, and zero otherwise.
The ith observation for the general model with K − 1 explanatory variables and a constant term
can be written as

yi = β1 + β2xi2 + · · · + βKxiK + ei

The definitions of X and xi extend readily to this general case with " =
{(

1, xi2,… , xiK
)
,

i = 1, 2,… ,N
}

and #i =
(
1, xi2,… , xiK

)
. If strict exogeneity E

(
ei|"

)
= 0 holds, the multiple

regression function is
E
(
yi|X

)
= β1 + β2xi2 + β3xi3 + · · · + βKxiK (5.7)

The unknown parameters β2, β3, … , βK correspond to the explanatory variables x2, x3, … , xK.
Because of this correspondence, we will also refer to β2, β3, … , βK as the coefficients of x2,
x3, … , xK. A single coefficient, call it βk, measures the effect of a change in the variable xk upon
the expected value of y, all other variables held constant. In terms of partial derivatives,

βk =
ΔE

(
y|x2, x3,… , xK

)

Δxk

|||||other x’s held constant
=
∂E

(
y|x2, x3,… , xK

)

∂xk

The parameter β1 is the intercept term. We use K to denote the total number of unknown param-
eters in (5.7). For a large part of this chapter, we will introduce point and interval estimation
in terms of the model with K = 3. The results generally hold for models with more explanatory
variables (K > 3).
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5.1.4 Assumptions of the Multiple Regression Model
To complete our specification of the multiple regression model, we make further assumptions
about the error term and the explanatory variables. These assumptions align with those made
for the simple regression model in Section 2.2. Their purpose is to establish a framework for
estimating the unknown parameters βk, deriving the properties of the estimator for the βk, and
testing hypotheses of interest about those unknown coefficients. As we travel through the book, we
discover that some of the assumptions are too restrictive for some samples of data, requiring us to
weaken many of the assumptions. We will examine the implications of changes to the assumptions
for estimation and hypothesis testing.

MR1: Econometric Model Observations on
(
yi,#i

)
=
(
yi, xi2, xi3,… xiK

)
satisfy the pop-

ulation relationship
yi = β1 + β2xi2 + · · · + βKxiK + ei

MR2: Strict Exogeneity The conditional expectation of the random error ei, given all
explanatory variable observations " =

{
#i, i = 1, 2,… ,N

}
, is zero.

E
(
ei|X

)
= 0

This assumption implies E
(
ei
)
= 0 and cov

(
ei, xjk

)
= 0 for k = 1, 2,… ,K and (i, j) = 1, 2,… ,N.

Each random error has a probability distribution with zero mean. Some errors will be positive,
some will be negative; over a large number of observations they will average out to zero. Also,
all the explanatory variables are uncorrelated with the error; knowing values of the explanatory
variables does not help predict the value of ei. Thus, the observations will be scattered evenly
above and below a plane like the one depicted in Figure 5.1. Fitting a plane through the data will
make sense. Another implication of the strict exogeneity assumption is that the multiple regression
function is given by

E
(
yi|X

)
= β1 + β2xi2 + β3xi3 + · · · + βKxiK

The mean of the conditional distribution of the dependent variable yi is a linear function of the
explanatory variables #i =

(
xi2, xi3,… , xiK

)
.

MR3: Conditional Homoskedasticity The variance of the error term, conditional on
X, is a constant.

var
(
ei|X

)
= σ2

This assumption implies var
(
yi|"

)
= σ2 is a constant. The variability of yi around its conditional

mean function E
(
yi|"

)
= β1 + β2xi2 + β3xi3 +…+ βKxiK does not depend on X. The errors are

not more or less likely to be larger for some values of the explanatory variables than for others.
Errors with this property are said to be homoskedastic.3

MR4: Conditionally Uncorrelated Errors The covariance between different error
terms ei and ej, conditional on X, is zero.

cov
(
ei, ej|X

)
= 0 for i ≠ j

............................................................................................................................................
3Because E

(
ei|X

)
= 0, the unconditional variance of ei is also constant. That is, var

(
ei
)
= σ2. We cannot make the

same statement about the unconditional variance for yi, however. See Appendix B, equation (B.27) for the relationship
between conditional and unconditional variances.
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All pairs of errors are uncorrelated. The covariance between two random errors corresponding to
any two different observations is zero for all values of X. There is no covariation or co-movement
in the errors in the sense that the size of an error for one observation has no bearing on the likely
size of an error for another observation. With cross-sectional data, this assumption implies that
there is no spatial correlation between the errors. With time-series data, it implies there is no
correlation in the errors over time. When it exists, correlation over time is referred to as serial or
autocorrelation. We typically use subscripts t and s with time-series data and hence the assumption
of no serial correlation can be written alternatively as cov

(
et, es|"

)
= 0 for t ≠ s.4

MR5: No Exact Linear Relationship Exists Between the Explanatory
Variables It is not possible to express one of the explanatory variables as an exact linear
function of the others. Mathematically, we write this assumption as saying: The only values of
c1, c2, … , cK for which

c1xi1 + c2xi2 + · · · + cKxiK = 0 for all observations i = 1, 2,… ,N (5.8)
are the values c1 = c2 = · · · = cK = 0. If (5.8) holds and one or more of the ck’s can be nonzero,
the assumption is violated. To appreciate why this assumption is necessary, it is useful to con-
sider some special case violations. First, suppose c2 ≠ 0 and the other ck are zero. Then, (5.8)
implies xi2 = 0 for all observations. If xi2 = 0, then we cannot hope to estimate β2, which mea-
sures the effect of a change in xi2 on yi, with all other factors held constant. As a second special
case, suppose c2, c3, and c4 are nonzero and the other ck are zero. Then, from (5.8) we can write
xi2 = −

(
c3∕c2

)
xi3 –

(
c4∕c2

)
xi4. In this case, xi2 is an exact linear function of xi3 and xi4. This

relationship presents problems because changes in xi2 are completely determined by changes in xi3
and xi4. It is not possible to separately estimate the effects of changes in each of these three vari-
ables. Put another way, there is no independent variation in xi2 that will enable us to estimate β2.
Our third special case relates to assumption SR5 of the simple regression model, which stated
that the explanatory variable must vary. Condition (5.8) includes this case. Suppose that there is
no variation in xi3 such that we can write xi3 = 6 for all i. Then, recalling that xi1 = 1, we can
write 6xi1 = xi3. This outcome violates (5.8), with c1 = 6, c3 = −1 and the other ck equal to zero.

MR6: Error Normality (optional) Conditional on X, the errors are normally distributed
ei|X ∼ N

(
0, σ2)

This assumption implies that the conditional distribution of y is also normally distributed,
yi|X ∼ N

(
E
(
yi|X

)
, σ2). It is useful for hypothesis testing and interval estimation when samples

are relatively small. However, we call it optional for two reasons. First, it is not necessary for
many of the good properties of the least squares estimator to hold. Second, as we will see, if
samples are relatively large, it is no longer a necessary assumption for hypothesis testing and
interval estimation.

Other Assumptions In the more advanced material in Section 2.10, we considered
stronger sets of assumptions for the simple regression model that are relevant for some data
generating processes—nonrandom x’s, random and independent x, and random sampling, as well
as the random and strictly exogenous x case considered here. The properties and characteristics
of our inference procedures—estimation and hypothesis testing—established for the random and
strictly exogenous x case carry over to cases where stronger assumptions are applicable.

............................................................................................................................................
4In a similar way to the assumption about conditional homoskedasticity, we can show that cov

(
ei, ej|"

)
= 0 implies

cov
(
yi, yj|"

)
= 0 and cov

(
ei, ej

)
= 0, but the unconditional covariance cov

(
yi, yj

)
may not be zero.
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5.2 Estimating the Parameters of the Multiple
Regression Model
In this section, we consider the problem of using the least squares principle to estimate the
unknown parameters of the multiple regression model. We will discuss estimation in the context
of the model in (5.6), which we repeat here for convenience, with i denoting the ith observation.

yi = β1 + β2xi2 + β3xi3 + ei

This model is simpler than the full model, yet all the results we present carry over to the general
case with only minor modifications.

5.2.1 Least Squares Estimation Procedure
To find an estimator for estimating the unknown parameters we follow the least squares procedure
that was first introduced in Chapter 2 for the simple regression model. With the least squares prin-
ciple, we find those values of

(
β1, β2, β3

)
that minimize the sum of squared differences between

the observed values of yi and their expected values E
(
yi|X

)
= β1 + xi2β2 + xi3β3. Mathemati-

cally, we minimize the sum of squares function S
(
β1, β2, β3

)
, which is a function of the unknown

parameters, given the data

S
(
β1, β2, β3

)
=

N∑
i=1

(
yi − E

(
yi|X

))2

=
N∑

i=1

(
yi − β1 − β2xi2 − β3xi3

)2 (5.9)

Given the sample observations yi, and xi, minimizing the sum of squares function is a straight-
forward exercise in calculus. Details of this exercise are given in Appendix 5A. The solutions
give us formulas for the least squares estimators for the β coefficients in a multiple regression
model with two explanatory variables. They are extensions of those given in (2.7) and (2.8) for
the simple regression model with one explanatory variable. There are three reasons for relegating
these formulas to Appendix 5A instead of inflicting them on you here. First, they are complicated
formulas that we do not expect you to memorize. Second, we never use these formulas explicitly;
computer software uses the formulas to calculate least squares estimates. Third, we frequently
have models with more than two explanatory variables, in which case the formulas become even
more complicated. If you proceed with more advanced study in econometrics, you will discover
that there is one relatively simple matrix algebra expression for the least squares estimator that
can be used for all models, irrespective of the number of explanatory variables.

Although we always get the computer to do the work for us, it is important to understand
the least squares principle and the difference between least squares estimators and least squares
estimates. Looked at as a general way to use sample data, formulas for b1, b2, and b3, obtained by
minimizing (5.9), are estimation procedures, which are called the least squares estimators of the
unknown parameters. In general, since their values are not known until the data are observed and
the estimates calculated, the least squares estimators are random variables. Computer software
applies the formulas to a specific sample of data producing least squares estimates, which are
numeric values. These least squares estimators and estimates are also referred to as ordinary least
squares estimators and estimates, abbreviated OLS, to distinguish them from other estimators and
estimates such as weighted least squares and two-stage least squares that we encounter later in
the book. To avoid too much notation, we use b1, b2, and b3 to denote both the estimators and
the estimates.
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E X A M P L E 5.2 OLS Estimates for Hamburger Chain Data

Table 5.2 contains the least squares results for the sales
equation for Big Andy’s Burger Barn. The least squares
estimates are

b1 = 118.91 b2 = −7.908 b3 = 1.863
Following Example 4.3, these estimates along with their stan-
dard errors and the equation’s R2 are typically reported in
equation format as

SALES
⋀

(se)
= 118.91

(6.35)
− 7.908PRICE
(1.096)

+ 1.863ADVERT
(0.683)

R2 = 0.448
(5.10)

From the information in this equation, one can readily
construct interval estimates or test hypotheses for each of
the βk in a manner similar to that described in Chapter 3,
but with a change in the number of degrees of freedom for
the t-distribution. Like before, the t-values and p-values in
Table 5.2 relate to testing H0∶βk = 0 against the alternative
H1∶βk ≠ 0 for k = 1, 2, 3.

We proceed by first interpreting the estimates in (5.10).
Then, to explain the degrees of freedom change that arises
from having more than one explanatory variable, and to rein-
force earlier material, we go over the sampling properties of
the least squares estimator, followed by interval estimation
and hypothesis testing.

What can we say about the coefficient estimates in
(5.10)?

1. The negative coefficient on PRICE suggests that demand
is price elastic; we estimate that, with advertising held
constant, an increase in price of $1 will lead to a fall in
mean monthly revenue of $7908. Or, expressed differ-
ently, a reduction in price of $1 will lead to an increase
in mean revenue of $7908. If such is the case, a strategy
of price reduction through the offering of specials would
be successful in increasing sales revenue. We do need
to consider carefully the magnitude of the price change,
however. A $1 change in price is a relatively large change.
The sample mean of price is 5.69 and its standard devia-
tion is 0.52. A 10-cent change is more realistic, in which
case we estimate the mean revenue change to be $791.

T A B L E 5.2 Least Squares Estimates for Sales Equation for Big Andy’s Burger Barn

Variable Coefficient Std. Error t-Statistic Prob.
C 118.9136 6.3516 18.7217 0.0000
PRICE −7.9079 1.0960 −7.2152 0.0000
ADVERT 1.8626 0.6832 2.7263 0.0080
R2 = 0.4483 SSE = 1718.943 σ̂ = 4.8861 sy = 6.48854

2. The coefficient on advertising is positive; we estimate that
with price held constant, an increase in advertising expen-
diture of $1000 will lead to an increase in mean sales
revenue of $1863. We can use this information, along
with the costs of producing the additional hamburgers,
to determine whether an increase in advertising expendi-
tures will increase profit.

3. The estimated intercept implies that if both price and
advertising expenditure were zero the sales revenue
would be $118,914. Clearly, this outcome is not pos-
sible; a zero price implies zero sales revenue. In this
model, as in many others, it is important to recognize
that the model is an approximation to reality in the
region for which we have data. Including an intercept
improves this approximation even when it is not directly
interpretable.

In giving the above interpretations, we had to be careful to
recognize the units of measurement for each of the variables.
What would happen if we measured PRICE in cents instead
of dollars and SALES in dollars instead of thousands of dol-
lars? To discover the outcome, define the new variables mea-
sured in terms of the new units as PRICE* = 100 × PRICE
and SALES* = 1000 × SALES. Substituting for PRICE and
SALES, our new fitted equation becomes

SALES
⋀∗

1000 = 118.91 − 7.908 PRICE∗
100 + 1.863ADVERT

Multiplying through by 1000, we obtain

SALES
⋀∗

= 118,910 − 79.08PRICE∗ + 1863ADVERT

This is the estimated model that we would obtain if we
applied least squares to the variables expressed in terms of
the new units of measurement. The standard errors would
change in the same way, but the R2 will stay the same. In
this form, a more direct interpretation of the coefficients is
possible. A one cent increase in PRICE leads to a decline in
mean SALES of $79.08. An increase in ADVERT of $1000
leads to an increase in mean sales revenue of $1863.
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In addition to providing information about how sales
change when price or advertising change, the estimated
equation can be used for prediction. Suppose Big Andy is
interested in predicting sales revenue for a price of $5.50
and an advertising expenditure of $1200. Including extra
decimal places to get an accurate hand calculation, this
prediction is

SALES = 118.91 − 7.908PRICE + 1.863ADVERT
= 118.914 − 7.9079 × 5.5 + 1.8626 × 1.2
= 77.656

The predicted value of sales revenue for PRICE = 5.5 and
ADVERT = 1.2 is $77,656.

Remark
A word of caution is in order about interpreting regression results: The negative sign attached
to price implies that reducing the price will increase sales revenue. If taken literally, why
should we not keep reducing the price to zero? Obviously that would not keep increasing total
revenue. This makes the following important point: Estimated regression models describe
the relationship between the economic variables for values similar to those found in the
sample data. Extrapolating the results to extreme values is generally not a good idea. Pre-
dicting the value of the dependent variable for values of the explanatory variables far from
the sample values invites disaster. Refer to Figure 4.2 and the surrounding discussion.

5.2.2 Estimating the Error Variance σ2

There is one remaining parameter to estimate—the variance of the error term. For this parameter,
we follow the same steps that were outlined in Section 2.7. Under assumptions MR1, MR2, and
MR3, we know that

σ2 = var
(
ei|X

)
= var

(
ei
)
= E

(
e2

i |X
)
= E

(
e2

i
)

Thus, we can think of σ2 as the expectation or population mean of the squared errors e2
i . A natural

estimator of this population mean is the sample mean σ̂2 = ∑
e2

i ∕N. However, the squared errors
e2

i are unobservable, so we develop an estimator for σ2 that is based on their counterpart, the
squares of the least squares residuals. For the model in (5.6), these residuals are

êi = yi − ŷi = yi −
(
b1 + b2xi2 + b3xi3

)

An estimator for σ2 that uses the information from ê2
i and has good statistical properties is

σ̂2 =
∑N

i=1ê2
i

N − K
(5.11)

where K is the number of β parameters being estimated in the multiple regression model. We can
think of σ̂2 as an average of ê2

i with the denominator in the averaging process being N – K instead
of N. It can be shown that replacing e2

i by ê2
i requires the use of N − K instead of N for σ̂2 to be

unbiased. Note that in equation (2.19), where there was only one explanatory variable and two
coefficients, we had K = 2.

To appreciate further why êi provide information about σ2, recall that σ2 measures the varia-
tion in ei or, equivalently, the variation in yi around the mean function β1 + β2xi2 + β3xi3. Since êi
are estimates of ei, big values of êi suggest σ2 is large while small êi suggest σ2 is small. When
we refer to “big” values of êi, we mean big positive ones or big negative ones. Using the squares
of the residuals ê2

i means that positive values do not cancel with negative ones; thus, ê2
i provide

information about the parameter σ2.
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E X A M P L E 5.3 Error Variance Estimate for Hamburger Chain Data

In the hamburger chain example, we have K = 3. The esti-
mate for our sample of data in Table 5.1 is

σ̂2 =
∑75

i=1ê2
i

N − K
= 1718.943

75 − 3 = 23.874

Go back and have a look at Table 5.2. There are two quantities
in this table that relate to the above calculation. The first is the
sum of squared errors

SSE =
N∑

i=1
ê2

i = 1718.943

The second is the square root of σ̂2, given by

σ̂ =
√

23.874 = 4.8861

Both these quantities typically appear in the output from your
computer software. Different software refer to it in different
ways. Sometimes σ̂ is referred to as the standard error of
the regression. Sometimes it is called the root mse (short
for the square root of mean squared error).

5.2.3 Measuring Goodness-of-Fit
For the simple regression model studied in Chapter 4, we introduced R2 as a measure of the
proportion of variation in the dependent variable that is explained by variation in the explanatory
variable. In the multiple regression model the same measure is relevant, and the same formulas
are valid, but now we talk of the proportion of variation in the dependent variable explained by
all the explanatory variables included in the model. The coefficient of determination is

R2 = SSR
SST

=
∑N

i=1
(
ŷi − y

)2

∑N
i=1
(
yi − y

)2 = 1 − SSE
SST

= 1 −
∑N

i=1ê2
i∑N

i=1
(
yi − y

)2 (5.12)

where SSR is the variation in y “explained” by the model (sum of squares due to regression),
SST is the total variation in y about its mean (sum of squares, total), and SSE is the sum of
squared least squares residuals (errors) and is that part of the variation in y that is not explained
by the model.

The notation ŷi refers to the predicted value of y for each of the sample values of the explana-
tory variables, that is,

ŷi = b1 + b2xi2 + b3xi3 + · · · + bKxiK

The sample mean y is both the mean of the yi and the mean of the ŷi, providing the model that
includes an intercept

(
β1 in this case

)
.

The value for SSE will be reported by almost all computer software, but sometimes SST is
not reported. Recall, however, that the sample standard deviation for y, which is readily computed
by most software, is given by

sy =

√
1

N − 1
N∑

i=1

(
yi − y

)2 =
√

SST
N − 1

and so
SST = (N − 1)s2

y
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E X A M P L E 5.4 R2 for Hamburger Chain Data

Using the results for Big Andy’s Burger Barn in Table 5.2,
we find that SST = 74 × 6.488542 = 3115.485 and SSE =
1718.943. Using these sums of squares, we have

R2 = 1 −
∑N

i=1ê2
i∑N

i=1
(
yi − y

)2 = 1 − 1718.943
3115.485 = 0.448

The interpretation of R2 is that 44.8% of the variation in sales
revenue about its mean is explained by the variation in price

and the variation in the level of advertising expenditure. It
means that, in our sample, 55.2% of the variation in revenue
is left unexplained and is due to variation in the error term
or variation in other variables that implicitly form part of the
error term.

As mentioned in Section 4.2.2, the coefficient of determination is also viewed as a measure of the
predictive ability of the model over the sample period, or as a measure of how well the estimated
regression fits the data. The value of R2 is equal to the squared sample correlation coefficient
between ŷi and yi. Since the sample correlation measures the linear association between two vari-
ables, if the R2 is high, that means there is a close association between the values of yi and the
values predicted by the model, ŷi. In this case, the model is said to “fit” the data well. If R2 is low,
there is not a close association between the values of yi and the values predicted by the model, ŷi,
and the model does not fit the data well.

One final note is in order. The intercept parameter β1 is the y-intercept of the regression
“plane,” as shown in Figure 5.1. If, for theoretical reasons, you are certain that the regression plane
passes through the origin, then β1 = 0 and it can be omitted from the model. While this is not
a common practice, it does occur, and regression software includes an option that removes the
intercept from the model. If the model does not contain an intercept parameter, then the measure
R2 given in (5.12) is no longer appropriate. The reason it is no longer appropriate is that, without
an intercept term in the model,

N∑
i=1

(
yi − y

)2 ≠ N∑
i=1

(
ŷi − y

)2 +
N∑

i=1
ê2

i

or, SST ≠ SSR + SSE. To understand why, go back and check the proof in Appendix 4B. In the
sum of squares decomposition the cross-product term ∑N

i=1
(
ŷi − y

)
êi no longer disappears. Under

these circumstances, it does not make sense to talk of the proportion of total variation that is
explained by the regression. Thus, when your model does not contain a constant, it is better not
to report R2, even if your computer displays one.

5.2.4 Frisch–Waugh–Lovell (FWL) Theorem
The Frisch–Waugh–Lovell (FWL) Theorem5 is a useful and somewhat surprising result that we
use a number of times in the remainder of the book. It also helps understand in a multiple regres-
sion the interpretation of a coefficient estimate, all other variables held constant. To illustrate6

............................................................................................................................................
5Also known as the Frisch–Waugh Theorem or the decomposition theorem.
6An illustration is not a proof. For a nonmatrix algebra proof, see Michael C. Lovell (2008) “A Simple Proof of the
FWL Theorem,” Journal of Economic Education, Winter 2008, 88–91. A proof using matrix algebra is presented in
William H. Greene (2018) Econometric Analysis, Eighth Edition, Boston: Prentice-Hall, 36–38.
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this result, we use the sales equation SALESi = β1 + β2PRICEi + β3ADVERTi + ei and carry out
the following steps:

1. Estimate the simple regression SALESi = a1 + a2PRICEi + error using the least squares
estimator and save the least squares residuals.

SALES
∼

i = SALESi −
(
â1 + â2PRICEi

)
= SALESi −

(
121.9002 − 7.8291PRICEi

)

2. Estimate the simple regression ADVERTi = c1 + c2PRICEi + error using the least squares
estimator and save the least squares residuals.

ADVERT
∼

i = ADVERTi −
(
ĉ1 + ĉ2PRICEi

)
= ADVERTi −

(
1.6035 + 0.0423PRICEi

)

3. Estimate the simple regression SALES
∼

i = β3ADVERT
∼

i + ẽi with no constant term. The esti-
mate of β3 is b3 = 1.8626. This estimate is the same as that reported from the full regression
in Table 5.2.

4. Compute the least squares residuals from step 3, ̂̃ei = SALES
∼

i − b3ADVERT
∼

i. Compare these
residuals to those from the complete model.

êi = SALESi −
(
b1 + b2PRICEi + b3ADVERTi

)

You will find that the two sets of residuals ̂̃ei and êi are identical. Consequently, the sums of
squared residuals are also the same, ∑ê2

i = ∑ ̂̃e2
i = 1718.943.

What have we shown?
• In steps 1 and 2, we removed (or “purged” or “partialled out”) the linear influence of PRICE

(and a constant term) from both SALES and ADVERT by estimating least squares regressions
and computing the least squares residuals SALES

∼
and ADVERT
∼

. These residual variables are
SALES and ADVERT after removing, or “partialling out,” the linear influence of PRICE and
a constant.

• In step 3, we illustrate the first important result of the FWL theorem: the coefficient estimate
for β3 from the regression using the partialled-out variables SALES

∼
i = β3ADVERT
∼

i + ẽi
is exactly the same as that from the full regression SALESi = β1 + β2PRICEi +
β3ADVERTi + ei. We have explained β3 as “the change in monthly sales SALES ($1000)
when advertising expenditure ADVERT is increased by one unit ($1000), and the price index
PRICE is held constant.” The FWL result gives a precise meaning to “is held constant.” It
means that β3 is the effect of advertising expenditure on sales after the linear influence of
price and a constant term have been removed from both.

• In step 4, we note the second important result of the FWL theorem: the least squares resid-
uals and their sum of squares are identical when calculated from the full regression or the
“partialled-out” model.

A few cautions are in order. First, pay attention to the constant term. Here we have included it
with PRICE as a variable to be partialled out in steps 1 and 2. Consequently, a constant is not
included in step 3. Second, estimating the partialled-out regression is not completely equivalent
to estimating the original, complete model. When estimating SALES

∼
i = β3ADVERT
∼

i + ẽi, your
software will see only one parameter to estimate, β3. Consequently, when computing the estimate
of σ2, software will use the degrees of freedom N − 1 = 74. This means that the reported estimated
error variance will be too small. It is σ̃2 = ∑ ̂̃e2

i ∕(N − 1) = 1718.943∕74 = 23.2290 compared to
the estimate from the previous section that uses divisor N − K = 75 − 3, σ̂2 = ∑

ê2
i ∕(N − 3) =

1718.943∕72 = 23.8742.7 Third, for illustration we have used estimates that are rounded to four
decimals. In practice, your software will use more significant digits. The results of the theorem
may suffer from rounding error if insufficient significant digits are used. The estimate in step 3 is
............................................................................................................................................
7This smaller error variance estimate means that the standard errors of the regression coefficients discussed in
Section 5.3.1 will be too small.
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accurate to four decimals in this example, but the least squares residuals in step 4 are off without
using more significant digits.

The Frisch–Waugh–Lovell Theorem also applies in the multiple regression model yi = β1 +
β2xi2 + β3xi3 + · · · + βKxiK + ei. Partition the explanatory variables into two groups. The theorem
works for any partition, but generally the variables that are not the primary focus of the analysis
are partialled out. This group is sometimes called the collection of control variables as they
are included for a proper specification of the regression model and “control for” the variables
that are not of primary interest. For example, suppose that x2 and x3 are the variables of primary
interest. Then the two groups are g1 =

(
xi2, xi3

)
and g2 =

(
xi1 = 1, xi4, xi5,… , xiK

)
. Note that we

have included the constant term in group two but not group one. Each variable must go into one
group or the other but not both. The FWL theorem is then applied in the following steps:

1. Estimate the least squares regression with dependent variable y and the explanatory variables
g2 =

(
xi1 = 1, xi4, xi5,… , xiK

)
. Compute the least squares residuals, ỹ.

2. Estimate the least squares regression for each variable in group one using explanatory vari-
ables g2 =

(
xi1 = 1, xi4, xi5,… , xiK

)
and compute the least squares residuals, x̃2 and x̃3.

3. Estimate the least squares regression using the partialled-out variables, ỹi = β2x̃i2 + β3x̃i3
+ ẽi. The coefficient estimates b2 and b3 will be identical to the estimates from the full
model.

4. The residuals from the partialled-out regression, ̂̃ei = ỹi −
(
b2x̃i2 + b3x̃i3

)
, are identical to

the residuals from the full model.

5.3 Finite Sample Properties of the Least
Squares Estimator
In a general context, the least squares estimators

(
b1, b2, b3

)
are random variables; they take on

different values in different samples and their values are unknown until a sample is collected and
their values computed. The differences from sample to sample are called “sampling variation”
and are unavoidable. The probability or sampling distribution of the OLS estimator describes
how its estimates vary over all possible samples. The sampling properties of the OLS estimator
refer to characteristics of this distribution. If the mean of the distribution of bk is βk, the estimator
is unbiased. The variance of the distribution provides a basis for assessing the reliability of the
estimates. If the variability of bk across samples is relatively high, then it is hard to be confident
that the values obtained in one realized sample will necessarily be close to the true parameters.
On the other hand, if bk is unbiased and its variability across samples is relatively low, we can be
confident that an estimate from one sample will be reliable.

What we can say about the sampling distribution of the least squares estimator depends on
what assumptions can realistically be made for the sample of data being used for estimation. For
the simple regression model introduced in Chapter 2 we saw that, under the assumptions SR1 to
SR5, the OLS estimator is best linear unbiased in the sense that there is no other linear unbiased
estimator that has a lower variance. The same result holds for the general multiple regression
model under assumptions MR1–MR5.

The Gauss–Markov Theorem: If assumptions MR1–MR5 hold, the least squares estima-
tors are the Best Linear Unbiased Estimators (BLUE) of the parameters in the multiple
regression model.8

............................................................................................................................................
8Similar remarks can be made about the properties of the least squares estimator in the multiple regression model under
the more restrictive, but sometimes realistic, assumptions explored for the simple regression model in Section 2.10.
Under the assumptions in that section, if all explanatory variables are statistically independent of all error terms, or if
the observations on

(
yi, xi2, xi3,… , xiK

)
are collected via random sampling making them independent, the BLUE

property still holds.
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The implications of adding assumption MR6, that the errors are normally distributed, are
also similar to those from the corresponding assumption made for the simple regression model.
Conditional on X, the least squares estimator is normally distributed. Using this result, and the
error variance estimator σ̂2, a t-statistic that follows a t-distribution can be constructed and used
for interval estimation and hypothesis testing, along similar lines to the development in Chapter 3.

These various properties—BLUE and the use of the t-distribution for interval estimation and
hypothesis testing—are finite sample properties. As long as N > K, they hold irrespective of the
sample size N. We provide more details in the context of the multiple regression model in the
remainder of this section and in Sections 5.4 and 5.5. There are, however, many circumstances
where we are unable to rely on finite sample properties. Violation of some of the assumptions
can mean that finite sample properties of the OLS estimator do not hold or are too difficult to
derive. Also, as we travel through the book and encounter more complex models and assumptions
designed for a variety of different types of sample data, an ability to use finite sample properties
becomes the exception rather than the rule. To accommodate such situations we use what are
called large sample or asymptotic properties. These properties refer to the behavior of the sam-
pling distribution of an estimator as the sample size approaches infinity. Under less restrictive
assumptions, or when faced with a more complex model, large sample properties can be easier
to derive than finite sample properties. Of course, we never have infinite samples, but the idea
is that if N is sufficiently large, then an estimator’s properties as N becomes infinite will be a
good approximation to that estimator’s properties when N is large but finite. We discuss large
sample properties and the circumstances under which they need to be invoked in Section 5.7.
An example is the central limit theorem mentioned in Section 2.6. There we learnt that, if N is
sufficiently large, the least squares estimator is approximately normally distributed even when
assumption SR6, which specifies that the errors are normally distributed, is violated.

5.3.1 The Variances and Covariances of the
Least Squares Estimators

The variances and covariances of the least squares estimators give us information about the
reliability of the estimators b1, b2, and b3. Since the least squares estimators are unbiased,
the smaller their variances, the higher the probability that they will produce estimates “near” the
true parameter values. For K = 3, we can express the conditional variances and covariances in
an algebraic form that provides useful insights into the behavior of the least squares estimator.
For example, we can show that

var
(
b2|X

)
= σ2

(
1 − r2

23
)∑N

i=1
(
xi2 − x2

)2 (5.13)

where r23 is the sample correlation coefficient between the values of x2 and x3; see Section 4.2.1.
Its formula is given by

r23 =
∑(

xi2 − x2
) (

xi3 − x3
)

√∑(
xi2 − x2

)2 ∑(
xi3 − x3

)2

For the other variances and covariances, there are formulas of a similar nature. It is important to
understand the factors affecting the variance of b2:

1. Larger error variances σ2 lead to larger variances of the least squares estimators. This is to be
expected, since σ2 measures the overall uncertainty in the model specification. If σ2 is large,
then data values may be widely spread about the regression function E

(
yi|"

)
= β1 + β2xi2 +

β3xi3, and there is less information in the data about the parameter values. If σ2 is small, then
data values are compactly spread about the regression function E

(
yi|"

)
= β1 + β2xi2 +

β3xi3, and there is more information about what the parameter values might be.
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2. Larger sample sizes N imply smaller variances of the least squares estimators. A larger value
of N means a larger value of the summation ∑(

xi2 − x2
)2. Since this term appears in the

denominator of (5.13), when it is large, var
(
b2
)

is small. This outcome is also an intuitive
one; more observations yield more precise parameter estimation.

3. More variation in an explanatory variable around its mean, measured in this case by∑(
xi2 − x2

)2, leads to a smaller variance of the least squares estimator. To estimate β2
precisely, we prefer a large amount of variation in xi2. The intuition here is that if the
variation or change in x2 is small, it is difficult to measure the effect of that change. This
difficulty will be reflected in a large variance for b2.

4. A larger correlation between x2 and x3 leads to a larger variance of b2. Note that 1 − r2
23

appears in the denominator of (5.13). A value of |r23| close to 1 means 1 − r2
23 will be small,

which in turn means var
(
b2
)

will be large. The reason for this fact is that variation in xi2 about
its mean adds most to the precision of estimation when it is not connected to variation in the
other explanatory variables. When the variation in one explanatory variable is connected to
variation in another explanatory variable, it is difficult to disentangle their separate effects.
In Chapter 6, we discuss “collinearity,” which is the situation when the explanatory variables
are correlated with one another. Collinearity leads to increased variances of the least squares
estimators.

Although our discussion has been in terms of a model where K = 3, these factors affect the
variances of the least squares estimators in the same way in larger models.

It is customary to arrange the estimated variances and covariances of the least squares esti-
mators in a square array, which is called a matrix. This matrix has variances on its diagonal and
covariances in the off-diagonal positions. It is called a variance–covariance matrix or, more
simply, a covariance matrix. When K = 3, the arrangement of the variances and covariances in
the covariance matrix is

cov
(
b1, b2, b3

)
=
⎡
⎢
⎢⎣

var
(
b1
)

cov
(
b1, b2

)
cov

(
b1, b3

)

cov
(
b1, b2

)
var

(
b2
)

cov
(
b2, b3

)

cov
(
b1, b3

)
cov

(
b2, b3

)
var

(
b3
)

⎤
⎥
⎥⎦

Before discussing estimation of this matrix, it is useful to distinguish between the covariance
matrix conditional on the observed explanatory variables cov

(
b1, b2, b3|"

)
, and the unconditional

covariance matrix cov
(
b1, b2, b3

)
that recognizes that most data generation is such that both y and

X are random variables. Given that the OLS estimator is both conditionally and unconditionally
unbiased, that is, E

(
bk
)
= E

(
bk|"

)
= βk, the unconditional covariance matrix is given by

cov
(
b1, b2, b3

)
= EX

[
cov

(
b1, b2, b3|X

)]

Taking the variance of b2 as an example of one of the elements in this matrix, we have

var
(
b2
)
= EX

[
var

(
b2|X

)]
= σ2EX

[
1(

1 − r2
23
)∑N

i=1
(
xi2 − x2

)2

]

We use the same quantity to estimate both var
(
b2
)

and var
(
b2|"

)
. That is,

var
⋀(

b2
)
= var
⋀(

b2|X
)
= σ̂2

(
1 − r2

23
)∑N

i=1
(
xi2 − x2

)2

This quantity is an unbiased estimator for both var
(
b2
)

and var
(
b2|"

)
. For estimating var

(
b2|"

)
,

we replace σ2 with σ̂2 in equation (5.13). For estimating var
(
b2
)
, we replace σ2 with σ̂2 and

the unknown expectation EX

{[(
1 − r2

23
)∑N

i=1
(
xi2 − x2

)2]−1}
with

[(
1 − r2

23
)∑N

i=1
(
xi2 − x2

)2]−1
.

Similar replacements are made for the other elements in the covariance matrix.
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E X A M P L E 5.5 Variances, Covariances, and Standard Errors for Hamburger
Chain Data

Using the estimate σ̂2 = 23.874 and our computer software
package, the estimated variances and covariances for b1, b2,
b3, in the Big Andy’s Burger Barn example are

cov
⋀(

b1, b2, b3
)
=
⎡
⎢
⎢⎣

40.343 −6.795 −0.7484
−6.795 1.201 −0.0197
−0.7484 −0.0197 0.4668

⎤
⎥
⎥⎦

Thus, we have

var
⋀(

b1
)
= 40.343 cov

⋀(
b1, b2

)
= −6.795

var
⋀(

b2
)
= 1.201 cov

⋀(
b1, b3

)
= −0.7484

var
⋀(

b3
)
= 0.4668 cov

⋀(
b2, b3

)
= −0.0197

Table 5.3 shows how this information is typically reported in
the output from computer software. Of particular relevance
are the standard errors of b1, b2, and b3; they are given by
the square roots of the corresponding estimated variances.
That is,

se
(
b1
)
=
√

var
⋀(

b1
)
=
√

40.343 = 6.3516

se
(
b2
)
=
√

var
⋀(

b2
)
=
√

1.201 = 1.0960

se
(
b3
)
=
√

var
⋀(

b3
)
=
√

0.4668 = 0.6832

Again, it is time to go back and look at Table 5.2. Notice that
these values appear in the standard error column.

These standard errors can be used to say something
about the range of the least squares estimates if we were
to obtain more samples of 75 Burger Barns from different
cities. For example, the standard error of b2 is approximately

T A B L E 5.3
Covariance Matrix for Coefficient
Estimates

C PRICE ADVERT
C 40.3433 −6.7951 −0.7484
PRICE −6.7951 1.2012 −0.0197
ADVERT −0.7484 −0.0197 0.4668

se
(
b2
)
= 1.1. We know that the least squares estimator is

unbiased, so its mean value is E
(
b2
)
= β2. Suppose b2 is

approximately normally distributed, then based on statistical
theory we expect 95% of the estimates b2, obtained by
applying the least squares estimator to other samples, to be
within approximately two standard deviations of the mean β2.
Given our sample, 2 × se

(
b2
)
= 2.2, so we estimate that

95% of the b2 values would lie within the interval β2 ± 2.2.
It is in this sense that the estimated variance of b2, or its
corresponding standard error, tells us something about the
reliability of the least squares estimates. If the difference
between b2 and β2 can be large, b2 is not reliable; if the
difference between b2 and β2 is likely to be small, then b2 is
reliable. Whether a particular difference is “large” or “small”
will depend on the context of the problem and the use to
which the estimates are to be put. This issue is considered
again in later sections when we use the estimated variances
and covariances to test hypotheses about the parameters and
to construct interval estimates.

5.3.2 The Distribution of the Least Squares Estimators
We have asserted that, under the multiple regression model assumptions MR1–MR5, listed in
Section 5.1, the least squares estimator bk is the best linear unbiased estimator of the parameter
βk in the model

yi = β1 + β2xi2 + β3xi3 + · · · + βKxiK + ei

If we add assumption MR6, that the random errors ei have normal probability distributions, then,
conditional on X, the dependent variable yi is normally distributed:

(
yi|X

)
∼ N

((
β1 + β2xi2 + · · · + βKxiK

)
, σ2

)
⇐⇒

(
ei|X

)
∼ N

(
0, σ2)

For a given X, the least squares estimators are linear functions of dependent variables, which
means that the conditional distribution of the least squares estimators is also normal:

(
bk|X

)
∼ N

(
βk, var

(
bk|X

))

That is, given X, each bk has a normal distribution with mean βk and variance var
(
bk|"

)
. By

subtracting its mean and dividing by the square root of its variance, we can transform the normal
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random variable bk into a standard normal variable Z with mean zero and a variance of one.

Z =
bk − βk√
var

(
bk|X

) ∼ N(0, 1) , for k = 1, 2,… ,K (5.14)

What is particularly helpful about this result is that the distribution of Z does not depend on any
unknown parameters or on X. Although the unconditional distribution of bk will almost certainly
not be normal—it depends on the distributions of both e and X—we can use the standard normal
distribution to make probability statements about Z irrespective of whether the explanatory vari-
ables are treated as fixed or random. As mentioned in Chapter 3, statistics with this property are
called pivotal.

There is one remaining problem, however. Before we can use (5.14) to construct interval
estimates for βk or test hypothesized values for βk, we need to replace the unknown parameter
σ2 that is a component of var

(
bk|"

)
with its estimator σ̂2. Doing so yields a t random variable

given by
t =

bk − βk√
var
⋀(

bk|X
) =

bk − βk

se
(
bk
) ∼ t(N−K) (5.15)

Like Z in equation (5.14), the distribution of this t-statistic does not depend on any unknown
parameters or on X. It is a generalization of the result in equation (3.2). A difference is the degrees
of freedom of the t random variable. In Chapter 3, where there were two coefficients to be esti-
mated, the number of degrees of freedom was (N − 2). In this chapter, there are K unknown
coefficients in the general model and the number of degrees of freedom for t-statistics is (N − K).

Linear Combinations of Parameters The result in (5.15) extends to a linear com-
bination of coefficients that was introduced in Section 3.6. Suppose that we are interested in
estimating or testing hypotheses about a linear combination of coefficients that in the general
case is given by

λ = c1β1 + c2β2 + · · · + cKβK = ∑K
k=1 ckβk

Then
t = λ̂ − λ

se
(
λ̂
) =

∑
ckbk−

∑
ckβk

se
(∑

ckbk
) ∼ t(N−K) (5.16)

This expression is a little intimidating, mainly because we have included all coefficients to make
it general, and because hand calculation of se

(∑
ckbk

)
is onerous if more than two coefficients

are involved. For example, if K = 3, then

se
(
c1b1 + c2b2 + c3b3

)
=
√

var
⋀(

c1b1 + c2b2 + c3b3|X
)

where
var
⋀(

c1b1 + c2b2 + c3b3|X
)
= c2

1var
⋀(

b1|X
)
+ c2

2var
⋀(

b2|X
)
+ c2

3var
⋀(

b3|X
)
+ 2c1c2cov

⋀(
b1, b2|X

)

+ 2c1c3cov
⋀(

b1, b3|X
)
+ 2c2c3cov

⋀(
b2, b3|X

)

In many instances some of the ck will be zero, which can simplify the expressions and the calcu-
lations considerably. If one ck is equal to one, and the rest are zero, (5.16) simplifies to (5.15).

What happens if the errors are not normally distributed? Then the least squares estimator will
not be normally distributed and (5.14), (5.15), and (5.16) will not hold exactly. They will, however,
be approximately true in large samples. Thus, having errors that are not normally distributed does
not stop us from using (5.15) and (5.16), but it does mean we have to be cautious if the sample
size is not large. A test for normally distributed errors was given in Section 4.3.5. An example of
errors that are not normally distributed can be found in Appendix 5C.
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We now examine how the results in (5.15) and (5.16) can be used for interval estimation and
hypothesis testing. The procedures are identical to those described in Chapter 3, except that the
degrees of freedom change.

5.4 Interval Estimation
5.4.1 Interval Estimation for a Single Coefficient

Suppose we are interested in finding a 95% interval estimate for β2, the response of average sales
revenue to a change in price at Big Andy’s Burger Barn. Following the procedures described in
Section 3.1, and noting that we have N − K = 75 − 3 = 72 degrees of freedom, the first step is to
find a value from the t(72)-distribution, call it tc, such that

P
(
−tc < t(72) < tc

)
= 0.95 (5.17)

Using the notation introduced in Section 3.1, tc = t(0.975, N−K) is the 97.5-percentile of the
t(N − K)-distribution (the area or probability to the left of tc is 0.975), and –tc = t(0.025, N − K) is
the 2.5-percentile of the t(N − K)-distribution (the area or probability to the left of –tc is 0.025).
Consulting the t-table (Statistical Table 2), we discover there is no entry for 72 degrees of
freedom, but, from the entries for 70 and 80 degrees of freedom, it is clear that, correct to two
decimal places, tc = 1.99. If greater accuracy is required, your computer software can be used to
find tc = 1.993. Using this value, and the result in (5.15) for the second coefficient (k = 2), we
can rewrite (5.17) as

P
(
−1.993 ≤ b2 − β2

se
(
b2
) ≤ 1.993

)
= 0.95

Rearranging this expression, we obtain
P
[
b2 − 1.993 × se

(
b2
) ≤ β2 ≤ b2 + 1.993 × se

(
b2
)]

= 0.95

The interval endpoints [
b2 − 1.993 × se

(
b2
)
, b2 + 1.993 × se

(
b2
)]

(5.18)

define a 95% interval estimator of β2. If this interval estimator is used in many samples from
the population, then 95% of them will contain the true parameter β2. We can establish this fact
before any data are collected, based on the model assumptions alone. Before the data are collected,
we have confidence in the interval estimation procedure (estimator) because of its performance
over all possible samples.

E X A M P L E 5.6 Interval Estimates for Coefficients in Hamburger Sales Equation

A 95% interval estimate for β2 based on our particular sam-
ple is obtained from (5.18) by replacing b2 and se

(
b2
)

by their
values b2 = −7.908 and se

(
b2
)
= 1.096. Thus, our 95% inter-

val estimate for β2 is given by9

(−7.9079 − 1.9335 × 1.096, 7.9079 + 1.9335 × 1.096)
= (−10.093,−5.723)

This interval estimate suggests that decreasing price by
$1 will lead to an increase in average revenue somewhere
between $5723 and $10,093. Or, in terms of a price change
whose magnitude is more realistic, a 10-cent price reduction
will lead to an average revenue increase between $572 and
$1009. Based on this information, and the cost of making
and selling more burgers, Big Andy can decide whether to
proceed with a price reduction.

............................................................................................................................................
9For this and the next calculation, we used more digits so that it would match the more accurate computer output.
You may see us do this occasionally.
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Following a similar procedure for β3, the response of
average sales revenue to advertising, we find a 95% interval
estimate is given by

(1.8626 − 1.9935 × 0.6832, 1.8626 + 1.9935 × 0.6832)
=(0.501, 3.225)

We estimate that an increase in advertising expenditure
of $1000 leads to an increase in average sales revenue of

between $501 and $3225. This interval is a relatively wide
one; it implies that extra advertising expenditure could
be unprofitable (the revenue increase is less than $1000)
or could lead to a revenue increase more than three times
the cost of the advertising. Another way of describing this
situation is to say that the point estimate b3 = 1.8626 is not
very reliable, as its standard error (which measures sampling
variability) is relatively large.

In general, if an interval estimate is uninformative because it is too wide, there is nothing
immediate that can be done. A wide interval for the parameter β3 arises because the estimated
sampling variability of the least squares estimator b3 is large. In the computation of an inter-
val estimate, a large sampling variability is reflected by a large standard error. A narrower
interval can only be obtained by reducing the variance of the estimator. Based on the variance
expression in (5.13), one solution is to obtain more and better data exhibiting more independent
variation. Big Andy could collect data from other cities and set a wider range of price and
advertising combinations. It might be expensive to do so, however, and so he would need to
assess whether the extra information is worth the extra cost. This solution is generally not
open to economists, who rarely use controlled experiments to obtain data. Alternatively, we
might introduce some kind of nonsample information on the coefficients. The question of
how to use both sample and nonsample information in the estimation process is taken up in
Chapter 6.

We cannot say, in general, what constitutes an interval that is too wide, or too uninformative.
It depends on the context of the problem being investigated, and on how the information is to
be used.

To give a general expression for an interval estimate, we need to recognize that the criti-
cal value tc will depend on the degree of confidence specified for the interval estimate and the
number of degrees of freedom. We denote the degree of confidence by 1 − α; in the case of a
95% interval estimate α = 0.05 and 1 – α = 0.95. The number of degrees of freedom is N − K;
in Big Andy’s Burger Barn example this value was 75 – 3 = 72. The value tc is the percentile
value t(1 − α/2, N − K), which has the property that P

[
t(N − K) ≤ t(1 − α∕2, N − K)

]
= 1 − α∕2. In the case

of a 95% confidence interval, 1 − α∕2 = 0.975; we use this value because we require 0.025 in
each tail of the distribution. Thus, we write the general expression for a 100(1 – α)% confidence
interval as

[
bk − t(1−α/2,N−K) × se

(
bk
)
, bk + t(1−α/2, N−K) × se

(
bk
)]

5.4.2 Interval Estimation for a Linear
Combination of Coefficients

The t-statistic in (5.16) can also be used to create interval estimates for a variety of linear com-
binations of parameters. Such combinations are of interest if we are considering the value of
E(y|") for a particular setting of the explanatory variables, or the effect of changing two or more
explanatory variables simultaneously. They become especially relevant if the effect of an explana-
tory variable depends on two or more parameters, a characteristic of many nonlinear relationships
that we explore in Section 5.6.
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E X A M P L E 5.7 Interval Estimate for a Change in Sales

Big Andy wants to make next week a big sales week. He
plans to increase advertising expenditure by $800 and drop
the price by 40 cents. If the prices before and after the
changes are PRICE0 and PRICE1, respectively, and those for
advertising expenditure are ADVERT0 and ADVERT1, then
the change in expected sales from Andy’s planned strategy is

λ = E
(
SALES1|PRICE1,ADVERT1

)

− E
(
SALES0|PRICE0,ADVERT0

)

=
[
β1 + β2PRICE1 + β3ADVERT1

]

−
[
β1 + β2PRICE0 + β3ADVERT0

]

=
[
β1 + β2

(
PRICE0 − 0.4

)
+ β3

(
ADVERT0 + 0.8

)]

−
[
β1 + β2PRICE0 + β3ADVERT0

]

= −0.4β2 + 0.8β3

Andy would like a point estimate and a 90% interval estimate
for λ.

A point estimate is given by

λ̂ = −0.4b2 + 0.8b3 = −0.4 ×(−7.9079) + 0.8 × 1.8626
= 4.6532

Our estimate of the expected increase in sales from Big
Andy’s strategy is $4653.

From (5.16), we can derive a 90% interval estimate for
λ = −0.4β2 + 0.8β3 as

[
λ̂ − tc × se

(
λ̂
)
, λ̂ + tc × se

(
λ̂
)]

=
[(
−0.4b2 + 0.8b3

)
− tc × se

(
−0.4b2 + 0.8b3

)
,

(
−0.4b2 + 0.8b3

)
+ tc × se

(
−0.4b2 + 0.8b3

)]

where tc = t(0.95, 72) = 1.666. Using the covariance matrix of
the coefficient estimates in Table 5.3, and the result for the
variance of a linear function of two random variables—see
equation (3.8)—we can calculate the standard error
se
(
−0.4b2 + 0.8b3

)
as follows:

se
(
−0.4b2 + 0.8b3

)

=
√

var
⋀(

−0.4b2 + 0.8b3|X
)

=
[
(−0.4)2var

⋀(
b2|X

)
+(0.8)2var

⋀(
b3|X

)

−2 × 0.4 × 0.8 × cov
⋀(

b2, b3|X
)]1∕2

=
[
0.16×1.2012+0.64 × 0.4668−0.64 × (−0.0197)

]1∕2

= 0.7096
Thus, a 90% interval estimate is

(4.6532 − 1.666 × 0.7096, 4.6532 + 1.666 × 0.7096)
= (3.471, 5.835)

We estimate, with 90% confidence, that the expected increase
in sales from Big Andy’s strategy will lie between $3471 and
$5835.

5.5 Hypothesis Testing
As well as being useful for interval estimation, the t-distribution result in (5.15) provides the
foundation for testing hypotheses about individual coefficients. As you discovered in Chapter 3,
hypotheses of the form H0∶β2 = c versus H1∶β2 ≠ c, where c is a specified constant, are called
two-tail tests. Hypotheses with inequalities such as H0∶β2 ≤ c versus H1∶β2 > c are called
one-tail tests. In this section, we consider examples of each type of hypothesis. For a two-tail
test, we consider testing the significance of an individual coefficient; for one-tail tests, some
hypotheses of economic interest are considered. Using the result in (5.16), one- and two-tail
tests can also be used to test hypotheses about linear combinations of coefficients. An example
of this type follows those for testing hypotheses about individual coefficients. We will follow the
step-by-step procedure for testing hypotheses that was introduced in Section 3.4. To refresh your
memory, here are the steps again:

Step-by-Step Procedure for Testing Hypotheses
1. Determine the null and alternative hypotheses.
2. Specify the test statistic and its distribution if the null hypothesis is true.
3. Select α and determine the rejection region.
4. Calculate the sample value of the test statistic and, if desired, the p-value.
5. State your conclusion.
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At the time these steps were introduced, in Chapter 3, you had not discovered p-values. Knowing
about p-values (see Section 3.5) means that steps 3–5 can be framed in terms of the test statistic
and its value and/or the p-value. We will use both.

5.5.1 Testing the Significance of a Single Coefficient
When we set up a multiple regression model, we do so because we believe that the explanatory
variables influence the dependent variable y. If we are to confirm this belief, we need to examine
whether or not it is supported by the data. That is, we need to ask whether the data provide any
evidence to suggest that y is related to each of the explanatory variables. If a given explanatory
variable, say xk, has no bearing on y, then βk = 0. Testing this null hypothesis is sometimes called
a test of significance for the explanatory variable xk. Thus, to find whether the data contain any
evidence suggesting y is related to xk, we test the null hypothesis

H0∶βk = 0

against the alternative hypothesis
H1∶βk ≠ 0

To carry out the test, we use the test statistic (5.15), which, if the null hypothesis is true, is

t =
bk

se
(
bk
) ∼ t(N−K)

For the alternative hypothesis “not equal to,” we use a two-tail test, introduced in Section 3.3.3,
and reject H0 if the computed t-value is greater than or equal to tc (the critical value from the
right side of the distribution) or less than or equal to −tc (the critical value from the left side of
the distribution). For a test with level of significance α, tc = t(1 − α/2, N − K) and −tc = t(α/2, N − K).
Alternatively, if we state the acceptance–rejection rule in terms of the p-value, we reject H0 if
p ≤ α and do not reject H0 if p > α.

E X A M P L E 5.8 Testing the Significance of Price

In the Big Andy’s Burger Barn example, we test, following
our standard testing format, whether sales revenue is related
to price:
1. The null and alternative hypotheses are H0∶β2 = 0 and

H1∶β2 ≠ 0.
2. The test statistic, if the null hypothesis is true, is

t = b2
/

se
(
b2
)
∼ t(N−K).

3. Using a 5% significance level (α = 0.05), and noting
that there are 72 degrees of freedom, the critical values
that lead to a probability of 0.025 in each tail of the
distribution are t(0.975, 72) = 1.993 and t(0.025, 72) = −1.993.
Thus, we reject the null hypothesis if the calculated
value of t from step 2 is such that t ≥ 1.993 or
t ≤ −1.993. If −1.993 < t < 1.993, we do not reject
H0. Stating the acceptance–rejection rule in terms of
the p-value, we reject H0 if p ≤ 0.05 and do not reject
H0 if p > 0.05.

4. The computed value of the t-statistic is

t = −7.908
1.096 = −7.215

From your computer software, the p-value in this case can
be found as

P
(
t(72) > 7.215

)
+ P

(
t(72) < −7.215

)
= 2 ×

(
2.2 × 10−10)

= 0.000

Correct to three decimal places the result is p-value
= 0.000.

5. Since −7.215 < −1.993, we reject H0∶β2 = 0 and con-
clude that there is evidence from the data to suggest that
sales revenue depends on price. Using the p-value to per-
form the test, we reject H0 because 0.000 < 0.05.
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E X A M P L E 5.9 Testing the Significance of Advertising Expenditure

For testing whether sales revenue is related to advertising
expenditure, we have

1. H0∶β3 = 0 and H1∶β3 ≠ 0.
2. The test statistic, if the null hypothesis is true, is

t = b3
/

se
(
b3
)
∼ t(N−K).

3. Using a 5% significance level, we reject the null hypoth-
esis if t ≥ 1.993 or t ≤ −1.993. In terms of the p-value,
we reject H0 if p ≤ 0.05. Otherwise, we do not reject H0.

4. The value of the test statistic is

t = 1.8626
0.6832 = 2.726

The p-value is given by
P
(
t(72) > 2.726

)
+ P

(
t(72) < −2.726

)
= 2 × 0.004
= 0.008

5. Because 2.726 > 1.993, we reject H0; the data support
the conjecture that revenue is related to advertising
expenditure. The same test outcome can be obtained
using the p-value. In this case, we reject H0 because
0.008 < 0.05.

Note that the t-values −7.215 (Example 5.8) and 2.726
and their corresponding p-values 0.000 and 0.008 were
reported in Table 5.2 at the same time that we reported the
original least squares estimates and their standard errors.
Hypothesis tests of this kind are carried out routinely
by computer software, and their outcomes can be read
immediately from the computer output that will be similar to
Table 5.2.

When we reject a hypothesis of the form H0∶βk = 0, we say that the estimate bk is significant.
Significance of a coefficient estimate is desirable—it confirms an initial prior belief that a par-
ticular explanatory variable is a relevant variable to include in the model. However, we cannot
be absolutely certain that βk ≠ 0. There is still a probability α that we have rejected a true null
hypothesis. Also, as mentioned in Section 3.4, statistical significance of an estimated coefficient
should not be confused with the economic importance of the corresponding explanatory variable.
If the estimated response of sales revenue to advertising had been b3 = 0.01 with a standard error
of se

(
b3
)
= 0.005, then we would have concluded that b3 is significantly different from zero; but,

since the estimate implies increasing advertising by $1000 increases revenue by only $10, we
would not conclude that advertising is important. We should also be cautious about concluding
that statistical significance implies precise estimation. The advertising coefficient b3 = 1.8626
was found to be significantly different from zero, but we also concluded that the corresponding
95% interval estimate (0.501, 3224) was too wide to be very informative. In other words, we were
not able to get a precise estimate of β3.

5.5.2 One-Tail Hypothesis Testing for a Single Coefficient
In Section 5.1, we noted that two important considerations for the management of Big Andy’s
Burger Barn were whether demand was price-elastic or price-inelastic and whether the additional
sales revenue from additional advertising expenditure would cover the costs of the advertising.
We are now in a position to state these questions as testable hypotheses, and to ask whether the
hypotheses are compatible with the data.

E X A M P L E 5.10 Testing for Elastic Demand

With respect to demand elasticity, we wish to know whether

• β2 ≥ 0: a decrease in price leads to a change in sales rev-
enue that is zero or negative (demand is price-inelastic or
has an elasticity of unity).

• β2 < 0: a decrease in price leads to an increase in sales
revenue (demand is price-elastic).

The fast food industry is very competitive with many substi-
tutes for Andy’s burgers. We anticipate elastic demand and
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put this conjecture as the alternative hypothesis. Following
our standard testing format, we first state the null and alter-
native hypotheses:
1. H0∶β2 ≥ 0 (demand is unit-elastic or inelastic)

H1∶β2 < 0 (demand is elastic)
2. To create a test statistic, we act as if the null hypothe-

sis is the equality β2 = 0. Doing so is valid because if
we reject H0 for β2 = 0, we also reject it for any β2 > 0.
Then, assuming that H0∶β2 = 0 is true, from (5.15) the
test statistic is t = b2

/
se
(
b2
)
∼ t(N − K).

3. The rejection region consists of values from the
t-distribution that are unlikely to occur if the null
hypothesis is true. If we define “unlikely” in terms of a
5% significance level, then unlikely values of t are those

less than the critical value t(0.05, 72) = −1.666. Thus, we
reject H0 if t ≤ −1.666 or if the p-value ≤ 0.05.

4. The value of the test statistic is

t =
b2

se
(
b2
) = −7.908

1.096 = −7.215

The corresponding p-value is P
(
t(72) < −7.215

)
= 0.000.

5. Since −7.215 < −1.666, we reject H0∶β2 ≥ 0 and
conclude that H1∶β2 < 0 (demand is elastic) is more
compatible with the data. The sample evidence
supports the proposition that a reduction in price
will bring about an increase in sales revenue. Since
0.000 < 0.05, the same conclusion is reached using the
p-value.

Note the similarities and differences between this test and the two-tail test of significance per-
formed in Section 5.5.1. The calculated t-values are the same, but the critical t-values are different.
Not only are the values themselves different, but with a two-tail test there are also two critical val-
ues, one from each side of the distribution. With a one-tail test there is only one critical value,
from one side of the distribution. Also, the p-value from the one-tail test is usually, but not always,
half that of the two-tail test, although this fact is hard to appreciate from this example because
both p-values are essentially zero.

E X A M P L E 5.11 Testing Advertising Effectiveness

The other hypothesis of interest is whether an increase in
advertising expenditure will bring an increase in sales rev-
enue that is sufficient to cover the increased cost of advertis-
ing. We want proof that our advertising is profitable. If not,
we may change advertising firms. Since advertising will be
profitable if β3 > 1, we set up the hypotheses:

1. H0∶β3 ≤ 1 and H1∶β3 > 1.
2. Treating the null hypothesis as the equality H0∶β3 = 1,

the test statistic that has the t-distribution when H0 is true
is, from (5.15),

t =
b3 − 1
se
(
b3
) ∼ t(N−K)

3. Choosing α = 0.05 as our level of significance, the rel-
evant critical value is t(0.95, 72) = 1.666. We reject H0 if
t ≥ 1.666 or if the p-value ≤ 0.05.

4. The value of the test statistic is

t =
b3 − β3

se
(
b3
) = 1.8626 − 1

0.6832 = 1.263

The p-value of the test is P
(
t(72) > 1.263

)
= 0.105.

5. Since 1.263 < 1.666, we do not reject H0. There is
insufficient evidence in our sample to conclude that
advertising will be cost-effective. Using the p-value to
perform the test, we again conclude that H0 cannot be
rejected, because 0.105 > 0.05. Another way of thinking
about the test outcome is as follows: Because the estimate
b3 = 1.8626 is greater than one, this estimate by itself
suggests that advertising will be effective. However,
when we take into account the precision of estimation,
measured by the standard error, we find that b3 = 1.8626
is not significantly greater than one. In the context of our
hypothesis-testing framework, we cannot conclude with
a sufficient degree of certainty that β3 > 1.

5.5.3 Hypothesis Testing for a Linear Combination
of Coefficients

We are often interested in testing hypotheses about linear combinations of coefficients. Will par-
ticular settings of the explanatory variables lead to a mean value of the dependent variable above



❦

❦ ❦

❦

222 CHAPTER 5 The Multiple Regression Model

a certain threshold? Will changes in the values of two or more explanatory variables lead to a
mean dependent variable change that exceeds a predefined goal? The t-statistic in (5.16) can be
used to answer these questions.

E X A M P L E 5.12 Testing the Effect of Changes in Price and Advertising

Big Andy’s marketing adviser claims that dropping the price
by 20 cents will be more effective for increasing sales revenue
than increasing advertising expenditure by $500. In other
words, she claims that −0.2β2 > 0.5β3. Andy does not wish
to accept this proposition unless it can be verified by past
data. He knows that the estimated change in expected sales
from the price fall is −0.2b2 = −0.2 × (−7.9079) = 1.5816,
and that the estimated change in expected sales from the
extra advertising is 0.5b3 = 0.5 × 1.8626 = 0.9319, so the
marketer’s claim appears to be correct. However, he wants
to establish whether the difference 1.5816 − 0.9319 could
be attributable to sampling error, or whether it constitutes
proof, at a 5% significance level, that −0.2β2 > 0.5β3. This
constitutes a test about a linear combination of coefficients.
Since −0.2β2 > 0.5β3 can be written as −0.2β2 − 0.5β3 > 0,
we are testing a hypothesis about the linear combination
−0.2β2 − 0.5β3.

Following our hypothesis testing steps, we have

1. H0∶ − 0.2β2 − 0.5β3 ≤ 0 (the marketer’s claim is not
correct)
H1∶ − 0.2β2 − 0.5β3 > 0 (the marketer’s claim is correct)

2. Using (5.16) with c2 = −0.2, c3 = −0.5 and all other ck’s
equal to zero, and assuming that the equality in H0 holds(
−0.2β2 − 0.5β3 = 0

)
, the test statistic and its distribu-

tion when H0 is true are

t =
−0.2b2 − 0.5b3

se
(
−0.2b2 − 0.5b3

) ∼ t(72)

3. For a one-tail test and a 5% significance level, the critical
value is t(0.95, 72) = 1.666. We reject H0 if t ≥ 1.666 or if
the p-value ≤ 0.05.

4. To find the value of the test statistic, we first compute

se
(
−0.2b2 − 0.5b3

)

=
√

var
⋀(

−0.2b2 − 0.5b3|X
)

=
[
(−0.2)2var

⋀(
b2|X

)
+ (−0.5)2var

⋀(
b3|X

)

+2 × (−0.2) × (−0.5) × cov
⋀(

b2, b3|X
)]1∕2

=
[
0.04 × 1.2012 + 0.25 × 0.4668 + 0.2 × (−0.0197)

]1∕2

= 0.4010

Then, the value of the test statistic is

t =
−0.2b2 − 0.5b3

se
(
−0.2b2 − 0.5b3

) = 1.58158 − 0.9319
0.4010 = 1.622

The corresponding p-value is P
(
t(72) > 1.622

)
= 0.055.

5. Since 1.622 < 1.666, we do not reject H0. At a 5% signif-
icance level, there is not enough evidence to support the
marketer’s claim. Alternatively, we reach the same con-
clusion using the p-value, because 0.055 > 0.05.

5.6 Nonlinear Relationships
The multiple regression model that we have studied so far has the form

y = β1 + β2x2 + · · · + βKxK + e (5.19)

It is a linear function of variables (the x’s) and of the coefficients (the β’s) and e. However,
(5.19) is much more flexible than it at first appears. Although the assumptions of the multiple
regression model require us to retain the property of linearity in the β’s, many different nonlinear
functions of variables can be specified by defining the x’s and/or y as transformations of original
variables. Several examples of such transformations have already been encountered for the simple
regression model. In Chapter 2, the quadratic model y = α1 + α2x2+ e and the log-linear model
ln(y) = γ1 + γ2x + e were estimated. A detailed analysis of these and other nonlinear simple
regression models—a linear-log model, a log-log model, and a cubic model—was given in
Chapter 4. The same kind of variable transformations and interpretations of their coefficients
carry over to multiple regression models. One class of models is that of polynomial equations
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such as the quadratic y = β1 + β2x + β3x2 + e or the cubic y = α1 + α2x + α3x2 + α4x3 + e. When
we studied these models as examples of the simple regression model, we were constrained by the
need to have only one right-hand-side variable, such as y = β1 + β3x2 + e or y = α1 + α4x3 + e.
Now that we are working within the framework of the multiple regression model, we
can consider unconstrained polynomials with all their terms included. Another general-
ization is to include “cross-product” or “interaction” terms leading to a model such as
y = γ1 + γ2x2 + γ3x3 + γ4x2x3 + e. In this section, we explore a few of the many options that are
available for modeling nonlinear relationships. We begin with some examples of polynomial
functions from economics. Polynomials are a rich class of functions that can parsimoniously
describe relationships that are curved, with one or more peaks and valleys.

E X A M P L E 5.13 Cost and Product Curves

In microeconomics, you studied “cost” curves and “product”
curves that describe a firm. Total cost and total product
curves are mirror images of each other, taking the standard
“cubic” shapes shown in Figure 5.2. Average and margi-
nal cost curves, and their mirror images, average and marginal
product curves, take quadratic shapes, usually represented as
shown in Figure 5.3.

The slopes of these relationships are not constant and
cannot be represented by regression models that are “linear in
the variables.” However, these shapes are easily represented
by polynomials. For example, if we consider the average

Cost Product

Q Input

TP

TC

(a) (b)

FIGURE 5.2 (a) Total cost curve and (b) total product curve.

Cost Product

Q Input

AP

MP

MC

AC

(a) (b)

FIGURE 5.3 Average and marginal (a) cost curves and (b) product curves.

cost relationship in Figure 5.3(a), a suitable regression
model is

AC = β1 + β2Q + β3Q2 + e (5.20)

This quadratic function can take the “U” shape we associate
with average cost functions. For the total cost curve in
Figure 5.2(a), a cubic polynomial is in order,

TC = α1 + α2Q + α3Q2 + α4Q3 + e (5.21)

These functional forms, which represent nonlinear shapes,
can still be estimated using the least squares methods we have



❦

❦ ❦

❦

224 CHAPTER 5 The Multiple Regression Model

studied. The variables Q2 and Q3 are explanatory variables
that are treated no differently from any others.

A difference in models of nonlinear relationships is in
the interpretation of the parameters, which are not themselves
slopes. To investigate the slopes, and to interpret the param-
eters, we need a little calculus. For the general polynomial
function,

y = a0 + a1x + a2x2 + a3x3 + · · · + apx p

the slope or derivative of the curve is
dy
dx

= a1 + 2a2x + 3a3x2 + · · · + papx p−1 (5.22)

This slope changes depending on the value of x. Evaluated at
a particular value, x = x0, the slope is

dy
dx

||||x=x0
= a1 + 2a2x0 + 3a3x2

0 + · · · + papx p−1
0

For more on rules of derivatives, see Appendix A.3.1.

Using the general rule in (5.22), the slope of the average
cost curve (5.20) is

dE(AC)
dQ

= β2 + 2β3Q

The slope of the average cost curve changes for every value of
Q and depends on the parameters β2 and β3. For this U-shaped
curve, we expect β2 < 0 and β3 > 0. The slope of the total cost
curve (5.21), which is the marginal cost, is

dE(TC)
dQ

= α2 + 2α3Q + 3α4Q2

The slope is a quadratic function of Q, involving the
parameters α2, α3, and α4. For a U-shaped marginal cost
curve, we expect the parameter signs to be α2 > 0, α3 < 0,
and α4 > 0.

Using polynomial terms is an easy and flexible way to capture nonlinear relationships
between variables. As we have shown, care must be taken when interpreting the parameters
of models that contain polynomial terms. Their inclusion does not complicate least squares
estimation—with one exception. It is sometimes true that having a variable and its square or
cube in the same model causes collinearity problems. (See Section 6.4.)

E X A M P L E 5.14 Extending the Model for Burger Barn Sales

In the Burger Barn model SALES = β1 + β2PRICE +
β3ADVERT + e, it is worth questioning whether the linear
relationship between sales revenue, price, and advertising
expenditure is a good approximation of reality. Having a
linear model implies that increasing advertising expenditure
will continue to increase sales revenue at the same rate
irrespective of the existing levels of sales revenue and adver-
tising expenditure—that is, that the coefficient β3, which
measures the response of E(SALES|PRICE,ADVERT ) to
a change in ADVERT, is constant; it does not depend on
the level of ADVERT. In reality, as the level of advertising
expenditure increases, we would expect diminishing returns
to set in. To illustrate what is meant by diminishing returns,
consider the relationship between sales and advertising
(assuming a fixed price) graphed in Figure 5.4. The figure
shows the effect on sales of an increase of $200 in advertising
expenditure when the original level of advertising is (a) $600
and (b) $1,600. Note that the units in the graph are thousands
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FIGURE 5.4 A model where sales exhibits diminishing
returns to advertising expenditure.
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of dollars, so these points appear as 0.6 and 1.6. At the
smaller level of advertising, sales increase from $72,400
to $74,000, whereas at the higher level of advertising, the
increase is a much smaller one, from $78,500 to $79,000.
The linear model with the constant slope β3 does not capture
the diminishing returns.

What is required is a model where the slope changes as
the level of ADVERT increases. One such model having this
characteristic is obtained by including the squared value of
advertising as another explanatory variable, making the new
model

SALES = β1 + β2PRICE + β3ADVERT + β4ADVERT2 + e
(5.23)

Adding the term β4ADVERT2 to our original specification
yields a model in which the response of expected revenue to
a change in advertising expenditure depends on the level of
advertising. Specifically, by applying the polynomial deriva-
tive rule in (5.22), and holding PRICE constant, the response
of E(SALES|PRICE,ADVERT ) to a change in ADVERT is
ΔE(SALES|PRICE,ADVERT )

ΔADVERT
||||(PRICE held constant)

= ∂E(SALES|PRICE,ADVERT )
∂ADVERT

= β3 + 2β4ADVERT
(5.24)

The partial derivative sign “∂” is used in place of the deriva-
tive sign “d” that we used in (5.22) because SALES depends
on two variables, PRICE and ADVERT, and we are holding
PRICE constant. See Appendix A.3.5 for further details about
partial derivatives.

We refer to ∂E(SALES|PRICE,ADVERT )∕∂ADVERT in
(5.24) as the marginal effect of advertising on sales. In linear

functions, the slope or marginal effect is constant. In non-
linear functions, it varies with one or more of the variables.
To find the expected signs for β3 and β4, note that we expect
the response of sales revenue to a change in advertising to be
positive when ADVERT = 0. That is, we expect β3 > 0. Also,
to achieve diminishing returns, the response must decline as
ADVERT increases. That is, we expect β4 < 0.

Using least squares to estimate (5.23) yields

SALES
⋀

(se)
= 109.72

(6.80)
− 7.640PRICE
(1.046)

+ 12.151ADVERT
(3.556)

− 2.768ADVERT2

(0.941)
(5.25)

What can we say about the addition of ADVERT2 to the
equation? Its coefficient has the expected negative sign
and is significantly different from zero at a 5% significance
level. Moreover, the coefficient of ADVERT has retained its
positive sign and continues to be significant. The estimated
response of sales to advertising is

∂SALES
⋀

∂ADVERT
= 12.151 − 5.536ADVERT

Substituting into this expression we find that when
advertising is at its minimum value in the sample of
$500 (ADVERT = 0.5), the marginal effect of advertis-
ing on sales is 9.383. When advertising is at a level of
$2000 (ADVERT = 2), the marginal effect is 1.079. Thus,
allowing for diminishing returns to advertising expenditure
has improved our model both statistically and in terms of
meeting our expectations about how sales will respond to
changes in advertising.

E X A M P L E 5.15 An Interaction Variable in a Wage Equation

In the last example, we saw how the inclusion of ADVERT2 in
the regression model for SALES has the effect of making the
marginal effect of ADVERT on SALES depend on the level of
ADVERT . What if the marginal effect of one variable depends
on the level of another variable? How do we model it? To
illustrate, consider a wage equation relating WAGE ($ earn-
ings per hour) to years of education (EDUC) and years of
experience (EXPER) in the following way:

WAGE = β1 + β2EDUC + β3EXPER
+ β4(EDUC × EXPER) + e

(5.26)

Here we are suggesting that the effect of another year’s
experience on wage may depend on a worker’s level of
education, and, similarly, the effect of another year of

education may depend on the number of years of experience.
Specifically,

∂E(WAGE|EDUC,EXPER)
∂EXPER

= β3 + β4EDUC

∂E(WAGE|EDUC,EXPER)
∂EDUC

= β2 + β4EXPER

Using the Current Population Survey data (cps5_small) to
estimate (5.26), we obtain

WAGE
⋀

= −18.759 + 2.6557EDUC + 0.2384EXPER
(se) (4.162) (0.2833) (0.1335)

− 0.002747(EDUC × EXPER)
(0.009400)



❦

❦ ❦

❦

226 CHAPTER 5 The Multiple Regression Model

The negative estimate b4 = −0.002747 suggests that the
greater the number of years of education, the less valuable is
an extra year of experience. Similarly, the greater the number
of years of experience, the less valuable is an extra year of
education. For a person with eight years of education, we
estimate that an additional year of experience leads to an
increase in average wages of 0.2384 – 0.002747 × 8 = $0.22,
whereas for a person with 16 years of education, the approx-
imate increase in wages from an extra year of experience

is 0.2384 – 0.002747 × 16 = $0.19. For someone with
no experience, the extra average wage from an extra
year of education is $2.66. The value of an extra year of
education falls to 2.6557 – 0.002747 × 20 = $2.60 for
someone with 20 years of experience. These differences
are not large. Perhaps there is no interaction effect—its
estimated coefficient is not significantly different from
zero—or perhaps we could improve the specification of the
model.

E X A M P L E 5.16 A Log-Quadratic Wage Equation

In equation (5.26), we used WAGE as the dependent variable
whereas, when we previously studied a wage equation in
Example 4.10, ln(WAGE) was chosen as the dependent vari-
able. Labor economists tend to prefer ln(WAGE), believing
that a change in years of education or experience is more
likely to lead to a constant percentage change in WAGE than
a constant absolute change. Also, a wage distribution will
typically be heavily skewed to the right. Taking logarithms
yields a distribution, which is shaped more like a normal
distribution.

In the following example, we make two changes to the
model in (5.26). We replace WAGE with ln(WAGE), and we
add the variable EXPER2. Adding EXPER2 is designed to
capture diminishing returns to extra years of experience. An
extra year of experience for an old hand with many years
of experience is likely to be less valuable than it would be
for a rookie with limited or no experience. Thus, we specify
the model
ln(WAGE) = β1 + β2EDUC + β3EXPER

+ β4(EDUC × EXPER) + β5EXPER2 + e
(5.27)

Here the two marginal effects which, when multiplied by 100
give the approximate percentage changes in wages from extra
years of experience and education, respectively, are

∂E[ln(WAGE) |EDUC,EXPER]
∂EXPER

= β3 + β4EDUC + 2β5EXPER
(5.28)

T A B L E 5.4 Percentage Changes in Wage

% $WAGE/$EXPER %$WAGE/$EDUC
Years of education

8 16
Years of experience 0 3.88 2.86 13.59

20 1.98 0.96 11.06

∂E[ln(WAGE) |EDUC,EXPER]
∂EDUC

= β2 + β4EXPER (5.29)

Having both the interaction term and the square of EXPER
in the equation means that the marginal effect for experience
will depend on both the level of education and the number
of years of experience. Estimating (5.27) using the data in
cps5_small yields

ln(WAGE)
⋀

(se)
= 0.6792

(0.1561)
+ 0.1359EDUC
(0.0101)

+ 0.04890EXPER
(0.00684)

− 0.001268(EDUC × EXPER)(
0.000342

)

− 0.0004741EXPER2

(0.0000760)
In this case, all estimates are significantly different from
zero. Estimates of the percentage changes in wages from
extra years of experience and extra years of education,
computed using (5.28) and (5.29) for EDUC = 8 and 16
and EXPER = 0 and 20, are presented in Table 5.4. As
expected, the value of an extra year of experience is greatest
for someone with 8 years of education and no experience
and smallest for someone with 16 years of education and
20 years of experience. We estimate that the value of an
extra year of education is 13.59 – 11.06 = 2.53 percentage
points less for someone with 20 years of experience relative
to someone with no experience.
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5.7 Large Sample Properties of the Least
Squares Estimator
It is nice to be able to use the finite sample properties of the OLS estimator or, indeed, any other
estimator, to make inferences about population parameters10. Provided our assumptions are cor-
rect, we can be confident that we are basing our conclusions on procedures that are exact, whatever
the sample size. However, the assumptions we have considered so far are likely to be too restrictive
for many data sets. To accommodate less restrictive assumptions, as well as carry out inference
for general functions of parameters, we need to examine the properties of estimators as sample
size approaches infinity. Properties as sample size approaches infinity provide a good guide to
properties in large samples. They will always be an approximation, but it is an approximation that
improves as sample size increases. Large sample approximate properties are known as asymptotic
properties. A question students always ask and instructors always evade is “how large does the
sample have to be?” Instructors are evasive because the answer depends on the model, the estima-
tor, and the function of parameters that is of interest. Sometimes N = 30 is adequate; sometimes
N = 1000 or larger could be necessary. Some illustrations are given in the Monte Carlo exper-
iments in Appendix 5C. In Appendix 5D, we explain how bootstrapping can be used to check
whether a sample size is large enough for asymptotic properties to hold.

In this section, we introduce some large sample (asymptotic) properties and then discuss
some of the circumstances where they are necessary.

5.7.1 Consistency
When choosing econometric estimators, we do so with the objective in mind of obtaining an esti-
mate that is close to the true but unknown parameter with high probability. Consider the simple
linear regression model yi = β1 + β2xi + ei, i = 1,… ,N. Suppose that for decision-making pur-
poses we consider that obtaining an estimate of β2 within “epsilon” of the true value is satisfactory.
The probability of obtaining an estimate “close” to β2 is

P
(
β2 − ε ≤ b2 ≤ β2 + ε

)
(5.30)

An estimator is said to be consistent if this probability converges to 1 as the sample size N →∞.
Or, using the concept of a limit, the estimator b2 is consistent if

lim
N→∞

P
(
β2 − ε ≤ b2 ≤ β2 + ε

)
= 1 (5.31)

What does this mean? In Figure 5.5, we depict the probability density functions #
(
bNi

)
for the least

squares estimator b2 based on samples sizes N4 > N3 > N2 > N1. As the sample size increases
the probability density function ( pdf ) becomes narrower. Why is that so? First of all, the least
squares estimator is unbiased if MR1–MR5 hold, so that E

(
b2
)
= β2. This property is true in

samples of all sizes. As the sample size changes, the center of the pdf s remains at β2. However,
as the sample size N gets larger, the variance of the estimator b2 becomes smaller. The center of
the pdf remains fixed at E

(
b2
)
= β2, and the variance decreases, resulting in probability density

functions like #
(
bNi

)
. The probability that b2 falls in the interval β2 – ε ≤ b2 ≤ β2 + ε is the area

under the pdf between these limits. As the sample size increases, the probability of b2 falling
within the limits increases toward 1. In large samples, we can say that the least squares estimator
will provide an estimate close to the true parameter with high probability.

............................................................................................................................................
10This section contains advanced materials.
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β2β2 – ε β2 + ε

f(bN2
)

f(bN3
)

f(bN4
) N4 > N3 > N2 > N1

f(bN1
)

FIGURE 5.5 An illustration of consistency.

To appreciate why the variance decreases as N increases, consider the variance of the OLS esti-
mator that we rewrite as follows:

var
(
b2
)
= σ2E

(
1

∑N
i=1
(
xi − x

)2

)
= σ2

N
E
(

1
∑N

i=1
(
xi − x

)2/N

)
= σ2

N
E
[(

s2
x
)−1] = σ2

N
Cx (5.32)

Notice that the N’s that we have introduced cancel out. This trick is used so that we can write
the variance for b2 in terms of the sample variance of x, s2

x = ∑N
i=1
(
xi − x

)2/N.11 Then, because
E
[(

s2
x
)−1] is cumbersome, and a little intimidating, in the last equality we define the constant Cx

as the expectation of the inverse of the sample variance. That is, Cx = E
[(

s2
x
)−1]. The last result

in (5.32) implies var
(
b2
)
→ 0 as N → ∞.

The property of consistency applies to many estimators, even ones that are biased in finite
samples. For example, the estimator β̂2 = b2 + 1∕N is a biased estimator. The amount of the
bias is

bias
(
β̂2
)
= E

(
β̂2
)
− β2 = 1

N

For the estimator β̂2 the bias converges to zero as N → ∞. That is,

lim
N→∞

bias
(
β̂2
)
= lim

N→∞

[
E
(
β̂2
)
− β2

]
= 0 (5.33)

In this case, the estimator is said to be asymptotically unbiased. Consistency for an estimator
can be established by showing that the estimator is either unbiased or asymptotically unbiased,
and that its variance converges to zero as N → ∞,

lim
N→∞

var
(
β̂2
)
= 0 (5.34)

Conditions (5.33) and (5.34) are intuitive, and sufficient to establish an estimator to be consistent.
Because the probability density function of a consistent estimator collapses around the

true parameter, and the probability that an estimator b2 will be close to the true parameter β2
approaches 1, the estimator b2 is said to “converge in probability” to β2, with the “in probability”
part reminding us that it is the probability of being “close” in (5.31) that is the key factor. Several
notations are used for this type of convergence. One is b2

p
−−→ β2, with the p over the arrow

............................................................................................................................................
11We have used N rather than N − 1 as the divisor for the sample variance. When dealing with properties as N →∞, it
makes no difference which is used.
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indicating “probability.” A second is plim
N→∞

(
b2
)
= β2, with “plim” being short for “probability

limit.” Consistency is not just a large-sample alternative to unbiasedness; it is an important
property in its own right. It is possible to find estimators that are unbiased but not consistent.
The lack of consistency is considered undesirable even if an estimator is unbiased.

5.7.2 Asymptotic Normality
We mentioned earlier that the normal distribution assumption MR6:

(
ei|"

)
∼ N

(
0, σ2) is

essential for the finite sample distribution of
(
bk|"

)
to be normal and for t-statistics such as

t =
(
bk − βk

)/
se
(
bk
)

to have an exact t-distribution for use in interval estimation and hypothesis
testing. However, we then went on to say that all is not lost if the normality assumption does not
hold because, from a central limit theorem, the distribution of bk will be approximately normal
and interval estimates and t-tests will be approximately valid in large samples. Large sample
approximate distributions are called asymptotic distributions. The need to use asymptotic
distributions will become more urgent as we examine more complex models and estimators.

To appreciate how asymptotic distributions work and to introduce some notation, consider
the OLS estimator b2 in the simple regression model yi = β1 + β2xi + ei, i = 1,… ,N. We argued
that the consistency of b2 implies that the pdf for b2 collapses to the point β2 as N → ∞. How
can we get an approximate large sample distribution for b2 if its pdf collapses to a single point?
We consider instead the distribution of

√
Nb2. Note that E

(
b2
)
= β2 and that, from (5.32),

var
(
b2
)
= σ2Cx∕N. It follows that E

(√
Nb2

)
=
√

Nβ2 and

var
(√

Nb2
)
=
(√

N
)2

var
(
b2
)
= Nσ2Cx∕N = σ2Cx

That is, √
Nb2 ∼

(√
Nβ2, σ2Cx

)
(5.35)

Central limit theorems are concerned with the distribution of sums (or averages) of
random variables as N → ∞.12 In Chapter 2—see equation (2.12)—we showed that
b2 = β2 +

[∑N
i=1
(
xi − x

)2]−1∑N
i=1
(
xi − x

)
ei from which we can write

√
Nb2 =

√
Nβ2 +

[
s2

x
]−1 1√

N

∑N
i=1
(
xi − x

)
ei

Applying a central limit theorem to the sum ∑N
i=1
(
xi − x

)
ei
/√

N, and using
[
s2

x
]−1 p

−−→ Cx, it can
be shown that the statistic obtained by normalizing (5.35) so that it has mean zero and variance
one, will be approximately normally distributed. Specifically,

√
N
(
b2 − β2

)
√
σ2Cx

a∼ N(0, 1)

The notation a∼ is used to denote the asymptotic or approximate distribution. Recognizing that
var

(
b2
)
= σ2Cx∕N, we can rewrite the above result as

(
b2 − β2

)
√

var
(
b2
)

a∼ N(0, 1)

............................................................................................................................................
12There are several central limit theorems designed to accommodate sums of random variables with different properties.
Their treatment is relatively advanced. See, for example, William Greene, Econometric Analysis 8e, Pearson
Prentice-Hall, 2018, online Appendix D.2.6, available at pages.stern.nyu.edu/~wgreene/Text/econometricanalysis.htm.

pages.stern.nyu.edu/~wgreene/Text/econometricanalysis.htm


❦

❦ ❦

❦

230 CHAPTER 5 The Multiple Regression Model

Going one step further, there is an important theorem that says replacing unknown quantities with
consistent estimators does not change the asymptotic distribution of a statistic.13 In this case, σ̂2

is a consistent estimator for σ2 and
(
s2

x
)−1 is a consistent estimator for Cx. Thus, we can write

t =

√
N
(
b2 − β2

)
√
σ̂2/s2

x

=
(
b2 − β2

)
√

var
⋀(

b2
) =

(
b2 − β2

)

se
(
b2
) a∼ N(0, 1) (5.36)

This is precisely the t-statistic that we use for interval estimation and hypothesis testing. The result
in (5.36) means that using it in large samples is justified when assumption MR6 is not satisfied.
One difference is that we are now saying that the distribution of the statistic “t” is approximately
“normal,” not “t.” However, the t-distribution approaches the normal as N → ∞, and it is custom-
ary to use either the t or the normal distribution as the large sample approximation. Because use
of (5.36) for interval estimation or hypothesis testing implies we are behaving as if b2 is normally
distributed with mean β2 and variance var

⋀(
b2
)
, this result is often written as

b2
a∼ N

(
β2, var
⋀(

b2
))

(5.37)

Finally, our exposition has been in terms of the distribution of b2 in the simple regression model,
but the result also holds for estimators of the coefficients in the multiple regression model. In
Appendix 5C, we use Monte Carlo experiments to illustrate how the central limit theorem works
and give examples of how large N needs to be for the normal approximation to be satisfactory.

5.7.3 Relaxing Assumptions
In the previous two sections we explained that, when assumptions MR1–MR5 hold, and MR6 is
relaxed, the least squares estimator is consistent and asymptotically normal. In this section, we
investigate what we can say about the properties of the least squares estimator when we modify
the strict exogeneity assumption MR2: E

(
ei|"

)
= 0 to make it less restrictive.

Weakening Strict Exogeneity: Cross-Sectional Data It is convenient to con-
sider modifications of E

(
ei|"

)
= 0 first for cross-sectional data and then for time-series data.

For cross-sectional data, we return to the random sampling assumptions, explained in Section
2.2, and written more formally in Section 2.10. Generalizing these assumptions to the multiple
regression model, random sampling implies the joint observations

(
yi,#i

)
=
(
yi, xi1, xi2,… , xiK

)
are independent, and that the strict exogeneity assumption E

(
ei|"

)
= 0 reduces to E

(
ei|xi

)
= 0.

Under this and the remaining assumptions of the model under random sampling, the least squares
estimator is best linear unbiased. We now examine the implications of replacing E

(
ei|xi

)
= 0 with

the weaker assumption
E
(
ei
)
= 0 and cov

(
ei, xik

)
= 0 for i = 1, 2,… , N; k = 1, 2,… ,K (5.38)

Why is (5.38) a weaker assumption? In Section 2.10, in the context of the simple regression
model, we explained how E

(
ei|xi

)
= 0 implies (5.38).14 However, we cannot go back the other

way. While E
(
ei|xi

)
= 0 implies (5.38), (5.38) does not necessarily imply E

(
ei|xi

)
= 0. Making

the assumption E
(
ei|xi

)
= 0 means that the best predictor for ei is zero; there is no information

in xi that will help predict ei. On the other hand, assuming cov
(
ei, xik

)
= 0 only implies there is

no linear predictor for ei that is better than zero. It does not rule out nonlinear functions of xi that
may help predict ei.

Why is it useful to consider the weaker assumption in (5.38)? First, the weaker are the
assumptions under which an estimator has desirable properties, the wider the applicability of

............................................................................................................................................
13For more precise details, see William Greene, Econometric Analysis 8e, Pearson Prentice-Hall, 2018, Theorem D.16,
in online Appendix available at pages.stern.nyu.edu/~wgreene/Text/econometricanalysis.htm.
14A proof is given in Appendix 2G.

pages.stern.nyu.edu/~wgreene/Text/econometricanalysis.htm
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the estimator. Second, as we discover in Chapter 10, violation of the assumption cov
(
ei, xik

)
= 0

provides a good framework for considering the problem of endogenous regressors.
The seemingly innocuous weaker assumption in (5.38) means we can no longer show that

the least squares estimator is unbiased. Consider the least squares estimator for β2 in the simple
regression model yi = β1 + β2xi + ei. From (2.11) and (2.12),

b2 = β2 +
∑N

i=1
(
xi − x

)
ei

∑N
i=1
(
xi − x

)2 (5.39)

and
E
(
b2
)
= β2 + E

(∑N
i=1
(
xi − x

)
ei

∑N
i=1
(
xi − x

)2

)
(5.40)

Now, E
(
ei
)
= 0 and cov

(
ei, xik

)
= 0 imply E

(
xiei

)
= 0, but the last term in (5.39) is more com-

plicated than that; it involves the covariance between ei and a function of xi. This covariance will
not necessarily be zero, implying E

(
b2
) ≠ β2. We can show that b2 is consistent, however. We

can rewrite (5.39) as

b2 = β2 +
1
N
∑N

i=1
(
xi − x

)
ei

1
N
∑N

i=1
(
xi − x

)2
= β2 +

cov
⋀(

ei, xi
)

var
⋀(

xi
) (5.41)

Because sample means, variances, and covariances computed from random samples are consistent
estimators of their population counterparts,15 we can say

cov
⋀(

ei, xi
) p
−−→ cov

(
ei, xi

)
= 0 (5.42a)

var
⋀(

xi
) p
−−→ σ2

x (5.42b)

Thus, the second term in (5.41) converges in probability to zero, and b2
p
−−→ β2. It is also true that

the asymptotic distribution of b2 will be normal, as described in (5.36) and (5.37).

Weakening Strict Exogeneity: Time-Series Data When we turn to time-series
data, the observations

(
yt,#t

)
, t = 1, 2, …, T are not collected via random sampling and so it

is no longer reasonable to assume they are independent. The explanatory variables will almost
certainly be correlated over time, and the likelihood of the assumption E(et|X) = 0 being violated
is very strong indeed. To see why, note that E

(
et|"

)
= 0 implies

E
(
et
)
= 0 and cov

(
et, xsk

)
= 0 for t, s = 1, 2,… ,T; k = 1, 2,… ,K (5.43)

This result says that the errors in every time period are uncorrelated with all the explanatory
variables in every time period. In Section 2.10.2, three examples of how this assumption might
be violated were described. Now would be a good time to check out those examples. To reinforce
them, consider the simple regression model yt = β1 + β2xt + et, which is being estimated with
time-series observations in periods t = 1, 2,… ,T. If xt is a policy variable whose settings depend
on past outcomes yt−1, yt−2,… , then xt will be correlated with previous errors et−1, et−2,….
This is evident from the equation for the previous period observation yt−1 = β1 + β2xt−1 + et−1.
If xt is correlated with yt−1, then it will also be correlated with et−1 since yt−1 depends directly
on et−1. Such a correlation is particularly evident if xt is a lagged value of yt. That is, yt = β1 +
β2yt−1 + et. Models of this type are called autoregressive models; they are considered in Chapter 9.

The likely violation of cov
(
et, xsk

)
= 0 for s ≠ t implies E

(
et|X

)
= 0 will be violated, which

in turn implies we cannot show that the least squares estimator is unbiased. It is possible to show

............................................................................................................................................
15This result follows from a law of large numbers. See Theorem D.4 and its corollary in the online Appendix to William
Greene, Econometric Analysis 8e, Pearson Prentice-Hall, online at pages.stern.nyu.edu/~wgreene/Text/
econometricanalysis.htm

pages.stern.nyu.edu/~wgreene/Text/econometricanalysis.htm
pages.stern.nyu.edu/~wgreene/Text/econometricanalysis.htm
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it is consistent, however. To show consistency, we first assume that the errors and the explanatory
variables in the same time period are uncorrelated. That is, we modify (5.43) to the less restrictive
and more realistic assumption

E
(
et
)
= 0 and cov

(
et, xtk

)
= 0 for t = 1, 2,… ,T; k = 1, 2,… ,K (5.44)

Errors and the explanatory variables that satisfy (5.44) are said to be contemporaneously uncor-
related. We do not insist that cov

(
et, xsk

)
= 0 for t ≠ s. Now reconsider (5.41) written in terms of

time-series observations

b2 = β2 +
1
T
∑T

t=1
(
xt − x

)
et

1
T
∑T

t=1
(
xt − x

)2
= β2 +

cov
⋀(

et, xt
)

var
⋀(

xt
) (5.45)

Equation (5.45) is still valid, just as it was for cross-sectional observations. The question we need
to ask to ensure consistency of b2 is when the explanatory variables are not independent will it
still be true that

cov
⋀(

et, xt
) p
−−→ cov

(
et, xt

)
= 0 (5.46a)

var
⋀(

xt
) p
−−→ σ2

x (5.46b)

with σ2
x finite? The answer is “yes” as long as x is not “too dependent.” If the correlation between

the xt’s declines as they become further apart in time, then the results in (5.46) will hold. We
reserve further discussion of the implications of the behavior of the explanatory variables in
time-series regressions for Chapters 9 and 12. For the moment, we assume that their behavior
is sufficiently cooperative for (5.46) to hold, so that the least squares estimator is consistent. At
the same time, we recognize that, with time-series data, the least squares estimator is unlikely to
be unbiased. Asymptotic normality can be shown by a central limit theorem, implying we can
use (5.36) and (5.37) for interval estimation and hypothesis testing.

5.7.4 Inference for a Nonlinear Function of Coefficients
The need for large sample or asymptotic distributions is not confined to situations where assump-
tions MR1–MR6 are relaxed. Even if these assumptions hold, we still need to use large sample
theory if a quantity of interest involves a nonlinear function of coefficients. To introduce this
problem, we return to Big Andy’s Burger Barn and examine the optimal level of advertising.

E X A M P L E 5.17 The Optimal Level of Advertising

Economic theory tells us to undertake all those actions for
which the marginal benefit is greater than the marginal cost.
This optimizing principle applies to Big Andy’s Burger
Barn as it attempts to choose the optimal level of advertising
expenditure. Recalling that SALES denotes sales revenue
or total revenue, the marginal benefit in this case is the
marginal revenue from more advertising. From (5.24), the
required marginal revenue is given by the marginal effect
of more advertising β3 + 2β4ADVERT. The marginal cost
of $1 of advertising is $1 plus the cost of preparing the
additional products sold due to effective advertising. If we

ignore the latter costs, the marginal cost of $1 of advertising
expenditure is $1. Thus, advertising should be increased to
the point where

β3 + 2β4ADVERT0 = 1

with ADVERT0 denoting the optimal level of advertising.
Using the least squares estimates for β3 and β4 in (5.25), a
point estimate for ADVERT0 is

ADVERT0

⋀

=
1 − b3

2b4
= 1 − 12.1512

2 × (−2.76796) = 2.014
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implying that the optimal monthly advertising expenditure
is $2014.

To assess the reliability of this estimate, we need a stan-
dard error and an interval estimate for

(
1 − b3

)
∕2b4. This is

a tricky problem, and one that requires the use of calculus to
solve. What makes it more difficult than what we have done
so far is the fact that it involves a nonlinear function of b3
and b4. Variances of nonlinear functions are hard to derive.
Recall that the variance of a linear function, say, c3b3 + c4b4,
is given by

var
(
c3b3 + c4b4

)
= c2

3var
(
b3
)
+ c2

4var
(
b4
)
+ 2c3c4cov

(
b3, b4

)
(5.47)

Finding the variance of
(
1 − b3

)
∕2b4 is less straightforward.

The best we can do is find an approximate expression that
is valid in large samples. Suppose λ =

(
1 – β3

)
∕2β4 and

λ̂ =
(
1 − b3

)
∕2b4; then, the approximate variance expres-

sion is

var
(
λ̂
)
=
(
∂λ
∂β3

)2
var

(
b3
)
+
(
∂λ
∂β4

)2
var

(
b4
)

+ 2
(
∂λ
∂β3

)(
∂λ
∂β4

)
cov

(
b3, b4

) (5.48)

This expression holds for all nonlinear functions of two esti-
mators, not just λ̂ =

(
1 − b3

)
∕2b4. Also, note that for the lin-

ear case, where λ = c3β3 + c4β4 and λ̂ = c3b3 + c4b4, (5.48)
reduces to (5.47). Using (5.48) to find an approximate expres-
sion for a variance is called the delta method. For further
details, consult Appendix 5B.

We will use (5.48) to estimate the variance of λ̂ =
ADVERT0

⋀

=
(
1 − b3

)
∕2b4, get its standard error, and use that

to get an interval estimate for λ = ADVERT0 =
(
1 − β3

)
∕2β4.

If the use of calculus in (5.48) frightens you, take comfort in
the fact that most software will automatically compute the
standard error for you.

The required derivatives are
∂λ
∂β3

= − 1
2β4

, ∂λ
∂β4

= −
1 − β3

2β2
4

To estimate var
(
λ̂
)

, we evaluate these derivatives at the least
squares estimates b3 and b4.

Thus, for the estimated variance of the optimal level of
advertising, we have

var
⋀(

λ̂
)
=
(
− 1

2b4

)2
var
⋀(

b3
)
+
(
−

1 − b3
2b2

4

)2

var
⋀(

b4
)

+ 2
(
− 1

2b4

)(
−

1 − b3
2b2

4

)
cov
⋀(

b3, b4
)

=
( 1

2 × 2.768
)2
× 12.646

+
(

1 − 12.151
2 × 2.7682

)2
× 0.88477

+ 2
( 1

2 × 2.768
)(

1 − 12.151
2 × 2.7682

)
× 3.2887

= 0.016567

and
se
(
λ̂
)
=
√

0.016567 = 0.1287

We are now in a position to get a 95% interval estimate for
λ = ADVERT0. When dealing with a linear combination of
coefficients in (5.16), and Section 5.4.2, we used the result(
λ̂ − λ

)/
se
(
λ̂
)
∼ t(N−K). In line with Section 5.7.2, this

result can be used in exactly the same way for nonlinear
functions, but a difference is that the result is only an
approximate one for large samples, even when the errors
are normally distributed. Thus, an approximate 95% interval
estimate for ADVERT0 is
[
λ̂ − t(0.975,71)se

(
λ̂
)
, λ̂ + t(0.975,71)se

(
λ̂
)]

=[2.014 − 1.994 × 0.1287, 2.014 + 1.994 × 0.1287]
=[1.757, 2.271]

We estimate with 95% confidence that the optimal level of
advertising lies between $1757 and $2271.

E X A M P L E 5.18 How Much Experience Maximizes Wages?

In Example 5.16, we estimated the wage equation

ln(WAGE) = β1 + β2EDUC + β3EXPER
+ β4(EDUC × EXPER) + β5EXPER2 + e

One of the implications of the quadratic function of experi-
ence is that, as a number of years of experience increases,
wages will increase up to a point and then decline. Suppose
we are interested in the number of years of experience, which

maximizes WAGE. We can get this quantity by differentiat-
ing the wage equation with respect to EXPER, setting the first
derivative equal to zero and solving for EXPER. It does not
matter that the dependent variable is ln(WAGE) not WAGE;
the value of EXPER that maximizes ln(WAGE) will also max-
imize WAGE. Setting the first derivative in (5.28) equal to
zero and solving for EXPER yields

EXPER0 =
−β3 − β4EDUC

2β5
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The maximizing value depends on the number of years of
education. For someone with 16 years of education, it is

EXPER0 =
−β3 − 16β4

2β5

Finding the standard error for an estimate of this function
is tedious. It involves differentiating with respect to β3, β4,
and β5 and evaluating a variance expression involving three
variances and three covariances—an extension of (5.48) to
three coefficients. This is a problem better handled by your
favorite econometric software. Taking this advice, we find
EXPER0

⋀

= 30.17 and se
(

EXPER0

⋀)
= 1.7896. Then, a 95%

interval estimate of the number of years of experience that
maximizes WAGE is

[
EXPER0

⋀

− t(0.975,1195)se
(

EXPER0

⋀)
,

EXPER0

⋀

+ t(0.975,1195)se
(

EXPER0

⋀)]

Inserting the relevant values yields
(30.17 − 1.962 × 1.7896, 30.17 + 1.962 × 1.7896)

=(26.7, 33.7)
We estimate that the number of years of experience that
maximizes wages lies between 26.7 and 33.7 years.

5.8 Exercises

5.8.1 Problems
5.1 Consider the multiple regression model

yi = xi1β1 + xi2β2 + xi3β3 + ei

with the seven observations on yi, xi1, xi2, and xi3 given in Table 5.5.

T A B L E 5.5 Data for Exercise 5.1

yi xi1 xi2 xi3

1 1 0 1
1 1 1 −2
4 1 2 2
0 1 −2 1
1 1 1 −2
−2 1 −2 −1

2 1 0 1

Use a hand calculator or spreadsheet to answer the following questions:
a. Calculate the observations in terms of deviations from their means. That is, find x∗i2 = xi2 − x2,

x∗i3 = xi3 − x3, and y∗i = yi − y.
b. Calculate ∑

y∗i x∗i2, ∑ x∗2
i2 , ∑ y∗i x∗i3, ∑ x∗i2x∗i3, and ∑

x∗2
i3 .

c. Use the expressions in Appendix 5A to find least squares estimates b1, b2, and b3.
d. Find the least squares residuals ê1, ê2, …, ê7.
e. Find the variance estimate σ̂2.
f. Find the sample correlation between x2 and x3.
g. Find the standard error for b2.
h. Find SSE, SST, SSR, and R2.

5.2 Use your answers to Exercise 5.1 to
a. Compute a 95% interval estimate for β2.
b. Test the hypothesis H0∶β2 = 1.25 against the alternative that H1∶β2 ≠ 1.25.
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5.3 Consider the following model that relates the percentage of a household’s budget spent on alcohol
WALC to total expenditure TOTEXP, age of the household head AGE, and the number of children in
the household NK.

WALC = β1 + β2 ln(TOTEXP) + β3NK + β4AGE + e

This model was estimated using 1200 observations from London. An incomplete version of this output
is provided in Table 5.6.

T A B L E 5.6 Output for Exercise 5.3

Dependent Variable: WALC
Included observations: 1200
Variable Coefficient Std. Error t-Statistic Prob.
C 1.4515 2.2019 0.5099
ln(TOTEXP) 2.7648 5.7103 0.0000
NK 0.3695 −3.9376 0.0001
AGE −0.1503 0.0235 −6.4019 0.0000
R-squared Mean dependent var 6.19434
S.E. of regression S.D. dependent var 6.39547
Sum squared resid 46221.62

a. Fill in the following blank spaces that appear in this table.
i. The t-statistic for b1.

ii. The standard error for b2.
iii. The estimate b3.
iv. R2.
v. σ̂.

b. Interpret each of the estimates b2, b3, and b4.
c. Compute a 95% interval estimate for β4.What does this interval tell you?
d. Are each of the coefficient estimates significant at a 5% level? Why?
e. Test the hypothesis that the addition of an extra child decreases the mean budget share of alcohol

by 2 percentage points against the alternative that the decrease is not equal to 2 percentage points.
Use a 5% significance level.

5.4 Consider the following model that relates the percentage of a household’s budget spent on alcohol,
WALC, to total expenditure TOTEXP, age of the household head AGE, and the number of children in
the household NK.

WALC = β1 + β2 ln(TOTEXP) + β3NK + β4AGE + β5AGE2 + e

Some output from estimating this model using 1200 observations from London is provided in Table 5.7.
The covariance matrix relates to the coefficients b3, b4, and b5.
a. Find a point estimate and a 95% interval estimate for the change in the mean budget percentage

share for alcohol when a household has an extra child.
b. Find a point estimate and a 95% interval estimate for the marginal effect of AGE on the mean budget

percentage share for alcohol when (i) AGE = 25, (ii) AGE = 50, and (iii) AGE = 75.
c. Find a point estimate and a 95% interval estimate for the age at which the mean budget percentage

share for alcohol is at a minimum.
d. Summarize what you have discovered from the point and interval estimates in (a), (b), and (c).
e. Let X represent all the observations on all the explanatory variables. If (e|") is normally distributed,

which of the above interval estimates are valid in finite samples? Which ones rely on a large sample
approximation?

f. If (e|") is not normally distributed, which of the above interval estimates are valid in finite samples?
Which ones rely on a large sample approximation?
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T A B L E 5.7 Output for Exercise 5.4

Variable Coefficient
C 8.149

ln(TOTEXP) 2.884
NK −1.217

AGE −0.5699
AGE2 0.005515

Covariance matrix
NK AGE AGE2

NK 0.1462 −0.01774 0.0002347
AGE −0.01774 0.03204 −0.0004138
AGE2 0.0002347 −0.0004138 0.000005438

5.5 For each of the following two time-series regression models, and assuming MR1–MR6 hold,
find var

(
b2|#

)
and examine whether the least squares estimator is consistent by checking whether

limT→∞var
(
b2|#

)
= 0.

a. yt = β1 + β2t + et, t = 1, 2,… , T. Note that#= (1, 2,… , T ),∑T
t=1
(
t − t

)2 = ∑T
t=1 t2 −

(∑T
t=1 t

)2/
T ,

∑T
t=1 t = T (T + 1)∕2 and ∑T

t=1 t2 = T (T + 1)(2T + 1)∕6.
b. yt = β1 + β2(0.5)t + et, t = 1, 2,… , T. Here, #=

(
0.5, 0.52,… , 0.5T). Note that the sum of a geo-

metric progression with first term r and common ratio r is

S = r + r2 + r3 + · · · + rn = r (1 − rn)
1 − r

c. Provide an intuitive explanation for these results.
5.6 Suppose that, from a sample of 63 observations, the least squares estimates and the corresponding

estimated covariance matrix are given by

⎡
⎢
⎢⎣

b1
b2
b3

⎤
⎥
⎥⎦
=
⎡
⎢
⎢⎣

2
3
−1

⎤
⎥
⎥⎦

cov
⋀(

b1, b2, b3
)
=
⎡
⎢
⎢⎣

3 −2 1
−2 4 0

1 0 3

⎤
⎥
⎥⎦

Using a 5% significance level, and an alternative hypothesis that the equality does not hold, test each
of the following null hypotheses:
a. β2 = 0
b. β1 + 2β2 = 5
c. β1 − β2 + β3 = 4

5.7 After estimating the model y = β1 + β2x2 + β3x3 + e with N = 203 observations, we obtain the fol-
lowing information: ∑N

i=1
(
xi2 − x2

)2 = 1780.7, ∑N
i=1
(
xi3 − x3

)2 = 3453.3, b2 = 0.7176, b3 = 1.0516,
SSE = 6800.0, and r23 = 0.7087.
a. What are the standard errors of the least squares estimates b2 and b3?
b. Using a 5% significance level, test the hypothesis H0∶β2 = 0 against the alternative H1∶β2 ≠ 0.
c. Using a 10% significance level, test the hypothesis H0∶β3 ≤ 0.9 against the alternative

H1∶β3 > 0.9.
d. Given that cov

⋀(
b2, b3

)
= −0.019521, use a 1% significance level to test the hypothesis H0∶β2 = β3

against the alternative H1∶β2 ≠ β3.
5.8 There were 79 countries who competed in the 1996 Olympics and won at least one medal. For each

of these countries, let MEDALS be the total number of medals won, POPM be population in millions,
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and GDPB be GDP in billions of 1995 dollars. Using these data we estimate the regression model
MEDALS = β1 + β2POPM + β3GDPB + e to obtain

MEDALS
⋀

= 5.917 + 0.01813POPM + 0.01026GDPB R2 = 0.4879
(se) (1.510) (0.00819) (0.00136)

a. Given assumptions MR1–MR6 hold, interpret the coefficient estimates for β2 and β3.
b. Interpret R2.
c. Using a 1% significance level, test the hypothesis that there is no relationship between the number

of medals won and GDP against the alternative that there is a positive relationship. What happens
if you change the significance level to 5%?

d. Using a 1% significance level, test the hypothesis that there is no relationship between the number
of medals won and population against the alternative that there is a positive relationship. What
happens if you change the significance level to 5%?

e. Test the following hypotheses using a 5% significance level:
i. H0∶β2 = 0.01 against the alternative H1∶β2 ≠ 0.01

ii. H0∶β2 = 0.02 against the alternative H1∶β2 ≠ 0.02
iii. H0∶β2 = 0.03 against the alternative H1∶β2 ≠ 0.03
iv. H0∶β2 = 0.04 against the alternative H1∶β2 ≠ 0.04
Are these test results contradictory? Why or why not?

f. Find a 95% interval estimate for β2 and comment on it.
5.9 There were 64 countries who competed in the 1992 Olympics and won at least one medal. For each

of these countries, let MEDALS be the total number of medals won, POPM be population in millions,
and GDPB be GDP in billions of 1995 dollars. Excluding the United Kingdom, and using N = 63
observations, the model MEDALS = β1 + β2 ln(POPM) + β3 ln(GDPB) + e was estimated as

MEDALS
⋀

= −13.153 + 2.764 ln(POPM) + 4.270ln(GDPB) R2 = 0.275
(se) (5.974) (2.070) (1.718)

a. Given assumptions MR1–MR6 hold, interpret the coefficient estimates for β2 and β3.
b. Interpret R2.
c. Using a 10% significance level, test the hypothesis that there is no relationship between the number

of medals won and GDP against the alternative that there is a positive relationship. What happens
if you change the significance level to 5%?

d. Using a 10% significance level, test the hypothesis that there is no relationship between the number
of medals won and population against the alternative that there is a positive relationship. What
happens if you change the significance level to 5%?

e. Use the model to find point and 95% interval estimates for the expected number of medals won
by the United Kingdom whose population and GDP in 1992 were 58 million and $1010 billion,
respectively. [The standard error for b1 + ln(58) × b2 + ln(1010) × b3 is 4.22196.]

f. The United Kingdom won 20 medals in 1992. Is the model a good one for predicting the
mean number of medals for the United Kingdom? What is an approximate p-value for a test of
H0∶β1 + ln(58) × β2 + ln(1010) × β3 = 20 versus H1∶β1 + ln(58) × β2 + ln(1010) × β3 ≠ 20?

g. Without doing any of the calculations, write down the expression that is used to compute the stan-
dard error given in part (e).

5.10 Using data from 1950 to 1996 (T = 47 observations), the following equation for explaining wheat yield
in the Mullewa Shire of Western Australia was estimated as

YIELDt

⋀

= 0.1717 + 0.01117t + 0.05238RAINt

(se) (0.1537) (0.00262) (0.01367)

where YIELDt = wheat yield in tonnes per hectare in year t;
TRENDt is a trend variable designed to capture technological change, with observations

t = 1, 2, …, 47;
RAINt is total rainfall in inches from May to October (the growing season) in year t. The sample

mean and standard deviation for RAIN are xRAIN = 10.059 and sRAIN = 2.624.
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a. Given assumptions MR1–MR5 hold, interpret the estimates for the coefficients of t and RAIN.
b. Using a 5% significance level, test the null hypothesis that technological change increases mean

yield by no more than 0.01 tonnes per hectare per year against the alternative that the mean yield
increase is greater than 0.01.

c. Using a 5% significance level, test the null hypothesis that an extra inch of rainfall increases mean
yield by 0.03 tonnes per hectare against the alternative that the increase is not equal to 0.03.

d. Adding RAIN2 to the equation and reestimating yields

YIELD
⋀

t = −0.6759 + 0.011671t + 0.2229RAINt − 0.008155RAIN2
t

(se) (0.3875) (0.00250) (0.0734) (0.003453)

What is the rationale for including RAIN2? Does it have the expected sign?
e. Repeat part (b) using the model estimated in (d).
f. Repeat part (c) using the model estimated in (d), testing the hypothesis at the mean value of

rainfall. (The estimated covariance between b3 and b4 (the coefficients of RAIN and RAIN2) is
cov
⋀(

b3, b4
)
= −0.0002493.)

g. Use the model in (d) to forecast yield in 1997, when the rainfall was 9.48 inches.
h. Suppose that you wanted to forecast 1997 yield before the rainfall was observed. What would be

your forecast from the model in (a)? What would it be from the model in (d)?
5.11 When estimating wage equations, we expect that young, inexperienced workers will have relatively

low wages; with additional experience their wages will rise, but then begin to decline after middle
age, as the worker nears retirement. This life-cycle pattern of wages can be captured by introducing
experience and experience squared to explain the level of wages. If we also include years of education,
we have the equation

WAGE = β1 + β2EDUC + β3EXPER+ β4EXPER2 + e

a. What is the marginal effect of experience on the mean wage?
b. What signs do you expect for each of the coefficients β2, β3, and β4? Why?
c. After how many years of experience does the mean wage start to decline? (Express your answer in

terms of β’s.)
d. Estimating this equation using 600 observations yields

WAGE
⋀

= −16.308 + 2.329EDUC + 0.5240EXPER − 0.007582EXPER2

(se) (2.745) (0.163) (0.1263) (0.002532)

The estimated covariance between b3 and b4 is cov
⋀(

b3, b4
)
= −0.00030526. Find 95% interval

estimates for the following:
i. The marginal effect of education on mean wage

ii. The marginal effect of experience on mean wage when EXPER = 4
iii. The marginal effect of experience on mean wage when EXPER = 25
iv. The number of years of experience after which the mean wage declines

5.12 This exercise uses data on 850 houses sold in Baton Rouge, Louisiana during mid-2005. We will be
concerned with the selling price in thousands of dollars (PRICE), the size of the house in hundreds
of square feet (SQFT), and the age of the house in years (AGE). The following two regression models
were estimated:

PRICE = α1 + α2AGE + v and SQFT = δ1 + δ2AGE + u

The sums of squares and sums of cross products of the residuals from estimating these two equations
are ∑850

i=1 v̂2
i = 10377817, ∑850

i=1 û2
i = 75773.4, ∑850

i=1 ûiv̂i = 688318.
a. Find the least-squares estimate of β2 in the model PRICE = β1 + β2SQFT + β3AGE + e.
b. Let êi = v̂i − b2ûi. Show that∑850

i=1 ê2
i =

∑850
i=1 v̂2

i − b2
∑850

i=1 v̂iûi where b2 is the least-squares estimate
for β2.

c. Find an estimate of σ2 = var
(
ei
)
.

d. Find the standard error for b2.
e. What is an approximate p-value for testing H0∶β2 ≥ 9.5 against the alternative H1∶β2 < 9.5? What

do you conclude from this p-value?
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5.13 A concept used in macroeconomics is Okun’s Law, which states that the change in unemployment from
one period to the next depends on the rate of growth of the economy relative to a “normal” growth
rate:

Ut − Ut−1 = −γ
(
Gt − GN

)

where Ut is the unemployment rate in period t, Gt is the growth rate in period t, the “normal” growth
rate GN is that which is required to maintain a constant rate of unemployment, and 0 < γ < 1 is an
adjustment coefficient.
a. Show that the model can be written as DUt = β1 + β2Gt, where DUt = Ut − Ut−1 is the change in

the unemployment rate, β1 = γGN, and β2 = −γ.
b. Estimating this model with quarterly seasonally adjusted U.S. data from 1970 Q1 to 2014 Q4 yields

DU
⋀

t = 0.1989 − 0.2713Gt σ̂ = 0.2749

cov
(
b1, b2

)
=
(

0.0007212 −0.0004277
−0.0004277 0.0006113

)

Use the estimates b1 and b2 to find estimates γ̂ and ĜN .
c. Find standard errors for b1, b2, γ̂, and ĜN . Are all these estimates significantly different from zero

at a 5% level?
d. Using a 5% significance level test the null hypothesis that the natural growth rate is 0.8% per quarter

against the alternative it is not equal to 0.8%.
e. Find a 95% interval estimate for the adjustment coefficient.
f. Find a 95% interval estimate for E

(
U2015Q1|U2014Q4 = 5.7991, G2015Q1 = 0.062

)
.

g. Find a 95% prediction interval for U2015Q1 given U2014Q4 = 5.7991 and G2015Q1 = 0.062. Explain
the difference between this interval and that in (f).

5.14 Consider the regression model yi = β1 + β2xi + ei where the pairs
(
yi, xi

)
, i = 1, 2,… ,N, are random

independent draws from a population.
a. Suppose the marginal distribution of xi is log-normal. To appreciate the nature of the log-normal

distribution, consider a normal random variable W ∼ N
(
μW , σ2

W
)
. Then, X = eW has a log-normal

distribution with mean μX = exp
(
μW + σ2

W∕2
)

and variance σ2
X =

(
exp

(
σ2

W
)
− 1

)
μ2

X . Assume that(
ei|xi

)
∼ N

(
0, σ2

e
)
.

i. Will the least squares estimator
(
b1, b2

)
for the parameters

(
β1, β2

)
be unbiased?

ii. Will it be consistent?
iii. Will it be normally distributed conditional on #=

(
x1, x2,… , xN

)
?

iv. Will the marginal distribution of
(
b1, b2

)
(not conditional on x) be normally distributed?

v. Will t-tests for β1 and β2 be justified in finite samples or are they only large sample approxima-
tions?

vi. Suppose μw = 0, σ2
w = 1, and xi = exp

(
wi
)
. What is the asymptotic variance of the least squares

estimator for β2? (Express in terms of σ2
e and N.)

b. Suppose now that xi ∼ N(0, 1) and that
(
ei|xi

)
has a log-normal distribution with mean and variance

μe = exp
(
μv + σ2

v∕2
)

and σ2
e =

(
exp

(
σ2

v
)
− 1

)
μ2

e , where v = ln(e) ∼ N
(
μv, σ2

v
)
.

i. Show that we can rewrite the model as yi = β∗1 + β2xi + e∗i where
β∗1 = β1 + exp

(
μv + σ2

v∕2
)

and e∗i = ei − exp
(
μv + σ2

v∕2
)

ii. Show that E
(
e∗i |xi

)
= 0 and var

(
e∗i |xi

)
= σ2

e .
iii. Will the least squares estimator b2 for the parameter β2 be unbiased?
iv. Will it be consistent?
v. Will it be normally distributed conditional on #=

(
x1, x2,… , xN

)
?

vi. Will the marginal distribution of b2 (not conditional on x) be normally distributed?
vii. Will t-tests for β2 be justified in finite samples or are they only large sample approximations?

viii. What is the asymptotic variance of the least squares estimator for β2? (Express in terms of σ2
e

and N.)
5.15 Consider the regression model yi = β1 + β2xi + ei where the pairs

(
yi, xi

)
, i = 1, 2,… ,N, are random

independent draws from a population, xi ∼ N(0, 1), and E
(
ei|xi

)
= c

(
x2

i − 1
)

where c is a constant.
a. Show that E

(
ei
)
= 0.

b. Using the result cov
(
ei, xi

)
= Ex

[(
xi − μx

)
E
(
ei|xi

)]
, show that cov

(
ei, xi

)
= 0.

c. Will the least squares estimator for β2 be (i) unbiased? (ii) consistent?
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5.16 Consider a log-linear regression for the weekly sales of a national brand of canned tuna (brand A),
expressed as thousands of cans, CANS, as a function of the prices of two competing brands (brands B
and C), expressed as percentages of the price of brand A. That is,

ln(CANS) = β1 + β2RPRCE_B + β3RPRCE_C + e

where RPRCE_B =
(
PRICEB∕PRICEA

)
× 100 and RPRCE_C =

(
PRICEC∕PRICEA

)
× 100.

a. Given assumptions MR1–MR5 hold, how do you interpret β2 and β3? What signs do you expect
for these coefficients? Why?

Using N = 52 weekly observations, the least squares estimated equation is

ln(CANS)
⋀

= −2.724 + 0.0146RPRCE_B + 0.02649RPRCE_C σ̂ = 0.5663
(se) (0.582) (0.00548) (0.00544) cov

⋀(
b2, b3

)
= −0.0000143

b. Using a 10% significance level, test the null hypothesis that an increase in RPRCE_B of one per-
centage point leads to a 2.5% increase in the mean number of cans sold against the alternative that
the increase is not 2.5%.

c. Using a 10% significance level, test the null hypothesis that an increase in RPRCE_C of one per-
centage point leads to a 2.5% increase in the mean number of cans sold against the alternative that
the increase is not 2.5%.

d. Using a 10% significance level, test H0∶β2 = β3 against the alternative H1∶β2 ≠ β3. Does the out-
come of this test contradict your findings from parts (b) and (c)?

e. Which brand do you think is the closer substitute for brand A, brand B, or brand C? Why?
f. Use the corrected predictor introduced in Section 4.5.3 to estimate the expected number of brand A

cans sold under the following scenarios:
i. RPRCE_B = 125, RPRCE_C = 100

ii. RPRCE_B = 111.11, RPRCE_C = 88.89
iii. RPRCE_B = 100, RPRCE_C = 80

g. The producers of brands B and C have set the prices of their cans of tuna to be $1 and 80 cents,
respectively. The producer of brand A is considering three possible prices for her cans: 80 cents,
90 cents, or $1. Use the results from part (f) to find which of these three price settings will maximize
revenue from sales.

5.8.2 Computer Exercises
5.17 Use econometric software to verify your answers to Exercise 5.1, parts (c), (e), (f), (g), and (h).
5.18 Consider the following two expenditure share equations where the budget share for food WFOOD, and

the budget share for clothing WCLOTH, are expressed as functions of total expenditure TOTEXP.

WFOOD = β1 + β2 ln(TOTEXP) + eF (XR5.18.1)
WCLOTH = α1 + α2 ln(TOTEXP) + eC (XR5.18.2)

a. A commodity is regarded as a luxury if the coefficient of ln(TOTEXP) is positive and a necessity
if it is negative. What signs would you expect for β2 and α2?

b. Using the data in the file london5, estimate the above equations using observations on households
with one child. Comment on the estimates and their significance. Can you explain any possibly
counterintuitive outcomes?

c. Using a 1% significance level, test H0∶β2 ≥ 0 against the alternative H1∶β2 < 0. Why might you
set up the hypotheses in this way?

d. Using a 1% significance level, test H0∶α2 ≥ 0 against the alternative H1∶α2 < 0. Why might you
set up the hypotheses in this way?

e. Estimate the two equations using observations on households with two children. Construct 95%
interval estimates for β2 and α2 for both one- and two-child households. Based on these interval
estimates, would you conjecture that the coefficients of ln(TOTEXP) are the same or different for
one- and two-child households.
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f. Use all observations to estimate the following two equations and test, at a 95% significance level,
whether your conjectures in part (e) are correct. (NK = number of children in the household.)

WFOOD = γ1 + γ2ln(TOTEXP) + γ3NK + γ4NK × ln(TOTEXP) + eF (XR5.18.3)
WCLOTH = δ1 + δ2ln(TOTEXP) + δ3NK + δ4NK × ln(TOTEXP) + eC (XR5.18.4)

g. Compare the estimates for ∂E(WFOOD|X)/∂ln(TOTEXP) from (XR5.18.1) for NK = 1, 2 with
those from (XR5.18.3) for NK = 1, 2.

5.19 Consider the following expenditure share equation where the budget share for food WFOOD is
expressed as a function of total expenditure TOTEXP.

WFOOD = β1 + β2ln(TOTEXP) + eF (XR5.19.1)

In Exercise 4.12, it was noted that the elasticity of expenditure on food with respect to total expenditure
is given by

ε = 1 +
β2

β1 + β2ln(TOTEXP)

Also, in Exercise 5.18 it was indicated that a good is a necessity if β2 < 0.
a. Show that β2 < 0 if and only if ε < 1. That is, a good is a necessity if its expenditure elasticity is

less than one (inelastic).
b. Use observations in the data file london5 to estimate (XR5.19.1) and comment on the results.
c. Find point estimates and 95% interval estimates for the mean budget share for food, for total expen-

diture values (i) TOTEXP = 50 (the fifth percentile of TOTEXP), (ii) TOTEXP = 90 (the median),
and (iii) TOTEXP = 170 (the 95th percentile).

d. Find point estimates and 95% interval estimates for the elasticity ε, for total expenditure values
(i) TOTEXP = 50 (the fifth percentile), (ii) TOTEXP = 90 (the median), and (iii) TOTEXP = 170
(the 95th percentile).

e. Comment on how the mean budget share and the expenditure elasticity for food change as total
expenditure changes. How does the reliability of estimation change as total expenditure changes?

5.20 A generalized version of the estimator for β2 proposed in Exercise 2.9 by Professor I.M. Mean for the
regression model yi = β1 + β2xi + ei, i = 1, 2,… ,N is

β̂2,mean =
y2 − y1
x2 − x1

where
(
y1, x1

)
and

(
y2, x2

)
are the sample means for the first and second halves of the sample obser-

vations, respectively, after ordering the observations according to increasing values of x. Given that
assumptions MR1–MR6 hold:
a. Show that β̂2,mean is unbiased.
b. Derive an expression for var

(
β̂2,mean|x

)
.

c. Write down an expression for var
(
β̂2,mean

)
.

d. Under what conditions will β̂2,mean be a consistent estimator for β2?
e. Randomly generate observations on x from a uniform distribution on the interval (0,10) for sample

sizes N = 100, 500, 1000, and, if your software permits, N = 5000. Assuming σ2 = 1000, for each
sample size, compute:

i. var
(
b2|x

)
and var

(
β̂2,mean|x

)
where b2 is the OLS estimator.

ii. Estimates for E
[(

s2
x
)−1] and E

[
4
/(

x2 − x1
)2] where s2

x is the sample standard deviation
for x using N as a divisor.

f. Comment on the relative magnitudes of your answers in part (e), (i) and (ii) and how they change
as sample size increases. Does it appear that β̂2,mean is consistent?

g. Show that E
[(

s2
x
)−1] p

−−→ 0.12 and E
[
4
/(

x2 − x1
)2] p

−−→ 0.16. [Hint: The variance of a uniform
random variable defined on the interval (a, b) is (b − a)2∕12.]

h. Suppose that the observations on x were not ordered according to increasing magnitude but were
randomly assigned to any position. Would the estimator β̂2,mean be consistent? Why or why not?
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5.21 Using the data in the file toody5, estimate the model

Yt = β1 + β2TRENDt + β3RAINt + β4RAIN2
t + β5

(
RAINt × TRENDt

)
+ et

where Yt = wheat yield in tons per hectare in the Toodyay Shire of Western Australia in year t;
TRENDt is a trend variable designed to capture technological change, with observations 0, 0.1,
0.2, …, 4.7; 0 is for the year 1950, 0.1 is for the year 1951, and so on up to 4.7 for the year
1997; RAINt is total rainfall in decimeters (dm) from May to October (the growing season) in year
t (1 decimeter = 4 inches).
a. Report your estimates, standard errors, t-values, and p-values in a table.
b. Are each of your estimates significantly different from zero at a (i) 5% level, (ii) 10% level?
c. Do the coefficients have the expected signs? Why? (One of the objectives of technological improve-

ments is the development of drought-resistant varieties of wheat.)
d. Find point and 95% interval estimates of the marginal effect of extra rainfall in (i) 1959 when the

rainfall was 2.98 dm and (ii) 1995 when the rainfall was 4.797 dm. Discuss the results.
e. Find point and 95% interval estimates for the amount of rainfall that would maximize expected

yield in (i) 1959 and (ii) 1995. Discuss the results.
5.22 Using the data in the file toody5, estimate the model

Yt = β1 + β2TRENDt + β3RAINt + β4RAIN2
t + β5

(
RAINt × TRENDt

)
+ et

where Yt = wheat yield in tons per hectare in the Toodyay Shire of Western Australia in year t;
TRENDt is a trend variable designed to capture technological change, with observations 0, 0.1,
0.2, …, 4.7; 0 is for the year 1950, 0.1 is for the year 1951, and so on up to 4.7 for the year
1997; RAINt is total rainfall in decimeters (dm) from May to October (the growing season) in
year t (1 decimeter = 4 inches).
a. Report your estimates, standard errors, t-values, and p-values in a table.
b. For 1974, when TREND = 2.4 and RAIN = 4.576, use a 5% significance level to test the null

hypothesis that extra rainfall will not increase expected yield against the alternative that it will
increase expected yield.

c. Assuming rainfall is equal to its median value of 3.8355 dm, find point and 95% interval estimates
of the expected improvement in wheat yield from technological change over the period 1960–1995.

d. There is concern that climate change is leading to a decline in rainfall over time. To test this hypoth-
esis, estimate the equation RAIN = α1 + α2TREND + e. Test, at a 5% significance level, the null
hypothesis that mean rainfall is not declining over time against the alternative hypothesis that it is
declining.

e. Using the estimated equation from part (d), estimate mean rainfall in 1960 and in 1995.
f. Suppose that TREND1995 = TREND1960, implying there had been no technological change

from 1960 to 1995. Use the estimates from part (e) to find an estimate of the decline in mean
yield from 1960 to 1995 attributable to climate change.

g. Suppose that E
(
RAIN1995

)
= E

(
RAIN1960

)
, implying there had been no rainfall change from 1960 to

1995. Find an estimate of the increase in mean yield from 1960 to 1995 attributable to technological
change.

h. Compare the estimates you obtained in parts (c), (f), and (g).
5.23 The file cocaine contains 56 observations on variables related to sales of cocaine powder in northeast-

ern California over the period 1984–1991. The data are a subset of those used in the study Caulkins,
J. P. and R. Padman (1993), “Quantity Discounts and Quality Premia for Illicit Drugs,” Journal of the
American Statistical Association, 88, 748–757. The variables are

PRICE = price per gram in dollars for a cocaine sale
QUANT = number of grams of cocaine in a given sale
QUAL = quality of the cocaine expressed as percentage purity
TREND = a time variable with 1984 = 1 up to 1991 = 8
Consider the regression model

PRICE = β1 + β2QUANT + β3QUAL + β4TREND + e

a. What signs would you expect on the coefficients β2, β3, and β4?
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b. Use your computer software to estimate the equation. Report the results and interpret the coefficient
estimates. Have the signs turned out as you expected?

c. What proportion of variation in cocaine price is explained jointly by variation in quantity, quality,
and time?

d. It is claimed that the greater the number of sales, the higher the risk of getting caught. Thus, sellers
are willing to accept a lower price if they can make sales in larger quantities. Set up H0 and H1 that
would be appropriate to test this hypothesis. Carry out the hypothesis test.

e. Test the hypothesis that the quality of cocaine has no influence on expected price against the alter-
native that a premium is paid for better-quality cocaine.

f. What is the average annual change in the cocaine price? Can you suggest why price might be
changing in this direction?

5.24 The file collegetown contains data on 500 single-family houses sold in Baton Rouge, Louisiana during
2009–2013. We will be concerned with the selling price in thousands of dollars (PRICE), the size
of the house in hundreds of square feet (SQFT), and the age of the house measured as a categorical
variable (AGE), with 1 representing the newest and 11 the oldest. Let X denote all observations on
SQFT and AGE. Use all observations to estimate the following regression model:

PRICE = β1 + β2SQFT + β3(SQFT × AGE) + e

a. Report the results. Are the estimated coefficients significantly different from zero?
b. Write down expressions for the marginal effects ∂E(PRICE|X)∕∂SQFT and ∂E(PRICE|X)∕∂AGE.

Interpret each of the coefficients. Given the categorical nature of the variable AGE, what assump-
tions are being made?

c. Find point and 95% interval estimates for the marginal effect ∂E(PRICE|X)∕∂SQFT for houses that
are (i) 5 years old, (ii) 20 years old, and (iii) 40 years old. How do these estimates change as AGE
increases? (Refer to the file collegetown.def for the definition of AGE.)

d. As a house gets older and moves from one age category to the next, the expected price declines
by $6000. Set up this statement as a null hypothesis for houses with (i) 1500 square feet, (ii) 3000
square feet, and (iii) 4500 square feet. Using a 5% significance level, test each of the null hypotheses
against an alternative that the price decline is not $6000. Discuss the outcomes.

e. Find a 95% prediction interval for the price of a 60-year old house with 2500 square feet. In the data
set there are four 60-year old houses with floor space between 2450 and 2550 square feet. What
prices did they sell for? How many of these prices fall within your prediction interval? Is the model
a good one for forecasting price?

5.25 The file collegetown contains data on 500 single-family houses sold in Baton Rouge, Louisiana during
2009–2013. We will be concerned with the selling price in thousands of dollars (PRICE), and the
size of the house in hundreds of square feet (SQFT). Use all observations to estimate the following
regression model:

ln(PRICE) = β1 + β2SQFT + β3SQFT1∕2 + e

Suppose that assumptions MR1–MR6 all hold. In particular, (e|SQFT ) ∼ N
(
0, σ2).

a. Report the results. Are the estimated coefficients significantly different from zero?
b. Write down an expression for the marginal effect ∂E

[
ln(PRICE|SQFT)

]/
∂SQFT . Discuss the

nature of this marginal effect and the expected signs for β2 and β3.
c. Find and interpret point and 95% interval estimates for ∂E

[
ln(PRICE|SQFT)

]/
∂SQFT for houses

with (i) 1500 square feet, (ii) 3000 square feet, and (iii) 4500 square feet.
d. Show that

∂E[PRICE|SQFT ]
∂SQFT

=
(
β2 +

β3
2SQFT1/2

)
× exp

{
β1 + β2SQFT + β3SQFT1/2 + σ2∕2

}

For future reference, we write this expression as ∂E(PRICE|SQFT )∕∂SQFT = S × C where

S =
(
β2 +

β3
2SQFT1/2

)
× exp

{
β1 + β2SQFT + β3SQFT1/2} and C = exp

{
σ2∕2

}

Correspondingly, we let Ŝ and Ĉ denote estimates for S and C obtained by replacing unknown
parameters by their estimates.
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e. Estimate ∂E(PRICE|SQFT )∕∂SQFT = S × C for houses with (i) 1500 square feet, (ii) 3000 square
feet, and (iii) 4500 square feet.

f. Finding the asymptotic standard errors for the estimates in (e) is tricky because of the product
Ŝ × Ĉ. To avoid such trickiness, find the standard errors for Ŝ for each type of house in (e).

g. For each type of house, and a 5% significance level, use the estimates from (e) and the standard
errors from (f ) to test the hypotheses

H0∶
∂E(PRICE|SQFT )

∂SQFT
= 9 H1∶

∂E(PRICE|SQFT )
∂SQFT

≠ 9

What do you conclude?
h. (optional) To get the “correct” standard errors for Ŝ × Ĉ, we proceed as follows. First, given

var
(
σ̂2
)
= 2σ4∕(N − K), find an estimate for var

(
Ĉ
)
. It can be shown that Ŝ and Ĉ are independent.

Using results on the product of independent random variables, an estimator for the variance of
Ŝ × Ĉ is

var
⋀(

Ŝ × Ĉ
)
= var
⋀

⎛
⎜
⎜⎝
∂E(PRICE|SQFT )

∂SQFT

⋀⋀
⎞
⎟
⎟⎠
= Ŝ2var

⋀(
Ĉ
)
+ Ĉ2var

⋀(
Ŝ
)
+ var
⋀(

Ĉ
)

var
⋀(

Ŝ
)

Use this result to find standard errors for Ŝ × Ĉ. How do they compare with the standard errors
obtained in (f )? Are they likely to change the outcomes of the hypothesis tests in (g)?

5.26 Consider the presidential voting data (data file fair5) introduced in Exercise 2.23. Details of the vari-
ables can be found in that exercise.
a. Using all observations, estimate the regression model

VOTE = β1 + β2GROWTH + β3INFLAT + e

Report the results. Are the estimates for β2 and β3 significantly different from zero at a 10% signif-
icance level? Did you use one- or two-tail tests? Why?

b. Assume the inflation rate is 3% and the Democrats are the incumbent party. Predict the percentage
vote for both parties when the growth rate is (i) −2%, (ii) 0%, and (iii) 3%.

c. Assume the inflation rate is 3% and the Republicans are the incumbent party. Predict the percentage
vote for both parties when the growth rate is (i) −2%, (ii) 0%, and (iii) 3%.

d. Based on your answers to parts (b) and (c), do you think the popular vote tends to be more biased
toward the Democrats or the Republicans?

e. Consider the following two scenarios:
1. The Democrats are the incumbent party, the growth rate is 2% and the inflation rate is 2%.
2. The Republicans are the incumbent party, the growth rate is 2% and the inflation rate is 2%.
Using a 5% significance level, test the null hypothesis that the expected share of the Democratic
vote under scenario 1 is equal to the expected share of the Republican vote under scenario 2.

5.27 In this exercise, we consider the auction market for art first introduced in Exercise 2.24. The variables
in the data file ashcan_small that we will be concerned with are as follows:

RHAMMER = the price at which a painting sold in thousands of dollars
YEARS_OLD = the time between completion of the painting and when it was sold
INCHSQ = the size of the painting in square inches

Create a new variable INCHSQ10 = INCHSQ∕10 to express size in terms of tens of square inches.
Only consider observations where the art was sold (SOLD = 1).
a. Estimate the following equation and report the results:

RHAMMER = β1 + β2YEARS_OLD + β3INCHSQ10 + e

b. How much do paintings appreciate on a yearly basis? Find a 95% interval estimate for the expected
yearly price increase.

c. How much more valuable are large paintings? Find a 95% interval estimate for the expected extra
value from an extra 10 square inches.

d. Add the variable INCHSQ102 to the model and re-estimate. Report the results. Why would you
consider adding this variable?

e. Does adding this variable have much impact on the interval estimate in part (b)?
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f. Find 95% interval estimates for the expected extra value from an extra 10 square inches for art of
the following sizes: (i) 50 square inches (sixth percentile), (ii) 250 square inches (approximately
the median), and (iii) 900 square inches (97th percentile). Comment on how the value of an extra
10 square inches changes as the painting becomes larger.

g. Find a 95% interval estimate for the painting size that maximizes price.
h. Find a 95% interval estimate for the expected price of a 75-year-old, 100-square-inch painting.
i. How long would you have to keep a 100-square-inch painting for the expected price to become

positive?
5.28 In this exercise, we consider the auction market for art first introduced in Exercise 2.24. The variables

in the data file ashcan_small that we will be concerned with are as follows:
RHAMMER = the price at which a painting sold in thousands of dollars
YEARS_OLD = the time between completion of the painting and when it was sold
INCHSQ = the size of the painting in square inches

Create a new variable INCHSQ10 = INCHSQ/10 to express size in terms of tens of square inches. Only
consider observations where the art was sold (SOLD = 1).
a. Estimate the following log-linear equation and report the results:

ln(RHAMMER) = β1 + β2YEARS_OLD + β3INCHSQ10 + e

b. How much do paintings appreciate on a yearly basis? Find a 95% interval estimate for the expected
percentage price increase per year.

c. How much more valuable are large paintings? Using a 5% significance level, test the null hypothesis
that painting an extra 10 square inches increases the value by 2% or less against the alternative that
it increases the value by more than 2%.

d. Add the variable INCHSQ102 to the model and re-estimate. Report the results. Why would you
consider adding this variable?

e. Does adding this variable have much impact on the interval estimate in part (b)?
f. Redo the hypothesis test in part (c) for art of the following sizes: (i) 50 square inches (sixth

percentile), (ii) 250 square inches (approximately the median), and (iii) 900 square inches (97th
percentile). What do you observe?

g. Find a 95% interval estimate for the painting size that maximizes price.
h. Find a 95% interval estimate for the expected price of a 75-year-old, 100-square-inch painting.

(Use the estimator exp
{

E
[
ln(RHAMMER|YEARS_OLD = 75, INCHSQ10 = 10)

]}
and its stan-

dard error.)
5.29 What is the relationship between crime and punishment? This important question has been examined by

Cornwell and Trumbull16 using a panel of data from North Carolina. The cross sections are 90 counties,
and the data are annual for the years 1981–1987. The data are in the file crime.

Using the data from 1986, estimate a regression relating the log of the crime rate LCRMRTE to
the probability of an arrest PRBARR (the ratio of arrests to offenses), the probability of conviction
PRBCONV (the ratio of convictions to arrests), the probability of a prison sentence PRBPRIS (the
ratio of prison sentences to convictions), the number of police per capita POLPC, and the weekly
wage in construction WCON. Write a report of your findings. In your report, explain what effect you
would expect each of the variables to have on the crime rate and note whether the estimated coefficients
have the expected signs and are significantly different from zero. What variables appear to be the most
important for crime deterrence? Can you explain the sign for the coefficient of POLPC?

5.30 In Section 5.7.4, we discovered that the optimal level of advertising for Big Andy’s Burger Barn,
ADVERT0, satisfies the equation β3 + 2β4ADVERT0 = 1. Using a 5% significance level, test whether
each of the following levels of advertising could be optimal: (a) ADVERT0 = 1.75, (b) ADVERT0 = 1.9,
and (c) ADVERT0 = 2.3. What are the p-values for each of the tests?

5.31 Each morning between 6:30 AM and 8:00 AM Bill leaves the Melbourne suburb of Carnegie to drive
to work at the University of Melbourne. The time it takes Bill to drive to work (TIME), depends on
the departure time (DEPART), the number of red lights that he encounters (REDS), and the number
of trains that he has to wait for at the Murrumbeena level crossing (TRAINS). Observations on these

............................................................................................................................................................
16“Estimating the Economic Model of Crime with Panel Data,” Review of Economics and Statistics, 76, 1994,
360−366. The data were kindly provided by the authors.
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variables for the 249 working days in 2015 appear in the file commute5. TIME is measured in minutes.
DEPART is the number of minutes after 6:30 AM that Bill departs.
a. Estimate the equation

TIME = β1 + β2DEPART + β3REDS + β4TRAINS + e

Report the results and interpret each of the coefficient estimates, including the intercept β1.
b. Find 95% interval estimates for each of the coefficients. Have you obtained precise estimates of

each of the coefficients?
c. Using a 5% significance level, test the null hypothesis that Bill’s expected delay from each red light

is 2 minutes or more against the alternative that it is less than 2 minutes.
d. Using a 10% significance level, test the null hypothesis that the expected delay from each train is

3 minutes against the alternative that it is not 3 minutes.
e. Using a 5% significance level, test the null hypothesis that Bill can expect a trip to be at least

10 minutes longer if he leaves at 7:30 AM instead of 7:00 AM, against the alternative that it will not
be 10 minutes longer. (Assume other things are equal.)

f. Using a 5% significance level, test the null hypothesis that the expected delay from a train is at least
three times greater than the expected delay from a red light against the alternative that it is less than
three times greater.

g. Suppose that Bill encounters six red lights and one train. Using a 5% significance level, test the
null hypothesis that leaving Carnegie at 7:00 AM is early enough to get him to the university on or
before 7:45 AM against the alternative that it is not. [Carry out the test in terms of the expected time
E(TIME|X) where X represents the observations on all explanatory variables.]

h. Suppose that, in part (g), it is imperative that Bill is not late for his 7:45 AM meeting. Have the null
and alternative hypotheses been set up correctly? What happens if these hypotheses are reversed?

5.32 Reconsider the variables and model from Exercise 5.31
TIME = β1 + β2DEPART + β3REDS + β4TRAINS + e

Suppose that Bill is mainly interested in the magnitude of the coefficient β2. He has control over his
departure time, but no control over the red lights or the trains.
a. Regress DEPART on the variables REDS and TRAINS and save the residuals. Which coefficient

estimates are significantly different from zero at a 5% level? For the significant coefficient(s), do
you think the relationship is causal?

b. Regress TIME on the variables REDS and TRAINS and save the residuals. Are the estimates for
the coefficients of REDS and TRAINS very different from the estimates for β3 and β4 obtained by
estimating the complete model with DEPART included?

c. Use the residuals from parts (a) and (b) to estimate the coefficient β2 and adjust the output to obtain
its correct standard error.

5.33 Use the observations in the data file cps5_small to estimate the following model:
ln(WAGE ) = β1 + β2EDUC + β3EDUC2 + β4EXPER + β5EXPER2 + β6(EDUC × EXPER) + e

a. At what levels of significance are each of the coefficient estimates “significantly different from
zero”?

b. Obtain an expression for the marginal effect ∂E
[
ln(WAGE)|EDUC, EXPER

]/
∂EDUC. Comment

on how the estimate of this marginal effect changes as EDUC and EXPER increase.
c. Evaluate the marginal effect in part (b) for all observations in the sample and construct a histogram

of these effects. What have you discovered? Find the median, 5th percentile, and 95th percentile of
the marginal effects.

d. Obtain an expression for the marginal effect ∂E
[
ln(WAGE)|EDUC, EXPER

]/
∂EXPER. Comment

on how the estimate of this marginal effect changes as EDUC and EXPER increase.
e. Evaluate the marginal effect in part (d) for all observations in the sample and construct a histogram

of these effects. What have you discovered? Find the median, 5th percentile, and 95th percentile of
the marginal effects.

f. David has 17 years of education and 8 years of experience, while Svetlana has 16 years of education
and 18 years of experience. Using a 5% significance level, test the null hypothesis that Svetlana’s
expected log-wage is equal to or greater than David’s expected log-wage, against the alternative
that David’s expected log-wage is greater. State the null and alternative hypotheses in terms of the
model parameters.
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g. After eight years have passed, when David and Svetlana have had eight more years of experience,
but no more education, will the test result in (f ) be the same? Explain this outcome?

h. Wendy has 12 years of education and 17 years of experience, while Jill has 16 years of education and
11 years of experience. Using a 5% significance level, test the null hypothesis that their marginal
effects of extra experience are equal against the alternative that they are not. State the null and
alternative hypotheses in terms of the model parameters.

i. How much longer will it be before the marginal effect of experience for Jill becomes negative? Find
a 95% interval estimate for this quantity.

Appendix 5A Derivation of Least Squares Estimators
In Appendix 2A, we derived expressions for the least squares estimators b1 and b2 in the simple
regression model. In this appendix, we proceed with a similar exercise for the multiple regression
model; we describe how to obtain expressions for b1, b2, and b3 in a model with two explanatory
variables. Given sample observations on y, x2, and x3, the problem is to find values for β1, β2, and
β3 that minimize

S
(
β1, β2, β3

)
=

N∑
i=1

(
yi − β1 − β2xi2 − β3xi3

)2

The first step is to partially differentiate S with respect to β1, β2, and β3 and to set the first-order
partial derivatives to zero. This yields

∂S
∂β1

= 2Nβ1 + 2β2
∑

xi2 + 2β3
∑

xi3 − 2∑yi

∂S
∂β2

= 2β1
∑

xi2 + 2β2
∑

x2
i2 + 2β3

∑
xi2xi3 − 2∑xi2yi

∂S
∂β3

= 2β1
∑

xi3 + 2β2
∑

xi2xi3 + 2β3
∑

x2
i3 − 2∑xi3yi

Setting these partial derivatives equal to zero, dividing by 2, and rearranging yields
Nb1 +

∑
xi2b2 +

∑
xi3b3 = ∑

yi
∑

xi2b1 +
∑

x2
i2b2 +

∑
xi2xi3b3 = ∑

xi2yi
∑

xi3b1 +
∑

xi2xi3b2 +
∑

x2
i3b3 = ∑

xi3yi

(5A.1)

The least squares estimators for b1, b2, and b3 are given by the solution of this set of three simul-
taneous equations, known as the normal equations. To write expressions for this solution, it is
convenient to express the variables as deviations from their means. That is, let

y∗i = yi − y, x∗i2 = xi2 − x2, x∗i3 = xi3 − x3

Then the least squares estimates b1, b2, and b3 are
b1 = y − b2x2 − b3x3

b2 =
(∑

y∗i x∗i2
)(∑

x∗2
i3
)
−
(∑

y∗i x∗i3
)(∑

x∗i2x∗i3
)

(∑
x∗2

i2
)(∑

x∗2
i3
)
−
(∑

x∗i2x∗i3
)2

b3 =
(∑

y∗i x∗i3
)(∑

x∗2
i2
)
−
(∑

y∗i x∗i2
)(∑

x∗i3x∗i2
)

(∑
x∗2

i2
)(∑

x∗2
i3
)
−
(∑

x∗i2x∗i3
)2

For models with more than three parameters, the solutions become quite messy without using
matrix algebra; we will not show them. Computer software used for multiple regression compu-
tations solves normal equations such as those in (5A.1) to obtain the least squares estimates.
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Appendix 5B The Delta Method
In Sections 3.6, 5.3, 5.4, and 5.5, we discussed estimating and testing linear combinations of
parameters. If the regression errors are normal, the results discussed there hold in finite samples.
If the regression errors are not normal, then those results hold in large samples, as discussed
in Section 5.7. We now turn to nonlinear functions of regression parameters that were con-
sidered in Section 5.7.4 and provide some background for the results given there. You will be
surprised in the subsequent chapters how many times we become interested in nonlinear func-
tions of regression parameters. For example, we may find ourselves interested in functions such as
g1
(
β2
)
= exp

(
β2∕10

)
or g2

(
β1, β2

)
= β1∕β2. The first function g1

(
β2
)

is a function of the single
parameter β2. Intuitively, we would estimate this function of β2 using g1

(
b2
)
. The second func-

tion g2
(
β1, β2

)
is a function of two parameters and similarly g2

(
b1, b2

)
seems like a reasonable

estimator. Working with nonlinear functions of the estimated parameters requires additional tools
because, even if the regression errors are normal, nonlinear functions of them are not normally
distributed in finite samples, and usual variance formulas do not apply.

5B.1 Nonlinear Function of a Single Parameter
The key to working with nonlinear functions of a single parameter is the Taylor series approxi-
mation discussed in Appendix A, Derivative Rule 9. It is stated there as

# (x) ≅ # (a) + d# (x)
dx

||||x=a
(x − a) = # (a) + # ′(a)(x − a)

The value of a function at x is approximately equal to the value of the function at x = a, plus
the derivative of the function evaluated at x = a, times the difference x − a. This approximation
works well when the function is smooth and the difference x − a is not too large. We will apply
this rule to g1

(
b2
)

replacing x with b2 and a with β2

g1
(
b2
)
≅ g1

(
β2
)
+ g′1

(
β2
)(

b2 − β2
)

(5B.1)

This Taylor series expansion of g1
(
b2
)

shows the following:

1. If E
(
b2
)
= β2, then E

[
g1
(
b2
)]
≅ g1

(
β2
)
.

2. If b2 is a biased but consistent estimator, so that b2
p
−−→ β2, then g1

(
b2
) p
−−→ g1

(
β2
)
.

3. The variance of g1
(
b2
)

is given by var
[
g1
(
b2
)]
≅
[
g′1
(
β2
)]2var

(
b2
)
, which is known as the

delta method. The delta method follows from working with the Taylor series approximation
var

[
g1
(
b2
)]

= var
[
g1
(
β2
)
+ g′1

(
β2
)(

b2 − β2
)]

= var
[
g′1
(
β2
)(

b2 − β2
)]

because g1
(
β2
)

is not random
= [

g′1
(
β2
)]2var

(
b2 − β2

)
because g′1

(
β2
)

is not random

= [
g′1
(
β2
)]2var

(
b2
)

because β2 is not random

4. The estimator g1
(
b2
)

has an approximate normal distribution in large samples,

g1
(
b2
) a∼ N

[
g1
(
β2
)
,
[
g′1
(
β2
)]2var

(
b2
)]

(5B.2)

The asymptotic normality of g1
(
b2
)

means that we can test nonlinear hypotheses about β2, such as
H0∶g1

(
β2
)
= c, and we can construct interval estimates of g1

(
β2
)

in the usual way. To implement
the delta method, we replace β2 by its estimate b2 and the true variance var

(
b2
)

by its estimate
var
⋀(

b2
)

which, for the simple regression model, is given in equation (2.21).
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E X A M P L E 5.19 An Interval Estimate for exp
(
β2∕10

)

To illustrate the delta method calculations, we use one sample
from the N = 20 simulation considered in Appendix 5C; it is
stored as mc20. For these data values, the fitted regression is

ŷ = 87.44311 + 10.68456x
(se) (33.8764) (2.1425 )

The nonlinear function we consider is g1
(
β2
)
= exp

(
β2∕10

)
.

In the simulation we know the value β2 = 10 and therefore
the value of the function is g1

(
β2
)
= exp

(
β2∕10

)
= e1 =

2.71828. To apply the delta method, we need the derivative
g′1
(
β2
)
= exp

(
β2∕10

)
× (1∕10) (see Appendix A, Derivative

Rule 7), and the estimated covariance matrix in Table 5B.1.
The estimated value of the nonlinear function is

g1
(
b2
)
= exp

(
b2∕10

)
= exp(10.68456∕10) = 2.91088

The estimated variance is
var
⋀[

g1
(
b2
)]

=
[
g′1
(
b2
)]2var
⋀(

b2
)
=
[
exp

(
b2∕10

)
×(1∕10)

]2var
⋀(

b2
)

=
[
exp(10.68456∕10) ×(1∕10)

]24.59045 = 0.38896

T A B L E 5B.1 Estimated Covariance Matrix

b1 b2

b1 1147.61330 −68.85680
b2 −68.85680 4.59045

and
se
[
g1
(
b2
)]

= 0.62367.

The 95% interval estimate is

g1
(
b2
)
± t(0.975,20−2)se

[
g1
(
b2
)]

= 2.91088 ± 2.10092 × 0.62367
=(1.60061, 4.22116)

5B.2 Nonlinear Function of Two Parameters17

When working with functions of two (or more) parameters the approach is much the same, but the
Taylor series approximation changes to a more general form. For a function of two parameters,
the Taylor series approximation is

g2
(
b1, b2

)
≅ g2

(
β1, β2

)
+
∂g2

(
β1, β2

)

∂β1

(
b1 − β1

)
+
∂g2

(
β1, β2

)

∂β2

(
b2 − β2

)
(5B.3)

1. If E
(
b1
)
= β1 and E

(
b2
)
= β2, then E

[
g2
(
b1, b2

)]
≅ g2

(
β1, β2

)
.

2. If b1 and b2 are consistent estimators, so that b1
p
−−→ β1 and b2

p
−−→ β2, then

g2
(
b1, b2

) p
−−→ g2

(
β1, β2

)
.

3. The variance of g2
(
b1, b2

)
is given by the delta method as

var
[
g2
(
b1, b2

)]
≅
[
∂g2

(
β1, β2

)

∂β1

]2

var
(
b1
)
+
[
∂g2

(
β1, β2

)

∂β2

]2

var
(
b2
)

+ 2
[
∂g2

(
β1, β2

)

∂β1

][
∂g2

(
β1, β2

)

∂β2

]
cov

(
b1, b2

)
(5B.4)

4. The estimator g2
(
b1, b2

)
has an approximate normal distribution in large samples,

g2
(
b1, b2

) a∼ N
(
g2
(
β1, β2

)
, var

[
g2
(
b1, b2

)] )
(5B.5)

The asymptotic normality of g2
(
b1, b2

)
means that we can test nonlinear hypotheses such as

H0∶g2
(
β1, β2

)
= c, and we can construct interval estimates of g2

(
β1, β2

)
in the usual way.

............................................................................................................................................
17This section contains advanced material. The general case involving a function of more than two parameters requires
matrix algebra. See William Greene, Econometric Analysis 8e, Pearson Prentice-Hall, 2018, Theorems D.21A and D.22
in online Appendix available at pages.stern.nyu.edu/~wgreene/text/econometricanalysis.htm.
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In practice we evaluate the derivatives at the estimates b1 and b2, and the variances and
covariances by their usual estimates from equations such as those for the simple regression
model in (2.20)–(2.22).

E X A M P L E 5.20 An Interval Estimate for β1/β2

The nonlinear function of two parameters that we consider is
g2
(
β1, β2

)
= β1∕β2. To employ the delta method, we require

the derivatives (see Appendix A, Derivative Rules 3 and 6)
∂g2

(
β1, β2

)

∂β1
= 1
β2

and
∂g2

(
β1, β2

)

∂β2
= −

β1
β2

2

The estimate g2
(
b1, b2

)
= b1∕b2 = 87.44311∕10.68456 =

8.18406 and its estimated variance is

var
⋀[

g2
(
b1, b2

)]
=
[

1
b2

]2
var
⋀(

b1
)
+
[
−

b1
b2

2

]2

var
⋀(

b2
)

+ 2
[

1
b2

][
−

b1
b2

2

]
cov
⋀(

b1, b2
)

= 22.61857

The delta method standard error is se
(
b1∕b2

)
= 4.75590.

The resulting 95% interval estimate for β1∕β2 is
(–1.807712, 18.17583). While all this seems incredibly
complicated, most software packages will compute at least
the estimates and standard errors automatically. And now
that you understand the calculations, you can be confident
when you use the “canned” routines.

Appendix 5C Monte Carlo Simulation
In Appendices 2H and 3C, we introduced a Monte Carlo simulation to illustrate the repeated
sampling properties of the least squares estimators. In this appendix, we use the same framework
to illustrate the repeated sampling performances of interval estimators and hypothesis tests when
the errors are not normally distributed.

Recall that the data generation process for the simple linear regression model is given by
yi = E

(
yi|xi

)
+ ei = β1 + β2xi + ei, i = 1,… ,N

The Monte Carlo parameter values are β1 = 100 and β2 = 10. The value of xi is 10 for the first
N∕2 observations and 20 for the remaining N∕2 observations, so that the regression functions are

E
(
yi|xi = 10

)
= 100 + 10xi = 100 + 10 × 10 = 200, i = 1,… ,N∕2

E
(
yi|xi = 20

)
= 100 + 10xi = 100 + 10 × 20 = 300, i =(N∕2) + 1,… ,N

5C.1 Least Squares Estimation with Chi-Square Errors
In this appendix, we modify the simulation in an important way. The random errors are indepen-
dently distributed but with normalized chi-square distributions. In Figure B.7, the pdf s of several
chi-square distributions are shown. We will use the χ2

(4) in this simulation, which is skewed with
a long tail to the right. Let vi ∼ χ2

(4). The expected value and variance of this random variable
are E

(
vi
)
= 4 and var

(
vi
)
= 8, respectively, so that zi =

(
vi − 4

)
∕
√

8 has mean zero and variance
one. The random errors we employ are ei = 50zi so that var

(
ei|xi

)
= σ2 = 2500, as in earlier

appendices.
As before, we use M = 10,000 Monte Carlo simulations, using the sample sizes N = 20,

40 (as before), 100, 200, 500, and 1000. Our objectives are to illustrate that the least squares
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estimators of β1, β2, and the estimator σ̂2 are unbiased, and to investigate whether hypothesis tests
and interval estimates perform as they should, even though the errors are not normally distributed.
As in Appendix 3C, we

• Test the null hypothesis H0∶β2 = 10 using the one-tail alternative H0∶β2 > 10. The critical
value for the test is the 95th percentile of the t-distribution with N − 2 degrees of freedom,
t(0.95, N–2). We report the percentage of rejections from this test (REJECT).

• Contruct a 95% interval estimate for β2 and report the percentage of the estimates (COVER)
that contain the true parameter, β2 = 10.

• Compute the percentage of the time (CLOSE) that the estimates b2 are in the interval β2 ± 1,
or between 9 and 11. Based on our theory, this percentage should increase toward 1 as N
increases.

The Monte Carlo simulation results are summarized in Table 5C.1.
The unbiasedness of the least squares estimators is verified by the average values of the

estimates being very close to the true parameter values for all sample sizes. The percentage of esti-
mates that are “close” to the true parameter value rises as the sample size N increases, verifying
the consistency of the estimator. Because the rejection rates from the t-test are close to 0.05 and the
coverage of the interval estimates is close to 95%, the approximate normality of the estimators is
very good. To illustrate, in Figure 5C.1 we present the histogram of the estimates b2 for N = 40.

T A B L E 5C.1 The Least Squares Estimators, Tests, and Interval Estimators

N b1 b2 %̂2 REJECT COVER CLOSE

20 99.4368 10.03317 2496.942 0.0512 0.9538 0.3505
40 100.0529 9.99295 2498.030 0.0524 0.9494 0.4824

100 99.7237 10.01928 2500.563 0.0518 0.9507 0.6890
200 99.8427 10.00905 2497.473 0.0521 0.9496 0.8442
500 100.0445 9.99649 2499.559 0.0464 0.9484 0.9746

1000 100.0237 9.99730 2498.028 0.0517 0.9465 0.9980
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FIGURE 5C.1 Histogram of the estimates b2 for N = 40.
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It is very bell shaped, with the superimposed normal density function fitting it very well.
The nonnormality of the errors does not invalidate inferences in this model, even with only
N = 40 sample observations.

5C.2 Monte Carlo Simulation of the Delta Method
In this Monte Carlo simulation, again using 10,000 samples, we compute the value of the nonlin-
ear function estimator g1

(
b2
)
= exp

(
b2∕10

)
for each sample, and we test the true null hypothesis

H0∶g1
(
β2
)
= exp

(
β2∕10

)
= e1 = 2.71828 using a two-tail test at the 5% level of significance.

We are interested in how well the estimator does in finite samples (recall that the random errors
are not normally distributed and that the function is nonlinear), and how well the test performs.
In Table 5C.2, we report the average of the parameter estimates for each sample size. Note that
the mean estimate converges toward the true value as N becomes larger. The test at the 5% level
of significance rejects the true null hypothesis about 5% of the time. The test statistic is

t =
g1
(
b2
)
− 2.71828

se
[
g1
(
b2
)] ∼ t(N−2)

The fact that the t-test rejects the correct percentage of the time implies not only that the esti-
mates are well behaved but also that the standard error in the denominator is correct, and that the
distribution of the statistic is “close” to its limiting standard normal distribution. In Table 5C.2,
se
[
exp

(
b2∕10

)]
is the average of the nominal standard errors calculated using the delta method,

and std. dev.
[
exp

(
b2∕10

)]
is the standard deviation of the estimates that measures the actual,

true variation in the Monte Carlo estimates. We see that for sample sizes N = 20 and N = 40, the
average of the standard errors calculated using the delta method is smaller than the true standard
deviation, meaning that on average, in this illustration, the delta method overstates the precision of
the estimates exp

(
b2∕10

)
. The average standard error calculated using the delta method is close

to the true standard deviation for larger sample sizes. We are reminded that the delta method
standard errors are valid in large samples, and in this illustration the sample size N = 100 seems
adequate for the asymptotic result to hold. The histogram of the estimates for sample size N = 40
in Figure 5C.2 shows only the very slightest deviation from normality, which is why the t-test
performs so well.

We now examine how well the delta method works at different sample sizes for estimating
the function g2

(
β1∕β2

)
and approximating its variance and asymptotic distribution. The mean

estimates in Table 5C.3 show that there is some bias in the estimates for small samples sizes.
However, the bias diminishes as the sample size increases and is close to the true value, 10, when
N = 100. The average of the delta method standard errors, se

(
b1∕b2

)
, is smaller than the actual,

Monte Carlo, standard deviation of the estimates b1∕b2 for sample sizes N = 20, 40, and 100.
This illustrates the lesson that the more complicated the nonlinear function, or model, the larger
the sample size that is required for asymptotic results to hold.

T A B L E 5C.2 Simulation Results for g1
(
&2
)
= exp(&2∕10)

N exp(b2∕10) se[exp(b2∕10)] Std. dev. [exp(b2∕10)] REJECT

20 2.79647 0.60738 0.63273 0.0556
40 2.75107 0.42828 0.44085 0.0541

100 2.73708 0.27208 0.27318 0.0485
200 2.72753 0.19219 0.19288 0.0503
500 2.72001 0.12148 0.12091 0.0522

1000 2.71894 0.08589 0.08712 0.0555
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FIGURE 5C.2 Histogram of g1
(
b2
)
= exp(b2∕10).

T A B L E 5C.3 Simulation Results for g2
(
b1, b2

)
= b1∕b2

N b1∕b2 se(b1∕b2
) Std. dev. (b1∕b2

)

20 11.50533 7.18223 9.19427
40 10.71856 4.36064 4.71281

100 10.20997 2.60753 2.66815
200 10.10097 1.82085 1.82909
500 10.05755 1.14635 1.14123

1000 10.03070 0.80829 0.81664

The Monte Carlo simulated values of g2
(
b1, b2

)
= b1∕b2 are shown in Figures 5C.3(a) and (b)

from the experiments with N = 40 and N = 200. With sample size N = 40, there is pronounced
skewness. With N = 200, the distribution of the estimates is much more symmetric and
bell shaped.
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FIGURE 5C.3a Histogram of g2
(
b1, b2

)
= b1∕b2, N = 40.
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FIGURE 5C.3b Histogram of g2
(
b1, b2

)
= b1∕b2, N = 200.

Appendix 5D Bootstrapping
In Section 2.7.3, we discuss the interpretation of standard errors of estimators. Least squares
estimates vary from sample to sample simply because the composition of the sample changes. This
is called sampling variability. For the least squares estimators we have derived formulas for the
variance of the least squares estimators. For example, in the simple regression model yi = β1 +
β2xi + ei, the variance of the least squares estimator of the slope is var

(
b2|x

)
= σ2/∑(

xi − x
)2

and the standard error is se
(
b2
)
=
[
σ̂2/∑(

xi − x
)2]1∕2

. We were able to derive this formula using
the model assumptions and linear form of the least squares estimator.

However, there are estimators for whom no easy standard errors can be computed. The esti-
mators may be based on complex multistep procedures, or they may be nonlinear functions.
In many cases, we can show that the estimators are consistent and asymptotically normal.
We discussed these properties in Section 5.7. For an estimator β̂, these properties mean that
β̂ a∼ N

[
β, var

(
β̂
)]

. In this expression, var
(
β̂
)

is an asymptotic variance that is appropriate in
large samples. If the asymptotic variance is known, then the nominal standard error, that is
valid in large samples, is se

(
β̂
)
=
[
var
⋀

(
β̂
)]1∕2

. Asymptotic variance formulas can be difficult
to derive. We illustrated the delta method, in Appendices 5B and 5C.2, for finding asymptotic
variances of nonlinear functions of the least squares estimators. Even in those simple cases, there
are derivatives and tedious algebra.

The bootstrap procedure is an alternative and/or complement to the analytic derivation of
asymptotic variances. Bootstrapping can be used to compute standard errors for complicated and
nonlinear estimators. It uses the speed of modern computing and a technique called resampling.
In this section, we explain the bootstrapping technique and several ways that it can be used. In
particular, we can use bootstrapping to

1. Estimate the bias of the estimator β̂.
2. Obtain a standard error se

(
β̂
)

that is valid in large samples.
3. Construct confidence intervals for β.
4. Find critical values for test statistics.
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5D.1 Resampling
To illustrate resampling suppose we have N independent and identically distributed data pairs(
yi, xi

)
. This is the case if we collect random samples from a specific population.18 To keep mat-

ters simple let N = 5. This is for illustration only. A hypothetical sample is given in Table 5D.1.
Resampling means randomly select N = 5 rows with replacement to form a new sample. The
phrase with replacement means that after randomly selecting one row, and adding it to a new
data set, we return the selected row to the original data where it might be randomly selected again,
or not.

Perhaps seeing an algorithm for doing this will help. It begins with the concept of a uniform
random number on the zero to one interval, u ∼ uniform(0,1). Uniform random numbers are a
core part of numerical methods for simulations. We discuss them in Appendix B.4.1. Roughly
speaking, the uniformly distributed random value u is equally likely to take any value in the inter-
val (0,1). Computer scientists have designed algorithms so that repeated draws using a uniform
random number generator are independent of one another. These are built into every econo-
metric software package, although the algorithms used may vary slightly from one to the next.
To randomly pick a row of data,

1. Let u* = (5 × u) + 1. This value is greater than 1 but less than 6.
2. Drop the decimal portion to obtain a random integer b that is 1, 2, 3, 4, or 5.

Table 5D.2 illustrates the process for N = 5. These steps are automated by many software pack-
ages, so you will not have to do the programming yourself, but it is a good idea to know what is
happening. The values j in Table 5D.2 are the rows from the original data set that will constitute
the first bootstrap sample. The first bootstrap sample will contain observations 5, 1, 2, and the
third observation twice, as shown in Table 5D.3.19 This is perfectly OK. Resampling means that

T A B L E 5D.1 The Sample

Observation y x
1 y1 = 6 x1 = 0
2 y2 = 2 x2 = 1
3 y3 = 3 x3 = 2
4 y4 = 1 x4 = 3
5 y5 = 0 x5 = 4

T A B L E 5D.2 Random Integers

u u* j
0.9120440 5.56022 5
0.0075452 1.037726 1
0.2808588 2.404294 2
0.4602787 3.301394 3
0.5601059 3.800529 3

............................................................................................................................................
18Bootstrap techniques for time-series data are much different, and we will not discuss them here.
19Random number generators use a “starting value,” called a seed. By choosing a seed the same sequence of random
numbers can be obtained in subsequent runs. See Appendix B.4.1 for a discussion of how one class of random number
generators work.
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T A B L E 5D.3 One Bootstrap Sample

Observation y x
5 y5 = 0 x5 = 4
1 y1 = 6 x1 = 0
2 y2 = 2 x2 = 1
3 y3 = 3 x3 = 2
3 y3 = 3 x3 = 2

some observations will be chosen multiple times, and others (such as observation 4 in this case)
will not appear at all.

5D.2 Bootstrap Bias Estimate
The estimator β̂may be a biased estimator. Estimator bias is the difference between the estimator’s
expected value and the true parameter, or

bias
(
β̂
)
= E

(
β̂
)
− β

For a consistent estimator the bias disappears as N →∞, but we can estimate the bias given a
sample of size N. Using the process described in the previous section, obtain bootstrap samples
b = 1, 2,… ,B, each of size N. Using each bootstrap sample obtain an estimate β̂b. If B = 200,
then we have 200 bootstrap sample estimates β̂1, β̂2,… , β̂200. The average, or sample mean, of the
B bootstrap sample estimates is

β̂ = 1
B

B∑
b=1
β̂b

The bootstrap estimate of the bias is

bootstrap bias
⋀(

β̂
)
= β̂ − β̂O

where β̂O is the estimate obtained using the original sample [the subscript is “oh” and not zero].
In this calculation, β̂ plays the role of E

(
β̂
)

and β̂O, the estimate from the original sample, plays
the role of the true parameter β. A descriptive saying about bootstrapping is that that “β̂O is true
in the sample,” emphasizing the role played by the original sample estimate, β̂O.

5D.3 Bootstrap Standard Error
Bootstrap standard error calculation requires B bootstrap samples of size N. For the purpose of
computing standard errors, the number of bootstrap samples should be at least 50, and perhaps 200
or 400, depending on the complexity of your estimation problem.20 The bootstrap standard error
is the sample standard deviation of the B bootstrap estimates. The sample standard deviation is
the square root of the sample variance. The bootstrap estimate of var

(
β̂
)

is the sample variance
of the bootstrap estimates β̂1, β̂2,… , β̂B,

bootstrap var
(
β̂
)
= ∑B

b=1

(
β̂b − β̂

)2/
(B − 1)

............................................................................................................................................
20Try a number of bootstraps B. For standard errors B = 200 is a good starting value. Compute the bootstrap standard
error. Change the random number seed a few times. If the bootstrap standard error changes little, then B is large enough.
If there are substantial changes, increase B.
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The bootstrap standard error is

bootstrap se
(
β̂
)
=
√

bootstrap var
(
β̂
)
=
√

∑B
b=1

(
β̂b − β̂

)2/
(B − 1)

In large samples, the bootstrap standard error is no better, or worse, than the theoretically derived
standard error. The advantage of the bootstrap standard error is that we need not derive the theo-
retical standard error, which can sometimes be very difficult. Even if the theoretical standard error
can be obtained, the bootstrap standard error can be used as a check of the estimate based on a
theoretical formula. If the bootstrap standard error is considerably different from the theory-based
standard error, then either (i) the sample size N is not large enough to justify asymptotic theory,
or (ii) the theoretical formula has an error. The theoretical standard error could be wrong if one of
the model assumptions does not hold, or there is a math error, or there is an error in the software
calculating the estimate based on the theoretical standard error (yes, that sometimes happens).

We can use the bootstrap standard error the same way as the usual standard error. An asymp-
totically justified 100(1 − α)% interval estimator of β is

β̂ ± tc
[
bootstrap se

(
β̂
)]

where tc is the 1 – α∕2 percentile of the t-distribution. In large samples, using tc = 1.96 leads
to a 95% interval estimate. This is sometimes called the normal-based bootstrap confidence
interval.

For testing the null hypothesis H0∶β = c against H1∶β ≠ c, a valid test statistic is

t = β̂ − c

bootstrap se
(
β̂
)

If the null hypothesis is true, the test statistic has a standard normal distribution21 in large samples.
At the 5% level, we reject the null hypothesis if t ≥ 1.96 or t ≤ −1.96.

5D.4 Bootstrap Percentile Interval Estimate
A percentile interval estimate, or percentile confidence interval, does not use the approximate
large sample normality of an estimator. Recall that in the simple regression model a 95% interval
estimator is obtained from equation (3.5), which is

P
[
bk − tcse

(
bk
) ≤ βk ≤ bk + tcse

(
bk
)]

= 1 − α
where tc = t(0.975, N−K). The interval estimator

[
bk − tcse

(
bk
)
, bk + tcse

(
bk
)]

will contain the true
parameter βk in 95% of repeated samples from the same population. Another descriptive phrase
used when discussing bootstrapping is that we “treat the sample as the population.” This makes
the point that by using bootstrapping, we are trying to learn about an estimator’s sampling prop-
erties; or how the estimator performs in repeated samples. Bootstrapping treats each bootstrap
sample as a “repeated sample.” Using this logic, if we obtain many bootstrap samples, and many
estimates (sorting the B bootstrap estimates from smallest to largest) a 95% percentile interval
estimate is

[
β̂∗(0.025), β̂

∗
(0.975)

]
where β̂∗(0.025) is the 2.5%-percentile of the B bootstrap estimates,

and β̂∗(0.975) is the 97.5%-percentile of the B bootstrap estimates. Because of the way software
programmers find percentiles, it is useful to choose B such that α(B + 1) is a convenient integer.
If B = 999, then the 2.5%-percentile is the 25th value and the 97.5%-percentile is the 975th value.
If B = 1999, then the 2.5%-percentile is the 50th value and the 97.5%-percentile is the 1950th
value. Calculating percentile interval estimates requires a larger number of bootstrap samples
than calculating a standard error. Intervals calculated this way are not necessarily symmetrical.

............................................................................................................................................
21Because of its large sample justification, some software packages will call this statistic “z.”



❦

❦ ❦

❦

258 CHAPTER 5 The Multiple Regression Model

5D.5 Asymptotic Refinement
If it is possible to derive a theoretical expression for the variance of an estimator that is valid in
large samples, then we can combine it with bootstrapping to improve upon standard asymptotic
theory. Asymptotic refinement produces a test statistic critical value that leads to more accurate
tests. What do we mean by that? A test of H0∶β = c against H1∶β ≠ c uses an asymptotically
valid nominal standard error and the t-statistic t =

(
β̂ − c

)/
se
(
β̂
)

. If α = 0.05, we reject the null
hypothesis if t ≥ 1.96 or t ≤ −1.96. This test is called a symmetrical two-tail test. In finite (small)
samples, the actual rejection probability is not α = 0.05 but P(reject H0|H0 is true) = α + error.
The error goes to zero as the sample size N approaches infinity. More precisely, N × error ≤ N*

where N* is some upper bound. In order for this to be true, as N →∞ the error must approach zero,
error → 0. Not only must error → 0, but also it must approach zero at the same rate as N →∞,
so that the two effects are offsetting, with product N × error staying a finite number. This is called
convergence to zero at rate “N.” Using a bootstrap critical value, t∗c , instead of 1.96 it can be
shown that N2 × error ≤N*, so that the test size error converges to zero at rate N2. We have a more
accurate test because the error in the test size goes to zero faster using the bootstrap critical value.

The gain in accuracy is “easy” to obtain. Resample the data B times. In each bootstrap sample,
compute

tb =
β̂b − β̂O

se
(
β̂b

)

In this expression, β̂b is the estimate in the bth bootstrap sample, β̂O is the estimate based on the
original sample, and se

(
β̂b

)
is the nominal standard error, the usual theory-based standard error,

calculated using the bth bootstrap sample. This is the bootstrap equivalent of equation (3.3). To
find the bootstrap critical value t∗c (i) compute |tb|, (ii) sort them in ascending magnitude, then
(iii) t∗c is the 100(1 − α)-percentile of |tb|. To test H0∶β = c against H1∶β ≠ c use the t-statistic
t =

(
β̂ − c

)/
se
(
β̂
)

computed with the original sample, and reject the null hypothesis if t ≥ t∗c
or t ≤ −t∗c . The 100(1 − α)% interval estimate β̂ ± t∗c se

(
β̂
)

is sometimes called a percentile-t
interval estimate.

For a right-tail test, H0∶β ≤ c against H1∶β > c, t∗c is the 100(1 − α)-percentile of tb,
dropping the absolute value operation. Reject the null hypothesis if t ≥ t∗c . For a left-tail test,
H0∶β ≥ c against H1∶β < c, t∗c is the 100α-percentile of tb. Reject the null hypothesis if t ≤ t∗c .

E X A M P L E 5.21 Bootstrapping for Nonlinear Functions g1
(
β2
)
= exp

(
β2∕10

)
and g2

(
β1, β2

)
= β1/β2.

Clearly it is time for an example! Using the same Monte Carlo
design as in Appendix 5C, we create one sample for N = 20,
40, 100, 200, 500, and 1000. They are in the data files mc20,
mc40, mc100, mc200, mc500, and mc1000.

First we explore bootstrapping g1
(
β2
)
= exp

(
β2∕10

)
.

Table 5D.4a contains the estimates, delta method standard
error, and an asymptotically justified 95% interval estimate

exp
(
b2∕10

)
±
{

1.96 × se
[
exp

(
b2∕10

)]}

Compare these to Table 5C.2 containing the Monte Carlo
averages of the estimates, the nominal (delta method) stan-
dard errors, and the standard deviation of the estimates.

Because we will calculate percentile interval estimates
and a bootstrap critical value, we use B = 1999 bootstrap
samples as the basis for the estimates in Table 5D.4b. The
bootstrap estimates of the bias diminish as the sample size
increases, reflecting the consistency of the estimator. The
bootstrap standard errors for N = 20, 40, and 100 are quite
similar to the delta method standard errors for these sample
sizes shown in Table 5D.4a. They are not as similar to the
Monte Carlo average nominal standard error and standard
deviation in Table 5C.2. However, once the sample size is
N = 200 or more, the bootstrap standard errors are much
closer to the results in Table 5C.2. In Table 5D.4b, we also
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T A B L E 5D.4a Delta Method g1
(
&2
)
= exp(&2∕10) = 2.71828

N g1
(
b2
)
= exp(b2∕10) se[exp(b2∕10)] 95% Interval

20 2.91088 0.62367 [1.6885, 4.1332]
40 2.34835 0.37781 [1.6079, 3.0888]

100 2.98826 0.30302 [2.3945, 3.5822]
200 2.86925 0.20542 [2.4666, 3.2719]
500 2.63223 0.11241 [2.4119, 2.8526]

1000 2.78455 0.08422 [2.6195, 2.9496]

T A B L E 5D.4b Bootstrapping g1
(
&2
)
= exp(&2∕10)

N Bootstrap Bias Bootstrap se PI t∗c
20 0.0683 0.6516 [2.0098, 4.5042] 3.0063
40 0.0271 0.3796 [1.7346, 3.2173] 2.2236

100 0.0091 0.3050 [2.4092, 3.6212] 2.0522
200 0.0120 0.2039 [2.4972, 3.3073] 1.9316
500 −0.0001 0.1130 [2.4080, 2.8567] 2.0161

1000 0.0025 0.0844 [2.6233, 2.9593] 1.9577

report the 95% percentile interval (PI) estimate for each
sample size. Finally, we report the asymptotically refined crit-
ical value that would be used for a symmetrical two-tail test
at the 5% level of significance, or when constructing a confi-
dence interval. Based on these values, we judge that sample
sizes N = 20 and 40 are not really sufficiently large to support
asymptotic inferences in our specific samples, but if we do
proceed, then the usual critical value 1.96 should not be used
for t-tests or interval estimates. For sample sizes N = 100
or more, it appears that usual asymptotic procedures can be
justified.

T A B L E 5D.5 Bootstrapping g2
(
&1,&2

)
= &1∕&2

N g2
(
b1, b2

)
= b1∕b2 Bootstrap Bias se(b1∕b2

) Bootstrap se
20 8.18406 0.7932 4.75590 4.4423
40 13.15905 1.0588 5.38959 6.0370

100 7.59037 0.2652 2.14324 2.3664
200 8.71779 0.0714 1.64641 1.6624
500 10.74195 0.0825 1.15712 1.2180

1000 9.44545 0.0120 0.73691 0.7412

Table 5D.5 contains similar results for the function
g2
(
β1, β2

)
= β1∕β2. The estimates, bootstrap bias, delta

method standard error, and bootstrap standard error tell a
similar story. For this nonlinear function, a ratio of two
parameters, N = 200 or more would make us feel better about
asymptotic inference. It is reassuring when the bootstrap
and delta method standard errors are similar, although these
are somewhat smaller than the average nominal standard
error and standard deviations in Table 5C.3. Expressions
containing ratios of parameters in one form or another often
require larger samples for asymptotic inference to hold.
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