Classification: Advanced
Methods

In this chapter, you will learn advanced techniques for data classification. We start with
Bayesian belief networks (Section 9.1), which unlike naive Bayesian classifiers, do not
assume class conditional independence. Backpropagation, a neural network algorithm,
is discussed in Section 9.2. In general terms, a neural network is a set of connected
input/output units in which each connection has a weight associated with it. The weights
are adjusted during the learning phase to help the network predict the correct class label
of the input tuples. A more recent approach to classification known as support vector
machines is presented in Section 9.3. A support vector machine transforms training
data into a higher dimension, where it finds a hyperplane that separates the data by
class using essential training tuples called support vectors. Section 9.4 describes classi-
fication using frequent patterns, exploring relationships between attribute—value pairs
that occur frequently in data. This methodology builds on research on frequent pattern
mining (Chapters 6 and 7).

Section 9.5 presents lazy learners or instance-based methods of classification, such
as nearest-neighbor classifiers and case-based reasoning classifiers, which store all of the
training tuples in pattern space and wait until presented with a test tuple before perform-
ing generalization. Other approaches to classification, such as genetic algorithms, rough
sets, and fuzzy logic techniques, are introduced in Section 9.6. Section 9.7 introduces
additional topics in classification, including multiclass classification, semi-supervised
classification, active learning, and transfer learning.

Bayesian Belief Networks

Chapter 8 introduced Bayes’ theorem and naive Bayesian classification. In this chap-
ter, we describe Bayesian belief networks—probabilistic graphical models, which unlike
naive Bayesian classifiers allow the representation of dependencies among subsets of
attributes. Bayesian belief networks can be used for classification. Section 9.1.1 intro-
duces the basic concepts of Bayesian belief networks. In Section 9.1.2, you will learn
how to train such models.

Data Mining: Concepts and Techniques. DOI: 10.1016/B978-0-12-381479-1.00009-5 3 9 3
(© 2012 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/B978-0-12-381479-1.00009-5

394 Chapter 9 Classification: Advanced Methods

9.1.1

Figure 9.1

Concepts and Mechanisms

The naive Bayesian classifier makes the assumption of class conditional independence,
that is, given the class label of a tuple, the values of the attributes are assumed to
be conditionally independent of one another. This simplifies computation. When the
assumption holds true, then the naive Bayesian classifier is the most accurate in com-
parison with all other classifiers. In practice, however, dependencies can exist between
variables. Bayesian belief networks specify joint conditional probability distributions.
They allow class conditional independencies to be defined between subsets of variables.
They provide a graphical model of causal relationships, on which learning can be per-
formed. Trained Bayesian belief networks can be used for classification. Bayesian belief
networks are also known as belief networks, Bayesian networks, and probabilistic
networks. For brevity, we will refer to them as belief networks.

A Dbelief network is defined by two components—a directed acyclic graph and a set of
conditional probability tables (Figure 9.1). Each node in the directed acyclic graph rep-
resents a random variable. The variables may be discrete- or continuous-valued. They
may correspond to actual attributes given in the data or to “hidden variables” believed
to form a relationship (e.g., in the case of medical data, a hidden variable may indicate
a syndrome, representing a number of symptoms that, together, characterize a specific
disease). Each arc represents a probabilistic dependence. If an arc is drawn from a node
Y to anode Z, then Y is a parent or immediate predecessor of Z, and Z is a descendant

(FamilyHistory ’

Smoker

\ Y
@ancer @ysema b
\ 4 FH,S FH,~S ~FH S ~FH, ~S

Lc| 08 0.5 0.7 0.1
~LC| 02 0.5 0.3 0.9
(a) (b)

Dyspnea

(PositiveXRay ’

Simple Bayesian belief network. (a) A proposed causal model, represented by a directed
acyclic graph. (b) The conditional probability table for the values of the variable LungCancer
(LC) showing each possible combination of the values of its parent nodes, FamilyHis-
tory (FH) and Smoker (S). Source: Adapted from Russell, Binder, Koller, and Kanazawa
[RBKK95].

9.1 Bayesian Belief Networks 395

of Y. Each variable is conditionally independent of its nondescendants in the graph, given
its parents.

Figure 9.1 is a simple belief network, adapted from Russell, Binder, Koller, and
Kanazawa [RBKK95] for six Boolean variables. The arcs in Figure 9.1(a) allow a rep-
resentation of causal knowledge. For example, having lung cancer is influenced by a
person’s family history of lung cancer, as well as whether or not the person is a smoker.
Note that the variable PositiveXRay is independent of whether the patient has a family
history of lung cancer or is a smoker, given that we know the patient has lung cancer. In
other words, once we know the outcome of the variable LungCancer, then the variables
FamilyHistory and Smoker do not provide any additional information regarding Posi-
tiveXRay. The arcs also show that the variable LungCancer is conditionally independent
of Emphysema, given its parents, FamilyHistory and Smoker.

A belief network has one conditional probability table (CPT) for each variable.
The CPT for a variable Y specifies the conditional distribution P(Y|Parents(Y)), where
Parents(Y) are the parents of Y. Figure 9.1(b) shows a CPT for the variable LungCancer.
The conditional probability for each known value of LungCancer is given for each pos-
sible combination of the values of its parents. For instance, from the upper leftmost and
bottom rightmost entries, respectively, we see that

P(LungCancer = yes| FamilyHistory = yes, Smoker = yes) = 0.8
P(LungCancer = no| FamilyHistory = no, Smoker = no) = 0.9.

Let X = (x1,..., x,) be a data tuple described by the variables or attributes Yy, ..., Yy,
respectively. Recall that each variable is conditionally independent of its nondescen-
dants in the network graph, given its parents. This allows the network to provide a
complete representation of the existing joint probability distribution with the following
equation:

P(x1y...,xy) = l_[P(x;| Parents(Y;)), (9.1)

i=1

where P(xj,..., x,) is the probability of a particular combination of values of X, and the
values for P(x;|Parents(Y;)) correspond to the entries in the CPT for Y;.

A node within the network can be selected as an “output” node, representing a class
label attribute. There may be more than one output node. Various algorithms for infer-
ence and learning can be applied to the network. Rather than returning a single class
label, the classification process can return a probability distribution that gives the prob-
ability of each class. Belief networks can be used to answer probability of evidence
queries (e.g., what is the probability that an individual will have LungCancer, given that
they have both PositiveXRay and Dyspnea) and most probable explanation queries (e.g.,
which group of the population is most likely to have both PositiveXRay and Dyspnea).

Belief networks have been used to model a number of well-known problems. One
example is genetic linkage analysis (e.g., the mapping of genes onto a chromosome). By
casting the gene linkage problem in terms of inference on Bayesian networks, and using

396

Chapter 9 Classification: Advanced Methods

state-of-the art algorithms, the scalability of such analysis has advanced considerably.
Other applications that have benefited from the use of belief networks include computer
vision (e.g., image restoration and stereo vision), document and text analysis, decision-
support systems, and sensitivity analysis. The ease with which many applications can
be reduced to Bayesian network inference is advantageous in that it curbs the need to
invent specialized algorithms for each such application.

9.1.2 Training Bayesian Belief Networks

“How does a Bayesian belief network learn?” In the learning or training of a belief net-
work, a number of scenarios are possible. The network topology (or “layout” of nodes
and arcs) may be constructed by human experts or inferred from the data. The network
variables may be observable or hidden in all or some of the training tuples. The hidden
data case is also referred to as missing values or incomplete data.

Several algorithms exist for learning the network topology from the training data
given observable variables. The problem is one of discrete optimization. For solutions,
please see the bibliographic notes at the end of this chapter (Section 9.10). Human
experts usually have a good grasp of the direct conditional dependencies that hold in the
domain under analysis, which helps in network design. Experts must specify conditional
probabilities for the nodes that participate in direct dependencies. These probabilities
can then be used to compute the remaining probability values.

If the network topology is known and the variables are observable, then training the
network is straightforward. It consists of computing the CPT entries, as is similarly done
when computing the probabilities involved in naive Bayesian classification.

When the network topology is given and some of the variables are hidden, there
are various methods to choose from for training the belief network. We will describe
a promising method of gradient descent. For those without an advanced math back-
ground, the description may look rather intimidating with its calculus-packed formulae.
However, packaged software exists to solve these equations, and the general idea is easy
to follow.

Let D be a training set of data tuples, X1,X>,..., X|p|. Training the belief network
means that we must learn the values of the CPT entries. Let w;j be a CPT entry for
the variable Y; = yj; having the parents U; = uj, where wjj = P(Y; = y;j| Ui = ujx). For
example, if wyj is the upper leftmost CPT entry of Figure 9.1(b), then Y; is LungCancer;
yij is its value, “yes”; U; lists the parent nodes of Y;, namely, { FamilyHistory, Smoker};
and ujy lists the values of the parent nodes, namely, {yes’, “yes”}. The wjj are viewed
as weights, analogous to the weights in hidden units of neural networks (Section 9.2).
The set of weights is collectively referred to as W. The weights are initialized to ran-
dom probability values. A gradient descent strategy performs greedy hill-climbing. At
each iteration, the weights are updated and will eventually converge to a local optimum
solution.

A gradient descent strategy is used to search for the w;j values that best model the
data, based on the assumption that each possible setting of w;j is equally likely. Such

9.1 Bayesian Belief Networks 397

a strategy is iterative. It searches for a solution along the negative of the gradient (i.e.,
steepest descent) of a criterion function. We want to find the set of weights, W, that
maximize this function. To start with, the weights are initialized to random probabil-
ity values. The gradient descent method performs greedy hill-climbing in that, at each
iteration or step along the way, the algorithm moves toward what appears to be the
best solution at the moment, without backtracking. The weights are updated at each
iteration. Eventually, they converge to a local optimum solution.

For our problem, we maximize P, (D) =]_[ldzl1 P,,(X;). This can be done by fol-
lowing the gradient of In P,,(S), which makes the problem simpler. Given the network
topology and initialized w;j, the algorithm proceeds as follows:

I. Compute the gradients: For each i, j, k, compute

|D|
3ln P,,(D) Z P(Y; = yij, Ui = uig|Xg)
w . (9.2)
d=1

aWijk Wik

The probability on the right side of Eq. (9.2) is to be calculated for each training tuple,
X4, in D. For brevity, let’s refer to this probability simply as p. When the variables
represented by Y; and Uj are hidden for some X, then the corresponding proba-
bility p can be computed from the observed variables of the tuple using standard
algorithms for Bayesian network inference such as those available in the commercial
software package HUGIN (www.hugin.dk).

2. Take a small step in the direction of the gradient: The weights are updated by

dn P, (D)

) (9.3)
Wik

Wik < Wik + ()

where [is the learning rate representing the step size and %’Y?ﬁm is computed from
y

Eq. (9.2). The learning rate is set to a small constant and helps with convergence.

3. Renormalize the weights: Because the weights w;j; are probability values, they must
be between 0.0 and 1.0, and Zj wijx must equal 1 for all 4, k. These criteria are
achieved by renormalizing the weights after they have been updated by Eq. (9.3).

Algorithms that follow this learning form are called adaptive probabilistic networks.
Other methods for training belief networks are referenced in the bibliographic notes
at the end of this chapter (Section 9.10). Belief networks are computationally inten-
sive. Because belief networks provide explicit representations of causal structure, a
human expert can provide prior knowledge to the training process in the form of net-
work topology and/or conditional probability values. This can significantly improve the
learning rate.

http://www.hugin.dk

398

Chapter 9 Classification: Advanced Methods

Classification by Backpropagation

“What is backpropagation?” Backpropagation is a neural network learning algorithm.
The neural networks field was originally kindled by psychologists and neurobiologists
who sought to develop and test computational analogs of neurons. Roughly speaking, a
neural network is a set of connected input/output units in which each connection has
a weight associated with it. During the learning phase, the network learns by adjusting
the weights so as to be able to predict the correct class label of the input tuples. Neural
network learning is also referred to as connectionist learning due to the connections
between units.

Neural networks involve long training times and are therefore more suitable for appli-
cations where this is feasible. They require a number of parameters that are typically
best determined empirically such as the network topology or “structure.” Neural net-
works have been criticized for their poor interpretability. For example, it is difficult for
humans to interpret the symbolic meaning behind the learned weights and of “hidden
units” in the network. These features initially made neural networks less desirable for
data mining.

Advantages of neural networks, however, include their high tolerance of noisy data
as well as their ability to classify patterns on which they have not been trained. They
can be used when you may have little knowledge of the relationships between attributes
and classes. They are well suited for continuous-valued inputs and outputs, unlike most
decision tree algorithms. They have been successful on a wide array of real-world data,
including handwritten character recognition, pathology and laboratory medicine, and
training a computer to pronounce English text. Neural network algorithms are inher-
ently parallel; parallelization techniques can be used to speed up the computation
process. In addition, several techniques have been recently developed for rule extrac-
tion from trained neural networks. These factors contribute to the usefulness of neural
networks for classification and numeric prediction in data mining.

There are many different kinds of neural networks and neural network algorithms.
The most popular neural network algorithm is backpropagation, which gained repute
in the 1980s. In Section 9.2.1 you will learn about multilayer feed-forward net-
works, the type of neural network on which the backpropagation algorithm performs.
Section 9.2.2 discusses defining a network topology. The backpropagation algorithm is
described in Section 9.2.3. Rule extraction from trained neural networks is discussed in
Section 9.2.4.

9.2.1 A Multilayer Feed-Forward Neural Network

The backpropagation algorithm performs learning on a multilayer feed-forward neural
network. It iteratively learns a set of weights for prediction of the class label of tuples.
A multilayer feed-forward neural network consists of an input layer, one or more hidden
layers, and an output layer. An example of a multilayer feed-forward network is shown
in Figure 9.2.

Figure 9.2

9.2 Classification by Backpropagation 399

Input Hidden Output
layer layer layer

Multilayer feed-forward neural network.

Each layer is made up of units. The inputs to the network correspond to the attributes
measured for each training tuple. The inputs are fed simultaneously into the units
making up the input layer. These inputs pass through the input layer and are then
weighted and fed simultaneously to a second layer of “neuronlike” units, known as a
hidden layer. The outputs of the hidden layer units can be input to another hidden
layer, and so on. The number of hidden layers is arbitrary, although in practice, usually
only one is used. The weighted outputs of the last hidden layer are input to units making
up the output layer, which emits the network’s prediction for given tuples.

The units in the input layer are called input units. The units in the hidden layers and
output layer are sometimes referred to as neurodes, due to their symbolic biological
basis, or as output units. The multilayer neural network shown in Figure 9.2 has two
layers of output units. Therefore, we say that it is a two-layer neural network. (The
input layer is not counted because it serves only to pass the input values to the next
layer.) Similarly, a network containing two hidden layers is called a three-layer neural
network, and so on. It is a feed-forward network since none of the weights cycles back
to an input unit or to a previous layer’s output unit. It is fully connected in that each
unit provides input to each unit in the next forward layer.

Each output unit takes, as input, a weighted sum of the outputs from units in the
previous layer (see Figure 9.4 later). It applies a nonlinear (activation) function to the
weighted input. Multilayer feed-forward neural networks are able to model the class pre-
diction as a nonlinear combination of the inputs. From a statistical point of view, they
perform nonlinear regression. Multilayer feed-forward networks, given enough hidden
units and enough training samples, can closely approximate any function.

400 Chapter 9 Classification: Advanced Methods

9.0.2 Defining a Network Topology

923

“How can I design the neural network’s topology?” Before training can begin, the user
must decide on the network topology by specifying the number of units in the input
layer, the number of hidden layers (if more than one), the number of units in each
hidden layer, and the number of units in the output layer.

Normalizing the input values for each attribute measured in the training tuples will
help speed up the learning phase. Typically, input values are normalized so as to fall
between 0.0 and 1.0. Discrete-valued attributes may be encoded such that there is one
input unit per domain value. For example, if an attribute A has three possible or known
values, namely {ag, a1, a»}, then we may assign three input units to represent A. That
is, we may have, say, Iy, I, I, as input units. Each unit is initialized to 0. If A = gy, then
Iy is set to 1 and the rest are 0. If A= a;, then I; is set to 1 and the rest are 0, and
$O On.

Neural networks can be used for both classification (to predict the class label of a
given tuple) and numeric prediction (to predict a continuous-valued output). For clas-
sification, one output unit may be used to represent two classes (where the value 1
represents one class, and the value 0 represents the other). If there are more than two
classes, then one output unit per class is used. (See Section 9.7.1 for more strategies on
multiclass classification.)

There are no clear rules as to the “best” number of hidden layer units. Network design
is a trial-and-error process and may affect the accuracy of the resulting trained net-
work. The initial values of the weights may also affect the resulting accuracy. Once a
network has been trained and its accuracy is not considered acceptable, it is common to
repeat the training process with a different network topology or a different set of initial
weights. Cross-validation techniques for accuracy estimation (described in Chapter 8)
can be used to help decide when an acceptable network has been found. A number of
automated techniques have been proposed that search for a “good” network structure.
These typically use a hill-climbing approach that starts with an initial structure that is
selectively modified.

Backpropagation

“How does backpropagation work?” Backpropagation learns by iteratively processing a
data set of training tuples, comparing the network’s prediction for each tuple with the
actual known target value. The target value may be the known class label of the training
tuple (for classification problems) or a continuous value (for numeric prediction). For
each training tuple, the weights are modified so as to minimize the mean-squared error
between the network’s prediction and the actual target value. These modifications are
made in the “backwards” direction (i.e., from the output layer) through each hidden
layer down to the first hidden layer (hence the name backpropagation). Although it is
not guaranteed, in general the weights will eventually converge, and the learning process
stops. The algorithm is summarized in Figure 9.3. The steps involved are expressed in
terms of inputs, outputs, and errors, and may seem awkward if this is your first look at

9.2 Classification by Backpropagation 401

Algorithm: Backpropagation. Neural network learning for classification or numeric
prediction, using the backpropagation algorithm.
Input:

D, a data set consisting of the training tuples and their associated target values;
I, the learning rate;
network, a multilayer feed-forward network.

Output: A trained neural network.
Method:

(1) Initialize all weights and biases in network;
(2) while terminating condition is not satisfied {

(3) for each training tuple X in D {

(4) /I Propagate the inputs forward:

(5) for each input layer unit j {

(6) Oj = I;; // output of an input unit is its actual input value

(7) for each hidden or output layer unit j {

(8) I; =3 ";w;;O; 4 6;; //compute the net input of unit j with respect to
the previous layer, i

9) O;= 1+iflf ; } /] compute the output of each unit §

(10) /] Backpropagate the errors:

(11) for each unit j in the output layer

(12) Err; = Oj(1 — Oj)(Tj — Oj); // compute the error

(13) for each unit j in the hidden layers, from the last to the first hidden layer

(14) Errj=0;(1-0) Y ; Errywi; // compute the error with respect to

the next higher layer, k

(15) for each weight wj; in network {

(16) Awj; = () ErrjO;; /] weight increment

17) wij = wjj + Awjj; } // weight update

(18) for each bias 6; in network {

(19) AB; = (I)Errj; [/ bias increment

(20) 0; = 0; + AYj; } // bias update

(21) 1}

Figure 9.3 Backpropagation algorithm.

neural network learning. However, once you become familiar with the process, you will
see that each step is inherently simple. The steps are described next.

Initialize the weights: The weights in the network are initialized to small random num-
bers (e.g., ranging from —1.0 to 1.0, or —0.5 to 0.5). Each unit has a bias associated with
it, as explained later. The biases are similarly initialized to small random numbers.

Each training tuple, X, is processed by the following steps.

Propagate the inputs forward: First, the training tuple is fed to the network’s input
layer. The inputs pass through the input units, unchanged. That is, for an input unit, j,

402

Chapter 9

Figure 9.4

Classification: Advanced Methods

Weights

wy;
1

sz
Y2

I—> Output

Wy
‘)y/‘l
Inputs Weighted sum Activation
(outputs from function

previous layer)

Hidden or output layer unit j: The inputs to unit j are outputs from the previous layer. These
are multiplied by their corresponding weights to form a weighted sum, which is added to the
bias associated with unit j. A nonlinear activation function is applied to the net input. (For
ease of explanation, the inputs to unit j are labeled y1, y3,..., ¥, If unit j were in the first
hidden layer, then these inputs would correspond to the input tuple (x1, x2,.. ., x,).)

its output, O, is equal to its input value, I;. Next, the net input and output of each unit
in the hidden and output layers are computed. The net input to a unit in the hidden or
output layers is computed as a linear combination of its inputs. To help illustrate this
point, a hidden layer or output layer unit is shown in Figure 9.4. Each such unit has
a number of inputs to it that are, in fact, the outputs of the units connected to it in
the previous layer. Each connection has a weight. To compute the net input to the unit,
each input connected to the unit is multiplied by its corresponding weight, and this is
summed. Given a unit, j in a hidden or output layer, the net input, Ij, to unit j is

= Z w;iO; + 0}, (9.4)
i

where wj; is the weight of the connection from unit 7 in the previous layer to unit j; O; is
the output of unit 7 from the previous layer; and 6; is the bias of the unit. The bias acts
as a threshold in that it serves to vary the activity of the unit.

Each unit in the hidden and output layers takes its net input and then applies an acti-
vation function to it, as illustrated in Figure 9.4. The function symbolizes the activation
of the neuron represented by the unit. The logistic, or sigmoid, function is used. Given
the net input J; to unit j, then O}, the output of unit j, is computed as

1

0= ——.
! 14 ¢l

(9.5)

9.2 Classification by Backpropagation 403

This function is also referred to as a squashing function, because it maps a large input
domain onto the smaller range of 0 to 1. The logistic function is nonlinear and
differentiable, allowing the backpropagation algorithm to model classification problems
that are linearly inseparable.

We compute the output values, Oj, for each hidden layer, up to and including the
output layer, which gives the network’s prediction. In practice, it is a good idea to
cache (i.e., save) the intermediate output values at each unit as they are required again
later when backpropagating the error. This trick can substantially reduce the amount of
computation required.

Backpropagate the error: The error is propagated backward by updating the weights
and biases to reflect the error of the network’s prediction. For a unit j in the output
layer, the error Err; is computed by

Errj = Oj(1 — O)(T; — O)), (9.6)

where O; is the actual output of unit j, and Tj is the known target value of the given
training tuple. Note that Oj(1 — O)) is the derivative of the logistic function.

To compute the error of a hidden layer unit j, the weighted sum of the errors of the
units connected to unit j in the next layer are considered. The error of a hidden layer
unit j 1s

Errj= 0j(1— 0)) Y _ Errgwj, 9.7)
k

where wj is the weight of the connection from unit j to a unit k in the next higher layer,
and Erry is the error of unit k.

The weights and biases are updated to reflect the propagated errors. Weights are
updated by the following equations, where Aw;; is the change in weight wj;:

Awjj = (l)ErrjOi. (9.8)
Wij = wij + Awj;. (9.9)

“Whatislin Eq. (9.8)?” The variable [is the learning rate, a constant typically having
a value between 0.0 and 1.0. Backpropagation learns using a gradient descent method
to search for a set of weights that fits the training data so as to minimize the mean-
squared distance between the network’s class prediction and the known target value of
the tuples.' The learning rate helps avoid getting stuck at a local minimum in decision
space (i.e., where the weights appear to converge, but are not the optimum solution) and
encourages finding the global minimum. If the learning rate is too small, then learning
will occur at a very slow pace. If the learning rate is too large, then oscillation between

'A method of gradient descent was also used for training Bayesian belief networks, as described in
Section 9.1.2.

404 Chapter 9 Classification: Advanced Methods

Example 9.1

inadequate solutions may occur. A rule of thumb is to set the learning rate to 1/¢, where
t is the number of iterations through the training set so far.
Biases are updated by the following equations, where A is the change in bias 6;:

AO; = (D Err;. (9.10)
0; = 0; + Ab;. (9.11)

Note that here we are updating the weights and biases after the presentation of each
tuple. This is referred to as case updating. Alternatively, the weight and bias incre-
ments could be accumulated in variables, so that the weights and biases are updated
after all the tuples in the training set have been presented. This latter strategy is called
epoch updating, where one iteration through the training set is an epoch. In the-
ory, the mathematical derivation of backpropagation employs epoch updating, yet
in practice, case updating is more common because it tends to yield more accurate
results.

Terminating condition: Training stops when

All Awj; in the previous epoch are so small as to be below some specified
threshold, or

The percentage of tuples misclassified in the previous epoch is below some thresh-
old, or

A prespecified number of epochs has expired.

In practice, several hundreds of thousands of epochs may be required before the weights
will converge.

“How efficient is backpropagation?” The computational efficiency depends on the
time spent training the network. Given |D| tuples and w weights, each epoch requires
O(|D| x w) time. However, in the worst-case scenario, the number of epochs can be
exponential in 1, the number of inputs. In practice, the time required for the networks
to converge is highly variable. A number of techniques exist that help speed up the train-
ing time. For example, a technique known as simulated annealing can be used, which
also ensures convergence to a global optimum.

Sample calculations for learning by the backpropagation algorithm. Figure 9.5 shows
a multilayer feed-forward neural network. Let the learning rate be 0.9. The initial weight
and bias values of the network are given in Table 9.1, along with the first training tuple,
X = (1,0, 1), with a class label of 1.

This example shows the calculations for backpropagation, given the first training
tuple, X. The tuple is fed into the network, and the net input and output of each unit

9.2 Classification by Backpropagation 405

are computed. These values are shown in Table 9.2. The error of each unit is computed
and propagated backward. The error values are shown in Table 9.3. The weight and bias
updates are shown in Table 9.4. [

Figure 9.5 Example of a multilayer feed-forward neural network.

Table 9.1 Initial Input, Weight, and Bias Values

X1 X2 X3 Wia Wi Waq W25 Wiy w35 Wi W56 04 05 O

1 0 1 02 -03 04 0.1 -05 02 -03 -02 -04 02 0.1

Table 9.2 Net Input and Output Calculations

Unit, j Net Input, I; Output, O;
4 024+0—0.5—0.4=—07 1/(1+€%7) =0.332
—0.3404+0.2402=0.1 1/(14 ¢ %) =0.525

(—0.3)(0.332) — (0.2)(0.525) + 0.1 = —0.105 1/(1 + €*195) = 0.474

Table 9.3 Calculation of the Error at Each Node

Unit, j Err;
6 (0.474)(1 — 0.474)(1 — 0.474) = 0.1311
5 (0.525)(1 — 0.525)(0.1311)(—0.2) = —0.0065

4 (0.332)(1 — 0.332)(0.1311)(—0.3) = —0.0087

406

Chapter 9 Classification: Advanced Methods

Table 9.4 Calculations for Weight and Bias Updating

9.24

Weight

or Bias New Value

Wig —0.3 4 (0.9)(0.1311)(0.332) = —0.261
W6 —0.2+ (0.9)(0.1311)(0.525) = —0.138
Wia 0.2 + (0.9)(—0.0087)(1) = 0.192

Wis —0.3 + (0.9)(—0.0065)(1) = —0.306
Woa 0.4 + (0.9)(—0.0087)(0) = 0.4

W5 0.1+ (0.9)(—0.0065)(0) = 0.1

Wia —0.5+ (0.9)(—0.0087)(1) = —0.508
wss 0.2 + (0.9)(—0.0065)(1) = 0.194

06 0.1+ (0.9)(0.1311) = 0.218

05 0.2 + (0.9)(—0.0065) = 0.194

04 —0.4+ (0.9)(—0.0087) = —0.408

“How can we classify an unknown tuple using a trained network?” To classify an
unknown tuple, X, the tuple is input to the trained network, and the net input and
output of each unit are computed. (There is no need for computation and/or backpro-
pagation of the error.) If there is one output node per class, then the output node with
the highest value determines the predicted class label for X. If there is only one output
node, then output values greater than or equal to 0.5 may be considered as belonging to
the positive class, while values less than 0.5 may be considered negative.

Several variations and alternatives to the backpropagation algorithm have been pro-
posed for classification in neural networks. These may involve the dynamic adjustment
of the network topology and of the learning rate or other parameters, or the use of
different error functions.

Inside the Black Box: Backpropagation and Interpretability

“Neural networks are like a black box. How can I ‘understand’ what the backpropagation
network has learned?” A major disadvantage of neural networks lies in their knowledge
representation. Acquired knowledge in the form of a network of units connected by
weighted links is difficult for humans to interpret. This factor has motivated research in
extracting the knowledge embedded in trained neural networks and in representing that
knowledge symbolically. Methods include extracting rules from networks and sensitivity
analysis.

Various algorithms for rule extraction have been proposed. The methods typically
impose restrictions regarding procedures used in training the given neural network, the
network topology, and the discretization of input values.

Fully connected networks are difficult to articulate. Hence, often the first step in
extracting rules from neural networks is network pruning. This consists of simplifying

9.2 Classification by Backpropagation 407

the network structure by removing weighted links that have the least effect on the trained
network. For example, a weighted link may be deleted if such removal does not result in
a decrease in the classification accuracy of the network.

Once the trained network has been pruned, some approaches will then perform link,
unit, or activation value clustering. In one method, for example, clustering is used to
find the set of common activation values for each hidden unit in a given trained two-
layer neural network (Figure 9.6). The combinations of these activation values for each
hidden unit are analyzed. Rules are derived relating combinations of activation values

Identify sets of common activation values for
each hidden node, H;:

for H: (-1,0,1)

for H,: (0,1)

for Hy: (-1,0.24,1)

Derive rules relating common activation values
with output nodes, Oj:
IF (H,=0 AND H;=-1) OR
(H,=-1 AND H,=1 AND H;=-1) OR
(H;=-1 AND H,=0 AND H;=0.24)
THEN O0,=1, 0,=0
ELSE 0,=0, 0,=1

Derive rules relating input nodes, lj, to
output nodes, O_,-:
IF (1,=0 AND /,=0) THEN H,=0
IF (I4=1 AND I¢=1) THEN H;=-1
IF (I5=0) THEN H;=—

Obtain rules relating inputs and output classes:
IF (I,=0 AND I,=0 AND I,=1 AND
I¢=1) THEN class=1
IF (I,=0 AND I,=0 AND I/5=0) THEN
class=1

Figure 9.6 Rules can be extracted from training neural networks. Source: Adapted from Lu, Setiono, and
Liu [LSL95].

408

Chapter 9 Classification: Advanced Methods

9.3.1

with corresponding output unit values. Similarly, the sets of input values and activation
values are studied to derive rules describing the relationship between the input layer
and the hidden “layer units”? Finally, the two sets of rules may be combined to form
IF-THEN rules. Other algorithms may derive rules of other forms, including M-of-N
rules (where M out of a given N conditions in the rule antecedent must be true for the
rule consequent to be applied), decision trees with M-of-N tests, fuzzy rules, and finite
automata.

Sensitivity analysis is used to assess the impact that a given input variable has on a
network output. The input to the variable is varied while the remaining input variables
are fixed at some value. Meanwhile, changes in the network output are monitored. The
knowledge gained from this analysis form can be represented in rules such as “IF X
decreases 5% THEN'Y increases 8%.

Support Vector Machines

In this section, we study support vector machines (SVMs), a method for the classifi-
cation of both linear and nonlinear data. In a nutshell, an SVM is an algorithm that
works as follows. It uses a nonlinear mapping to transform the original training data
into a higher dimension. Within this new dimension, it searches for the linear opti-
mal separating hyperplane (i.e., a “decision boundary” separating the tuples of one class
from another). With an appropriate nonlinear mapping to a sufficiently high dimen-
sion, data from two classes can always be separated by a hyperplane. The SVM finds this
hyperplane using support vectors (“essential” training tuples) and margins (defined by
the support vectors). We will delve more into these new concepts later.

“I've heard that SVMs have attracted a great deal of attention lately. Why?” The first
paper on support vector machines was presented in 1992 by Vladimir Vapnik and col-
leagues Bernhard Boser and Isabelle Guyon, although the groundwork for SVMs has
been around since the 1960s (including early work by Vapnik and Alexei Chervonenkis
on statistical learning theory). Although the training time of even the fastest SVMs
can be extremely slow, they are highly accurate, owing to their ability to model com-
plex nonlinear decision boundaries. They are much less prone to overfitting than other
methods. The support vectors found also provide a compact description of the learned
model. SVMs can be used for numeric prediction as well as classification. They have
been applied to a number of areas, including handwritten digit recognition, object
recognition, and speaker identification, as well as benchmark time-series prediction
tests.

The Case When the Data Are Linearly Separable

To explain the mystery of SVMs, let’s first look at the simplest case—a two-class prob-
lem where the classes are linearly separable. Let the data set D be given as (X1, y1),
(X2, »2)>...> (X\p|> ¥p|)> where X; is the set of training tuples with associated class
labels, y;. Each y; can take one of two values, either +1 or —1 (i.e., y; € {+1, —1}),

9.3 Support Vector Machines 409

AZ
: | : O Class 1, y=+1 (buys_computer=yes)
: : : O Class 2, y=—1 (buys_computer=no)
N Loy
N | |
> [
N
N Loy
AN : | : O
N |
AN | : O
POk 1 O O
~ [N
AN | : (DN O
N | | N
\\ | ! | \\ O
AN [~
N | ! | AN
N |
~ | ! N
2 Nl AN
NI N
O N
o It
O | ! '~
@) N
@) [~
O [AN
| AN
4

Figure 9.7 The 2-D training data are linearly separable. There are an infinite number of possible
separating hyperplanes or “decision boundaries,” some of which are shown here as dashed
lines. Which one is best?

corresponding to the classes buys_computer = yes and buys_computer = no, respectively.
To aid in visualization, let’s consider an example based on two input attributes, A; and
Ay, as shown in Figure 9.7. From the graph, we see that the 2-D data are linearly separa-
ble (or “linear,” for short), because a straight line can be drawn to separate all the tuples
of class +1 from all the tuples of class —1.

There are an infinite number of separating lines that could be drawn. We want to find
the “best” one, that is, one that (we hope) will have the minimum classification error on
previously unseen tuples. How can we find this best line? Note that if our data were 3-D
(i.e., with three attributes), we would want to find the best separating plane. Generalizing
to n dimensions, we want to find the best hyperplane. We will use “hyperplane” to refer to
the decision boundary that we are seeking, regardless of the number of input attributes.
So, in other words, how can we find the best hyperplane?

An SVM approaches this problem by searching for the maximum marginal hyper-
plane. Consider Figure 9.8, which shows two possible separating hyperplanes and their
associated margins. Before we get into the definition of margins, let’s take an intuitive
look at this figure. Both hyperplanes can correctly classify all the given data tuples. Intu-
itively, however, we expect the hyperplane with the larger margin to be more accurate
at classifying future data tuples than the hyperplane with the smaller margin. This is
why (during the learning or training phase) the SVM searches for the hyperplane with
the largest margin, that is, the maximum marginal hyperplane (MMH). The associated
margin gives the largest separation between classes.

410 Chapter 9 Classification: Advanced Methods

A2 A2

.
o . ©
| | AN
l © o0 ~O o
| | N
I I D
Small margin O \ ‘véf//\\g
:‘ _H \\\ 51 ’ h
| | AN 97

O : : O \\\ \://\

o0 | | 0 0
o ®d | | o © o™

O Class 1, y=+1 (buys_computer=yes)
O Class 2, y=—1 (buys_computer=no)

(a)

QO Class 1, y=+1 (buys_computer=yes)

O Class 2, y=—1 (buys_computer=no)

(b)

Figure 9.8 Here we see just two possible separating hyperplanes and their associated margins. Which
one is better? The one with the larger margin (b) should have greater generalization accuracy.

Getting to an informal definition of margin, we can say that the shortest distance
from a hyperplane to one side of its margin is equal to the shortest distance from the
hyperplane to the other side of its margin, where the “sides” of the margin are parallel
to the hyperplane. When dealing with the MMH, this distance is, in fact, the shortest
distance from the MMH to the closest training tuple of either class.

A separating hyperplane can be written as

W-X+b=0, (9.12)

where W is a weight vector, namely, W = {wy, ws, ..., wy,}; nis the number of attributes;
and b is a scalar, often referred to as a bias. To aid in visualization, let’s consider two input
attributes, A; and A, as in Figure 9.8(b). Training tuples are 2-D (e.g., X = (x1, x2)),
where x; and x;, are the values of attributes A} and A, respectively, for X. If we think of
b as an additional weight, wy, we can rewrite Eq. (9.12) as

wo + wixy + waxy = 0. (9.13)
Thus, any point that lies above the separating hyperplane satisfies

wo + wix1 + waxpy > 0. (9.14)
Similarly, any point that lies below the separating hyperplane satisfies

wo + wix) +waxp < 0. (9.15)

9.3 Support Vector Machines 411

The weights can be adjusted so that the hyperplanes defining the “sides” of the margin
can be written as

Hy:wo+wixi +waxy; > 1 for y; = +1, (9.16)
Hy:wy+wix +wxy <—1 fory,=—1. (9.17)

That is, any tuple that falls on or above H; belongs to class +1, and any tuple that falls
on or below H; belongs to class —1. Combining the two inequalities of Egs. (9.16) and
(9.17), we get

yilwo + wix) + woxp) > 1, Vi. (9.18)

Any training tuples that fall on hyperplanes H; or H, (i.e., the “sides” defining the
margin) satisfy Eq. (9.18) and are called support vectors. That is, they are equally close
to the (separating) MMH. In Figure 9.9, the support vectors are shown encircled with
a thicker border. Essentially, the support vectors are the most difficult tuples to classify
and give the most information regarding classification.

From this, we can obtain a formula for the size of the maximal margin. The distance
from the separating hyperplane to any point on H is m, where ||W|| is the Euclidean

norm of W, that is, /W - W.2 By definition, this is equal to the distance from any point
on H, to the separating hyperplane. Therefore, the maximal margin is ﬁ

A
QO Class 1, y=+1 (buys_computer=yes)
O QO Class 2, y=—1 (buys_computer=no)
N
\\\ O
N
O 0
N
\\ O
Q> N
\ g@ /{ \\Q
N &q’ 4 N
AN < 7 AN
N g N
AN N s
O AN //
o &4
@) AN
o O~
N
N
Ay

Figure 9.9 Support vectors. The SVM finds the maximum separating hyperplane, that is, the one with
maximum distance between the nearest training tuples. The support vectors are shown with
a thicker border.

2IfEW = {wi, Way..., Wy}, then VW - W = wf—i—w%—i—m—l—wﬁ.

412

Chapter 9 Classification: Advanced Methods

“So, how does an SVM find the MMH and the support vectors?” Using some “fancy
math tricks,” we can rewrite Eq. (9.18) so that it becomes what is known as a constrained
(convex) quadratic optimization problem. Such fancy math tricks are beyond the scope
of this book. Advanced readers may be interested to note that the tricks involve rewrit-
ing Eq. (9.18) using a Lagrangian formulation and then solving for the solution using
Karush-Kuhn-Tucker (KKT) conditions. Details can be found in the bibliographic notes
at the end of this chapter (Section 9.10).

If the data are small (say, less than 2000 training tuples), any optimization software
package for solving constrained convex quadratic problems can then be used to find
the support vectors and MMH. For larger data, special and more efficient algorithms
for training SVMs can be used instead, the details of which exceed the scope of this
book. Once we’ve found the support vectors and MMH (note that the support vectors
define the MMH!), we have a trained support vector machine. The MMH is a linear class
boundary, and so the corresponding SVM can be used to classify linearly separable data.
We refer to such a trained SVM as a linear SVM.

“Once I've got a trained support vector machine, how do I use it to classify test (i.e.,
new) tuples?” Based on the Lagrangian formulation mentioned before, the MMH can be
rewritten as the decision boundary

1
dX")=>"yeiXiX" + b, (9.19)
i=1

where y; is the class label of support vector X;; X is a test tuple; o;; and by are numeric
parameters that were determined automatically by the optimization or SVM algorithm
noted before; and [is the number of support vectors.

Interested readers may note that the o; are Lagrangian multipliers. For linearly sepa-
rable data, the support vectors are a subset of the actual training tuples (although there
will be a slight twist regarding this when dealing with nonlinearly separable data, as we
shall see in the following).

Given a test tuple, X T we plug it into Eq. (9.19), and then check to see the sign of the
result. This tells us on which side of the hyperplane the test tuple falls. If the sign is posi-
tive, then X falls on or above the MMH, and so the SVM predicts that XT belongs
to class +1 (representing buys_computer = yes, in our case). If the sign is negative,
then XT falls on or below the MMH and the class prediction is —1 (representing
buys_computer = no).

Notice that the Lagrangian formulation of our problem (Eq. 9.19) contains a dot
product between support vector X; and test tuple X”. This will prove very useful for
finding the MMH and support vectors for the case when the given data are nonlinearly
separable, as described further in the next section.

Before we move on to the nonlinear case, there are two more important things to
note. The complexity of the learned classifier is characterized by the number of support
vectors rather than the dimensionality of the data. Hence, SVMs tend to be less prone
to overfitting than some other methods. The support vectors are the essential or critical
training tuples—they lie closest to the decision boundary (MMH). If all other training

9.3 Support Vector Machines 413

tuples were removed and training were repeated, the same separating hyperplane would
be found. Furthermore, the number of support vectors found can be used to compute
an (upper) bound on the expected error rate of the SVM classifier, which is independent
of the data dimensionality. An SVM with a small number of support vectors can have
good generalization, even when the dimensionality of the data is high.

9.3.1 The Case When the Data Are Linearly Inseparable

In Section 9.3.1 we learned about linear SVMs for classifying linearly separable data, but
what if the data are not linearly separable, as in Figure 9.10? In such cases, no straight
line can be found that would separate the classes. The linear SVMs we studied would
not be able to find a feasible solution here. Now what?

The good news is that the approach described for linear SVMs can be extended to
create nonlinear SVMs for the classification of linearly inseparable data (also called non-
linearly separable data, or nonlinear data for short). Such SVMs are capable of finding
nonlinear decision boundaries (i.e., nonlinear hypersurfaces) in input space.

“So,” you may ask, “how can we extend the linear approach?” We obtain a nonlinear
SVM by extending the approach for linear SVMs as follows. There are two main steps.
In the first step, we transform the original input data into a higher dimensional space
using a nonlinear mapping. Several common nonlinear mappings can be used in this
step, as we will further describe next. Once the data have been transformed into the
new higher space, the second step searches for a linear separating hyperplane in the new
space. We again end up with a quadratic optimization problem that can be solved using
the linear SVM formulation. The maximal marginal hyperplane found in the new space
corresponds to a nonlinear separating hypersurface in the original space.

QO Class 1, y=+1 (buys_computer=yes)
QO Class 2, y=—1 (buys_computer=no)

A

Figure 9.10 A simple 2-D case showing linearly inseparable data. Unlike the linear separable data of
Figure 9.7, here it is not possible to draw a straight line to separate the classes. Instead, the
decision boundary is nonlinear.

414 Chapter 9 Classification: Advanced Methods

Example 9.2 Nonlinear transformation of original input data into a higher dimensional space.
Consider the following example. A 3-D input vector X = (x1, x2, x3) is mapped into
a 6-D space, Z, using the mappings ¢1(X) = x1, ¢2(X) =x2, $3(X) = x3, pa(X) =
(x1)%, ¢5(X) = x1%2, and ¢6(X) = x1x3. A decision hyperplane in the new space is
d(Z) = WZ + b, where W and Z are vectors. This is linear. We solve for W and
b and then substitute back so that the linear decision hyperplane in the new (Z)
space corresponds to a nonlinear second-order polynomial in the original 3-D input
space:

d(Z) = wix1 + waxa + wsxs + wa(x1)* + wsx1 0 + Wexi X3 + b

= w121 + Wrzp + W32z + Wazg + W525 + Wezg + b. |

But there are some problems. First, how do we choose the nonlinear mapping to
a higher dimensional space? Second, the computation involved will be costly. Refer to
Eq. (9.19) for the classification of a test tuple, XT. Given the test tuple, we have to com-
pute its dot product with every one of the support vectors.” In training, we have to
compute a similar dot product several times in order to find the MMH. This is espe-
cially expensive. Hence, the dot product computation required is very heavy and costly.
We need another trick!

Luckily, we can use another math trick. It so happens that in solving the quadratic
optimization problem of the linear SVM (i.e., when searching for a linear SVM in the
new higher dimensional space), the training tuples appear only in the form of dot prod-
ucts, ¢(X;) - #(X;), where ¢ (X) is simply the nonlinear mapping function applied to
transform the training tuples. Instead of computing the dot product on the transformed
data tuples, it turns out that it is mathematically equivalent to instead apply a kernel
function, K(X;, X;), to the original input data. That is,

K(X;, X)) = ¢(Xi) - 9 (X)). (9.20)

In other words, everywhere that ¢ (X;) - ¢ (X;) appears in the training algorithm, we can
replace it with K(X;, X 7). In this way, all calculations are made in the original input space,
which is of potentially much lower dimensionality! We can safely avoid the mapping—it
turns out that we don’t even have to know what the mapping is! We will talk more later
about what kinds of functions can be used as kernel functions for this problem.

After applying this trick, we can then proceed to find a maximal separating hyper-
plane. The procedure is similar to that described in Section 9.3.1, although it involves
placing a user-specified upper bound, C, on the Lagrange multipliers, «;. This upper
bound is best determined experimentally.

“What are some of the kernel functions that could be used?” Properties of the kinds of
kernel functions that could be used to replace the dot product scenario just described

3The dot product of two vectors, xT = (xlT, XQT,. . an) and X; = (xi1, Xi2,. . ., Xin) 18 xlTx,-l + xQTx,-z
+ -+ an Xin. Note that this involves one multiplication and one addition for each of the n dimensions.

9.4 Classification Using Frequent Patterns 415

have been studied. Three admissible kernel functions are
Polynomial kernel of degree h: K(X;, X;) = (X;- X+ "

Gaussian radial basis function kernel: K(X;, Xj) = ¢~ 1Xi—Xjl*/20

Sigmoid kernel: K (X, X;) = tanh(x X; - X; — §)

Each of these results in a different nonlinear classifier in (the original) input space.
Neural network aficionados will be interested to note that the resulting decision hyper-
planes found for nonlinear SVMs are the same type as those found by other well-known
neural network classifiers. For instance, an SVM with a Gaussian radial basis func-
tion (RBF) gives the same decision hyperplane as a type of neural network known as
a radial basis function network. An SVM with a sigmoid kernel is equivalent to a simple
two-layer neural network known as a multilayer perceptron (with no hidden layers).

There are no golden rules for determining which admissible kernel will result in the
most accurate SVM. In practice, the kernel chosen does not generally make a large
difference in resulting accuracy. SVM training always finds a global solution, unlike
neural networks, such as backpropagation, where many local minima usually exist
(Section 9.2.3).

So far, we have described linear and nonlinear SVMs for binary (i.e., two-class) clas-
sification. SVM classifiers can be combined for the multiclass case. See Section 9.7.1 for
some strategies, such as training one classifier per class and the use of error-correcting
codes.

A major research goal regarding SVMs is to improve the speed in training and testing
so that SVMs may become a more feasible option for very large data sets (e.g., millions
of support vectors). Other issues include determining the best kernel for a given data set
and finding more efficient methods for the multiclass case.

Classification Using Frequent Patterns

Frequent patterns show interesting relationships between attribute—value pairs that
occur frequently in a given data set. For example, we may find that the attribute—value
pairs age = youth and credit = OK occur in 20% of data tuples describing AllElectronics
customers who buy a computer. We can think of each attribute—value pair as an item,
so the search for these frequent patterns is known as frequent pattern mining or frequent
itemset mining. In Chapters 6 and 7, we saw how association rules are derived from
frequent patterns, where the associations are commonly used to analyze the purchas-
ing patterns of customers in a store. Such analysis is useful in many decision-making
processes such as product placement, catalog design, and cross-marketing.

In this section, we examine how frequent patterns can be used for classification.
Section 9.4.1 explores associative classification, where association rules are generated
from frequent patterns and used for classification. The general idea is that we can search
for strong associations between frequent patterns (conjunctions of attribute—value

416

Chapter 9 Classification: Advanced Methods

pairs) and class labels. Section 9.4.2 explores discriminative frequent pattern-based
classification, where frequent patterns serve as combined features, which are considered
in addition to single features when building a classification model. Because frequent
patterns explore highly confident associations among multiple attributes, frequent
pattern—based classification may overcome some constraints introduced by decision tree
induction, which considers only one attribute at a time. Studies have shown many fre-
quent pattern—based classification methods to have greater accuracy and scalability than
some traditional classification methods such as C4.5.

94.1 Associative Classification

In this section, you will learn about associative classification. The methods discussed are
CBA, CMAR, and CPAR.

Before we begin, however, let’s look at association rule mining in general. Association
rules are mined in a two-step process consisting of frequent itemset mining followed by
rule generation. The first step searches for patterns of attribute—value pairs that occur
repeatedly in a data set, where each attribute—value pair is considered an itern. The
resulting attribute—value pairs form frequent itemsets (also referred to as frequent pat-
terns). The second step analyzes the frequent itemsets to generate association rules. All
association rules must satisfy certain criteria regarding their “accuracy” (or confidence)
and the proportion of the data set that they actually represent (referred to as support).
For example, the following is an association rule mined from a data set, D, shown with
its confidence and support:

age = youth A credit = OK = buys_computer
= yes [support = 20%, confidence = 93%], (9.21)

where A represents a logical “AND.” We will say more about confidence and support
later.

More formally, let D be a data set of tuples. Each tuple in D is described by n
attributes, Aj, A,..., A,, and a class label attribute, A,. All continuous attributes are
discretized and treated as categorical (or nominal) attributes. An item, p, is an attribute—
value pair of the form (A;, v), where A; is an attribute taking a value, v. A data tuple
X = (x1, X2,..., x,) satisfies an item, p = (A;, v), if and only if x; = v, where x; is the
value of the ith attribute of X. Association rules can have any number of items in the
rule antecedent (left side) and any number of items in the rule consequent (right side).
However, when mining association rules for use in classification, we are only interested
in association rules of the form p; A po A ... p1 = Agass = C, where the rule antecedent
is a conjunction of items, pi, p2,..., p; (I < n), associated with a class label, C. For a
given rule, R, the percentage of tuples in D satisfying the rule antecedent that also have
the class label C is called the confidence of R.

From a classification point of view, this is akin to rule accuracy. For example, a con-
fidence of 93% for Rule (9.21) means that 93% of the customers in D who are young
and have an OK credit rating belong to the class buys_computer = yes. The percentage of

9.4 Classification Using Frequent Patterns 417

tuples in D satisfying the rule antecedent and having class label C is called the support
of R. A support of 20% for Rule (9.21) means that 20% of the customers in D are young,
have an OK credit rating, and belong to the class buys_computer = yes.

In general, associative classification consists of the following steps:

I. Mine the data for frequent itemsets, that is, find commonly occurring attribute—value
pairs in the data.

2. Analyze the frequent itemsets to generate association rules per class, which satisfy
confidence and support criteria.

3. Organize the rules to form a rule-based classifier.

Methods of associative classification differ primarily in the approach used for frequent
itemset mining and in how the derived rules are analyzed and used for classification. We
now look at some of the various methods for associative classification.

One of the earliest and simplest algorithms for associative classification is CBA (Clas-
sification Based on Associations). CBA uses an iterative approach to frequent itemset
mining, similar to that described for Apriori in Section 6.2.1, where multiple passes are
made over the data and the derived frequent itemsets are used to generate and test longer
itemsets. In general, the number of passes made is equal to the length of the longest rule
found. The complete set of rules satisfying minimum confidence and minimum sup-
port thresholds are found and then analyzed for inclusion in the classifier. CBA uses
a heuristic method to construct the classifier, where the rules are ordered according to
decreasing precedence based on their confidence and support. If a set of rules has the
same antecedent, then the rule with the highest confidence is selected to represent the
set. When classifying a new tuple, the first rule satisfying the tuple is used to classify it.
The classifier also contains a default rule, having lowest precedence, which specifies a
default class for any new tuple that is not satisfied by any other rule in the classifier. In
this way, the set of rules making up the classifier form a decision list. In general, CBA was
empirically found to be more accurate than C4.5 on a good number of data sets.

CMAR (Classification based on Multiple Association Rules) differs from CBA in its
strategy for frequent itemset mining and its construction of the classifier. It also employs
several rule pruning strategies with the help of a tree structure for efficient storage
and retrieval of rules. CMAR adopts a variant of the FP-growth algorithm to find the
complete set of rules satisfying the minimum confidence and minimum support thresh-
olds. FP-growth was described in Section 6.2.4. FP-growth uses a tree structure, called
an FP-tree, to register all the frequent itemset information contained in the given data
set, D. This requires only two scans of D. The frequent itemsets are then mined from the
FP-tree. CMAR uses an enhanced FP-tree that maintains the distribution of class labels
among tuples satisfying each frequent itemset. In this way, it is able to combine rule
generation together with frequent itemset mining in a single step.

CMAR employs another tree structure to store and retrieve rules efficiently and
to prune rules based on confidence, correlation, and database coverage. Rule pruning
strategies are triggered whenever a rule is inserted into the tree. For example, given

418

Chapter 9 Classification: Advanced Methods

two rules, R1 and R2, if the antecedent of R1 is more general than that of R2 and
conf(R1) > conf(R2), then R2 is pruned. The rationale is that highly specialized rules
with low confidence can be pruned if a more generalized version with higher confidence
exists. CMAR also prunes rules for which the rule antecedent and class are not positively
correlated, based on an x? test of statistical significance.

“If more than one rule applies, which one do we use?” As a classifier, CMAR operates
differently than CBA. Suppose that we are given a tuple X to classify and that only one
rule satisfies or matches X.* This case is trivial—we simply assign the rule’s class label.
Suppose, instead, that more than one rule satisfies X. These rules form a set, S. Which
rule would we use to determine the class label of X? CBA would assign the class label
of the most confident rule among the rule set, S. CMAR instead considers multiple
rules when making its class prediction. It divides the rules into groups according to
class labels. All rules within a group share the same class label and each group has a
distinct class label.

CMAR uses a weighted x? measure to find the “strongest” group of rules, based on
the statistical correlation of rules within a group. It then assigns X the class label of
the strongest group. In this way it considers multiple rules, rather than a single rule
with highest confidence, when predicting the class label of a new tuple. In experiments,
CMAR had slightly higher average accuracy in comparison with CBA. Its runtime,
scalability, and use of memory were found to be more efficient.

“Is there a way to cut down on the number of rules generated?” CBA and CMAR
adopt methods of frequent itemset mining to generate candidate association rules, which
include all conjunctions of attribute—value pairs (items) satisfying minimum support.
These rules are then examined, and a subset is chosen to represent the classifier. How-
ever, such methods generate quite a large number of rules. CPAR (Classification based
on Predictive Association Rules) takes a different approach to rule generation, based on a
rule generation algorithm for classification known as FOIL (Section 8.4.3). FOIL builds
rules to distinguish positive tuples (e.g., buys_computer = yes) from negative tuples (e.g.,
buys_computer = no). For multiclass problems, FOIL is applied to each class. That is, for
a class, C, all tuples of class C are considered positive tuples, while the rest are consid-
ered negative tuples. Rules are generated to distinguish C tuples from all others. Each
time a rule is generated, the positive samples it satisfies (or covers) are removed until
all the positive tuples in the data set are covered. In this way, fewer rules are generated.
CPAR relaxes this step by allowing the covered tuples to remain under consideration,
but reducing their weight. The process is repeated for each class. The resulting rules are
merged to form the classifier rule set.

During classification, CPAR employs a somewhat different multiple rule strategy
than CMAR. If more than one rule satisfies a new tuple, X, the rules are divided into
groups according to class, similar to CMAR. However, CPAR uses the best k rules of
each group to predict the class label of X, based on expected accuracy. By considering
the best k rules rather than all of a group’s rules, it avoids the influence of lower-ranked

41f a rule’s antecedent satisfies or matches X, then we say that the rule satisfies X.

94.2

9.4 Classification Using Frequent Patterns 419

rules. CPAR’s accuracy on numerous data sets was shown to be close to that of CMAR.
However, since CPAR generates far fewer rules than CMAR, it shows much better
efficiency with large sets of training data.

In summary, associative classification offers an alternative classification scheme by
building rules based on conjunctions of attribute—value pairs that occur frequently
in data.

Discriminative Frequent Pattern-Based Classification

From work on associative classification, we see that frequent patterns reflect strong asso-
ciations between attribute—value pairs (or items) in data and are useful for classification.

“But just how discriminative are frequent patterns for classification?” Frequent patterns
represent feature combinations. Let’s compare the discriminative power of frequent pat-
terns and single features. Figure 9.11 plots the information gain of frequent patterns and
single features (i.e., of pattern length 1) for three UCI data sets.” The discrimination
power of some frequent patterns is higher than that of single features. Frequent patterns
map data to a higher dimensional space. They capture more underlying semantics of the
data, and thus can hold greater expressive power than single features.

“Why not consider frequent patterns as combined features, in addition to single features
when building a classification model?” This notion is the basis of frequent pattern—
based classification—the learning of a classification model in the feature space of single
attributes as well as frequent patterns. In this way, we transfer the original feature space
to a larger space. This will likely increase the chance of including important features.

Let’s get back to our earlier question: How discriminative are frequent patterns?
Many of the frequent patterns generated in frequent itemset mining are indiscrimina-
tive because they are based solely on support, without considering predictive power.
That is, by definition, a pattern must satisfy a user-specified minimum support thresh-
old, min_sup, to be considered frequent. For example, if min_sup, is, say, 5%, a pattern
is frequent if it occurs in 5% of the data tuples. Consider Figure 9.12, which plots infor-
mation gain versus pattern frequency (support) for three UCI data sets. A theoretical
upper bound on information gain, which was derived analytically, is also plotted. The
figure shows that the discriminative power (assessed here as information gain) of low-
frequency patterns is bounded by a small value. This is due to the patterns’ limited
coverage of the data set. Similarly, the discriminative power of very high-frequency pat-
terns is also bounded by a small value, which is due to their commonness in the data. The
upper bound of information gain is a function of pattern frequency. The information
gain upper bound increases monotonically with pattern frequency. These observations
can be confirmed analytically. Patterns with medium-large supports (e.g., support = 300
in Figure 9.12a) may be discriminative or not. Thus, not every frequent pattern is useful.

>The University of California at Irvine (UCI) archives several large data sets at http://kdd.ics.uci.edul.
These are commonly used by researchers for the testing and comparison of machine learning and data
mining algorithms.

http://kdd.ics.uci.edu/

420 Chapter 9 Classification: Advanced Methods

0.45 R — 0.35
041 " . 03}
035 & % |
£ : £ 025} :
& 03r <l T eh s
Soasp P] 5 02 ¢ i P
go.z-‘;i i . . §0.15-I‘ :
o . * i L M s
0I5 - g o1l . ' ;]
o1f * . | :
TR RN i
ol_t i ol
OT246 8§ 10 12 14 01‘234567891011
Pattern length Pattern length
(a) Austral (b) Cleve
0.35
0.3} |
s 3 :
£ 025} @ - 1
on M :
& 02r- Pt 1
o | IR SR AR
2 o1h iy -
005} ¢ !IH P
fidriilg
0 LLildiiiiis
oTz 4 6 8 10 12 14 16 18 20 22
Pattern length

(¢) Sonar

Figure 9.11 Single feature versus frequent pattern: Information gain is plotted for single features (pat-
terns of length 1, indicated by arrows) and frequent patterns (combined features) for three
UCI data sets. Source: Adapted from Cheng, Yan, Han, and Hsu [CYHHO07].

If we were to add all the frequent patterns to the feature space, the resulting feature
space would be huge. This slows down the model learning process and may also lead
to decreased accuracy due to a form of overfitting in which there are too many features.
Many of the patterns may be redundant. Therefore, it’s a good idea to apply feature selec-
tion to eliminate the less discriminative and redundant frequent patterns as features. The
general framework for discriminative frequent pattern—based classification is as follows.

I. Feature generation: The data, D, are partitioned according to class label. Use fre-
quent itemset mining to discover frequent patterns in each partition, satisfying
minimum support. The collection of frequent patterns, F, makes up the feature
candidates.

2. Feature selection: Apply feature selection to F, resulting in Fg, the set of selected
(more discriminating) frequent patterns. Information gain, Fisher score, or other
evaluation measures can be used for this step. Relevancy checking can also be

9.4 Classification Using Frequent Patterns 421

1 T T T T T T

- InfoGain
1 T T J ! ! 091 — 1G yperBound | |
09 - InfoGain _ 0.8 - i
- IGU ‘B 1 ’
08k pperBound | |
g 0.7 b
=
g 071 1 2 o06f 1
= 0.6 1 °
S g 051 T
g 05 1 E
E 04l { & 04r 1
Bel : =
= 03} 47 03r 1
0.2 B 0.2 7
0.1 4 0.1 £ 4
0 ot Y TR 0 SATE 1 1 1 1
0 100 200 300 400 500 600 700 0 100 200 300 400 500 600 700
Support Support
(a) Austral (b) Breast
1 T T T l f GI '
- InroGain
gz i —I1G yperBound
= 08+ 4
s
o 0.7k R
=
2 06} 4
<
g 05F R
E 04+ B
0.3} 4
0.2+ 4
0.1F B
0 “) 1
0 50 100 150 200 250
Support
(¢) Sonar

Figure 9.12 Information gain versus pattern frequency (support) for three UCI data sets. A theoretical
upper bound on information gain (IGypperBound) is also shown. Source: Adapted from Cheng,
Yan, Han, and Hsu [CYHHO7].

incorporated into this step to weed out redundant patterns. The data set D is trans-
formed to D', where the feature space now includes the single features as well as the
selected frequent patterns, Fs.

3. Learning of classification model: A classifier is built on the data set D'. Any learning
algorithm can be used as the classification model.

The general framework is summarized in Figure 9.13(a), where the discriminative
patterns are represented by dark circles. Although the approach is straightforward,
we can encounter a computational bottleneck by having to first find all the frequent
patterns, and then analyze each one for selection. The amount of frequent patterns found
can be huge due to the explosive number of pattern combinations between items.

422

Chapter 9

Figure 9.13

Classification: Advanced Methods

Mine Select
—_ — Two-step
Data set Frequent patterns ~ Discriminative patterns
(@)
Transform Cﬂg Search
@ —_ — @ Direct
Data set Compact tree Discriminative patterns

(b)

A framework for frequent pattern-based classification: (a) a two-step general approach
versus (b) the direct approach of DDPMine.

To improve the efficiency of the general framework, consider condensing steps 1 and
2 into just one step. That is, rather than generating the complete set of frequent patterns,
it’s possible to mine only the highly discriminative ones. This more direct approach
is referred to as direct discriminative pattern mining. The DDPMine algorithm follows
this approach, as illustrated in Figure 9.13(b). It first transforms the training data into
a compact tree structure known as a frequent pattern tree, or FP-tree (Section 6.2.4),
which holds all of the attribute—value (itemset) association information. It then searches
for discriminative patterns on the tree. The approach is direct in that it avoids generat-
ing a large number of indiscriminative patterns. It incrementally reduces the problem
by eliminating training tuples, thereby progressively shrinking the FP-tree. This further
speeds up the mining process.

By choosing to transform the original data to an FP-tree, DDPMine avoids gener-
ating redundant patterns because an FP-tree stores only the closed frequent patterns.
By definition, any subpattern, S, of a closed pattern, «, is redundant with respect to
a (Section 6.1.2). DDPMine directly mines the discriminative patterns and integrates
feature selection into the mining framework. The theoretical upper bound on infor-
mation gain is used to facilitate a branch-and-bound search, which prunes the search
space significantly. Experimental results show that DDPMine achieves orders of mag-
nitude speedup over the two-step approach without decline in classification accuracy.
DDPMine also outperforms state-of-the-art associative classification methods in terms
of both accuracy and efficiency.

Lazy Learners (or Learning from Your Neighbors)

The classification methods discussed so far in this book—decision tree induction,
Bayesian classification, rule-based classification, classification by backpropagation,
support vector machines, and classification based on association rule mining—are all

9.5 Lazy Learners (or Learning from Your Neighbors) 423

examples of eager learners. Eager learners, when given a set of training tuples, will
construct a generalization (i.e., classification) model before receiving new (e.g., test)
tuples to classify. We can think of the learned model as being ready and eager to classify
previously unseen tuples.

Imagine a contrasting lazy approach, in which the learner instead waits until the last
minute before doing any model construction to classify a given test tuple. That is, when
given a training tuple, a lazy learner simply stores it (or does only a little minor pro-
cessing) and waits until it is given a test tuple. Only when it sees the test tuple does it
perform generalization to classify the tuple based on its similarity to the stored train-
ing tuples. Unlike eager learning methods, lazy learners do less work when a training
tuple is presented and more work when making a classification or numeric prediction.
Because lazy learners store the training tuples or “instances,” they are also referred to as
instance-based learners, even though all learning is essentially based on instances.

When making a classification or numeric prediction, lazy learners can be compu-
tationally expensive. They require efficient storage techniques and are well suited to
implementation on parallel hardware. They offer little explanation or insight into the
data’s structure. Lazy learners, however, naturally support incremental learning. They
are able to model complex decision spaces having hyperpolygonal shapes that may
not be as easily describable by other learning algorithms (such as hyperrectangular
shapes modeled by decision trees). In this section, we look at two examples of lazy
learners: k-nearest-neighbor classifiers (Section 9.5.1) and case-based reasoning classifiers
(Section 9.5.2).

9.5.] k-Nearest-Neighbor Classifiers

The k-nearest-neighbor method was first described in the early 1950s. The method is
labor intensive when given large training sets, and did not gain popularity until the
1960s when increased computing power became available. It has since been widely used
in the area of pattern recognition.

Nearest-neighbor classifiers are based on learning by analogy, that is, by compar-
ing a given test tuple with training tuples that are similar to it. The training tuples are
described by n attributes. Each tuple represents a point in an n-dimensional space. In
this way, all the training tuples are stored in an n-dimensional pattern space. When given
an unknown tuple, a k-nearest-neighbor classifier searches the pattern space for the k
training tuples that are closest to the unknown tuple. These k training tuples are the k
“nearest neighbors” of the unknown tuple.

“Closeness” is defined in terms of a distance metric, such as Euclidean distance. The
Euclidean distance between two points or tuples, say, X1 = (x11, X12,. .., X1,) and X, =
(x21’ X225+ 44> xZH)) is

diSt(Xl,Xz) = (9.22)

424 Chapter 9 Classification: Advanced Methods

In other words, for each numeric attribute, we take the difference between the corre-
sponding values of that attribute in tuple X; and in tuple X;, square this difference,
and accumulate it. The square root is taken of the total accumulated distance count.
Typically, we normalize the values of each attribute before using Eq. (9.22). This helps
prevent attributes with initially large ranges (e.g., income) from outweighing attributes
with initially smaller ranges (e.g., binary attributes). Min-max normalization, for exam-
ple, can be used to transform a value v of a numeric attribute A to v’ in the range [0, 1]
by computing

Vv — ming
V= (9.23)
maxs — ming

where miny and max, are the minimum and maximum values of attribute A. Chapter 3
describes other methods for data normalization as a form of data transformation.

For k-nearest-neighbor classification, the unknown tuple is assigned the most com-
mon class among its k-nearest neighbors. When k = 1, the unknown tuple is assigned
the class of the training tuple that is closest to it in pattern space. Nearest-neighbor clas-
sifiers can also be used for numeric prediction, that is, to return a real-valued prediction
for a given unknown tuple. In this case, the classifier returns the average value of the
real-valued labels associated with the k-nearest neighbors of the unknown tuple.

“But how can distance be computed for attributes that are not numeric, but nominal
(or categorical) such as color?” The previous discussion assumes that the attributes used
to describe the tuples are all numeric. For nominal attributes, a simple method is to
compare the corresponding value of the attribute in tuple X; with that in tuple X5. If
the two are identical (e.g., tuples X7 and X, both have the color blue), then the difference
between the two is taken as 0. If the two are different (e.g., tuple X; is blue but tuple X,
is red), then the difference is considered to be 1. Other methods may incorporate more
sophisticated schemes for differential grading (e.g., where a larger difference score is
assigned, say, for blue and white than for blue and black).

“What about missing values?” In general, if the value of a given attribute A is missing
in tuple X; and/or in tuple X, we assume the maximum possible difference. Suppose
that each of the attributes has been mapped to the range [0, 1]. For nominal attributes,
we take the difference value to be 1 if either one or both of the corresponding values of A
are missing. If A is numeric and missing from both tuples X; and X, then the difference
is also taken to be 1. If only one value is missing and the other (which we will call v') is
present and normalized, then we can take the difference to be either |1 — v'| or |0 — V|
(i.e., 1 — v/ or v'), whichever is greater.

“How can I determine a good value for k, the number of neighbors?” This can be deter-
mined experimentally. Starting with k = 1, we use a test set to estimate the error rate
of the classifier. This process can be repeated each time by incrementing k to allow for
one more neighbor. The k value that gives the minimum error rate may be selected. In
general, the larger the number of training tuples, the larger the value of k will be (so
that classification and numeric prediction decisions can be based on a larger portion of
the stored tuples). As the number of training tuples approaches infinity and k = 1, the

9.5.2

9.5 Lazy Learners (or Learning from Your Neighbors) 425

error rate can be no worse than twice the Bayes error rate (the latter being the theoretical
minimum). If k also approaches infinity, the error rate approaches the Bayes error rate.

Nearest-neighbor classifiers use distance-based comparisons that intrinsically assign
equal weight to each attribute. They therefore can suffer from poor accuracy when given
noisy or irrelevant attributes. The method, however, has been modified to incorporate
attribute weighting and the pruning of noisy data tuples. The choice of a distance metric
can be critical. The Manhattan (city block) distance (Section 2.4.4), or other distance
measurements, may also be used.

Nearest-neighbor classifiers can be extremely slow when classifying test tuples. If D
is a training database of | D| tuples and k = 1, then O(|D|) comparisons are required to
classify a given test tuple. By presorting and arranging the stored tuples into search trees,
the number of comparisons can be reduced to O(log(|D|). Parallel implementation can
reduce the running time to a constant, that is, O(1), which is independent of | D|.

Other techniques to speed up classification time include the use of partial distance
calculations and editing the stored tuples. In the partial distance method, we compute
the distance based on a subset of the n attributes. If this distance exceeds a threshold,
then further computation for the given stored tuple is halted, and the process moves on
to the next stored tuple. The editing method removes training tuples that prove useless.
This method is also referred to as pruning or condensing because it reduces the total
number of tuples stored.

Case-Based Reasoning

Case-based reasoning (CBR) classifiers use a database of problem solutions to solve
new problems. Unlike nearest-neighbor classifiers, which store training tuples as points
in Euclidean space, CBR stores the tuples or “cases” for problem solving as complex
symbolic descriptions. Business applications of CBR include problem resolution for
customer service help desks, where cases describe product-related diagnostic problems.
CBR has also been applied to areas such as engineering and law, where cases are either
technical designs or legal rulings, respectively. Medical education is another area for
CBR, where patient case histories and treatments are used to help diagnose and treat
new patients.

When given a new case to classify, a case-based reasoner will first check if an iden-
tical training case exists. If one is found, then the accompanying solution to that case
is returned. If no identical case is found, then the case-based reasoner will search for
training cases having components that are similar to those of the new case. Concep-
tually, these training cases may be considered as neighbors of the new case. If cases
are represented as graphs, this involves searching for subgraphs that are similar to sub-
graphs within the new case. The case-based reasoner tries to combine the solutions of
the neighboring training cases to propose a solution for the new case. If incompatibili-
ties arise with the individual solutions, then backtracking to search for other solutions
may be necessary. The case-based reasoner may employ background knowledge and
problem-solving strategies to propose a feasible combined solution.

426

Chapter 9 Classification: Advanced Methods

9.6.1

Challenges in case-based reasoning include finding a good similarity metric (e.g., for
matching subgraphs) and suitable methods for combining solutions. Other challenges
include the selection of salient features for indexing training cases and the development
of efficient indexing techniques. A trade-off between accuracy and efficiency evolves as
the number of stored cases becomes very large. As this number increases, the case-based
reasoner becomes more intelligent. After a certain point, however, the system’s efficiency
will suffer as the time required to search for and process relevant cases increases. As with
nearest-neighbor classifiers, one solution is to edit the training database. Cases that are
redundant or that have not proved useful may be discarded for the sake of improved
performance. These decisions, however, are not clear-cut and their automation remains
an active area of research.

Other Classification Methods

In this section, we give a brief description of several other classification methods, includ-
ing genetic algorithms (Section 9.6.1), rough set approach (Section 9.6.2), and fuzzy set
approaches (Section 9.6.3). In general, these methods are less commonly used for clas-
sification in commercial data mining systems than the methods described earlier in this
book. However, these methods show their strength in certain applications, and hence it
is worthwhile to include them here.

Genetic Algorithms

Genetic algorithms attempt to incorporate ideas of natural evolution. In general,
genetic learning starts as follows. An initial population is created consisting of randomly
generated rules. Each rule can be represented by a string of bits. As a simple example,
suppose that samples in a given training set are described by two Boolean attributes,
A; and A;, and that there are two classes, C; and C,. The rule “IF A; AND NOT A,
THEN C,” can be encoded as the bit string “100,” where the two leftmost bits represent
attributes A; and A;, respectively, and the rightmost bit represents the class. Similarly,
the rule “IF NOT A; AND NOT A, THEN C;” can be encoded as “001.” If an attribute
has k values, where k > 2, then k bits may be used to encode the attribute’s values.
Classes can be encoded in a similar fashion.

Based on the notion of survival of the fittest, a new population is formed to consist
of the fittest rules in the current population, as well as offspring of these rules. Typically,
the fitness of a rule is assessed by its classification accuracy on a set of training samples.

Offspring are created by applying genetic operators such as crossover and mutation.
In crossover, substrings from pairs of rules are swapped to form new pairs of rules. In
mutation, randomly selected bits in a rule’s string are inverted.

The process of generating new populations based on prior populations of rules con-
tinues until a population, P, evolves where each rule in P satisfies a prespecified fitness
threshold.

9.6 Other Classification Methods 427

Genetic algorithms are easily parallelizable and have been used for classification as
well as other optimization problems. In data mining, they may be used to evaluate the
fitness of other algorithms.

9.6.2 Rough Set Approach

Rough set theory can be used for classification to discover structural relationships within
imprecise or noisy data. It applies to discrete-valued attributes. Continuous-valued
attributes must therefore be discretized before its use.

Rough set theory is based on the establishment of equivalence classes within the
given training data. All the data tuples forming an equivalence class are indiscernible,
that is, the samples are identical with respect to the attributes describing the data. Given
real-world data, it is common that some classes cannot be distinguished in terms of the
available attributes. Rough sets can be used to approximately or “roughly” define such
classes. A rough set definition for a given class, C, is approximated by two sets—a lower
approximation of C and an upper approximation of C. The lower approximation of C
consists of all the data tuples that, based on the knowledge of the attributes, are certain to
belong to C without ambiguity. The upper approximation of C consists of all the tuples
that, based on the knowledge of the attributes, cannot be described as not belonging to
C. The lower and upper approximations for a class C are shown in Figure 9.14, where
each rectangular region represents an equivalence class. Decision rules can be generated
for each class. Typically, a decision table is used to represent the rules.

Rough sets can also be used for attribute subset selection (or feature reduction, where
attributes that do not contribute to the classification of the given training data can be
identified and removed) and relevance analysis (where the contribution or significance
of each attribute is assessed with respect to the classification task). The problem of find-
ing the minimal subsets (reducts) of attributes that can describe all the concepts in
the given data set is NP-hard. However, algorithms to reduce the computation intensity
have been proposed. In one method, for example, a discernibility matrix is used that
stores the differences between attribute values for each pair of data tuples. Rather than

I

: | ! Upper approximation of C
: < Lower approximation of C
I

I

Figure 9.14 A rough set approximation of class C’s set of tuples using lower and upper approximation
sets of C. The rectangular regions represent equivalence classes.

428

Chapter 9

9.6.3

Figure 9.15

Classification: Advanced Methods

searching on the entire training set, the matrix is instead searched to detect redundant
attributes.

Fuzzy Set Approaches

Rule-based systems for classification have the disadvantage that they involve sharp cut-
offs for continuous attributes. For example, consider the following rule for customer
credit application approval. The rule essentially says that applications for customers
who have had a job for two or more years and who have a high income (i.e., of at least
$50,000) are approved:

IF (years_employed > 2) AND (income > 50,000) THEN credit = approved. (9.24)

By Rule (9.24), a customer who has had a job for at least two years will receive credit
if her income is, say, $50,000, but not if it is $49,000. Such harsh thresholding may seem
unfair.

Instead, we can discretize income into categories (e.g., {low_income, medium_income,
high_income}) and then apply fuzzy logic to allow “fuzzy” thresholds or boundaries to
be defined for each category (Figure 9.15). Rather than having a precise cutoff between
categories, fuzzy logic uses truth values between 0.0 and 1.0 to represent the degree of
membership that a certain value has in a given category. Each category then represents a
fuzzy set. Hence, with fuzzy logic, we can capture the notion that an income of $49,000
is, more or less, high, although not as high as an income of $50,000. Fuzzy logic systems
typically provide graphical tools to assist users in converting attribute values to fuzzy
truth values.

Fuzzy set theory is also known as possibility theory. It was proposed by Lotfi Zadeh
in 1965 as an alternative to traditional two-value logic and probability theory. It lets
us work at a high abstraction level and offers a means for dealing with imprecise data

low medium high

—_
(=)
1

o
W
1

Fuzzy membership

\ 4

T T T T T T T
0 I0K 20K 30K 40K 50K 60K 70K

income

Fuzzy truth values for income, representing the degree of membership of income values with
respect to the categories {low, medium, high}. Each category represents a fuzzy set. Note that
a given income value, x, can have membership in more than one fuzzy set. The membership
values of x in each fuzzy set do not have to total to 1.

9.7 Additional Topics Regarding Classification 429

measurement. Most important, fuzzy set theory allows us to deal with vague or inexact
facts. For example, being a member of a set of high incomes is inexact (e.g., if $50,000
is high, then what about $49,000? or $48,000?) Unlike the notion of traditional “crisp”
sets where an element belongs to either a set S or its complement, in fuzzy set theory,
elements can belong to more than one fuzzy set. For example, the income value $49,000
belongs to both the medium and high fuzzy sets, but to differing degrees. Using fuzzy set
notation and following Figure 9.15, this can be shown as

Mmedium_income($49,000) = 0.15 and mhigh,income($49’000) = 0.96,

where m denotes the membership function, that is operating on the fuzzy sets of
medium_income and high_income, respectively. In fuzzy set theory, membership val-
ues for a given element, x (e.g., for $49,000), do not have to sum to 1. This is unlike
traditional probability theory, which is constrained by a summation axiom.

Fuzzy set theory is useful for data mining systems performing rule-based classi-
fication. It provides operations for combining fuzzy measurements. Suppose that in
addition to the fuzzy sets for income, we defined the fuzzy sets junior_employee and
senior_employee for the attribute years_employed. Suppose also that we have a rule that,
say, tests high_income and senior_employee in the rule antecedent (IF part) for a given
employee, x. If these two fuzzy measures are ANDed together, the minimum of their
measure is taken as the measure of the rule. In other words,

M(high_income AND senior_employee) (x) = min(mhigh,income(x)’ msenior,employee(x))-

This is akin to saying that a chain is as strong as its weakest link. If the two measures
are ORed, the maximum of their measure is taken as the measure of the rule. In other
words,

M(high_income OR senior_employee) (%) = max(mhigh,income (%), Msenior_employee (%)).

Intuitively, this is like saying that a rope is as strong as its strongest strand.

Given a tuple to classify, more than one fuzzy rule may apply. Each applicable rule
contributes a vote for membership in the categories. Typically, the truth values for each
predicted category are summed, and these sums are combined. Several procedures exist
for translating the resulting fuzzy output into a defuzzified or crisp value that is returned
by the system.

Fuzzy logic systems have been used in numerous areas for classification, including
market research, finance, health care, and environmental engineering.

Additional Topics Regarding Classification

Most of the classification algorithms we have studied handle multiple classes, but some,
such as support vector machines, assume only two classes exist in the data. What adap-
tations can be made to allow for when there are more than two classes? This question is
addressed in Section 9.7.1 on multiclass classification.

430 Chapter 9 Classification: Advanced Methods

9.1.1

What can we do if we want to build a classifier for data where only some of the data
are class-labeled, but most are not? Document classification, speech recognition, and
information extraction are just a few examples of applications in which unlabeled data
are abundant. Consider document classification, for example. Suppose we want to build
amodel to automatically classify text documents like articles or web pages. In particular,
we want the model to distinguish between hockey and football documents. We have a
vast amount of documents available, yet the documents are not class-labeled. Recall that
supervised learning requires a training set, that is, a set of classlabeled data. To have a
human examine and assign a class label to individual documents (to form a training set)
is time consuming and expensive.

Speech recognition requires the accurate labeling of speech utterances by trained lin-
guists. It was reported that 1 minute of speech takes 10 minutes to label, and annotating
phonemes (basic units of sound) can take 400 times as long. Information extraction sys-
tems are trained using labeled documents with detailed annotations. These are obtained
by having human experts highlight items or relations of interest in text such as the names
of companies or individuals. High-level expertise may be required for certain knowl-
edge domains such as gene and disease mentions in biomedical information extraction.
Clearly, the manual assignment of class labels to prepare a training set can be extremely
costly, time consuming, and tedious.

We study three approaches to classification that are suitable for situations where there
is an abundance of unlabeled data. Section 9.7.2 introduces semisupervised classifi-
cation, which builds a classifier using both labeled and unlabeled data. Section 9.7.3
presents active learning, where the learning algorithm carefully selects a few of the un-
labeled data tuples and asks a human to label only those tuples. Section 9.7.4 presents
transfer learning, which aims to extract the knowledge from one or more source tasks
(e.g., classifying camera reviews) and apply the knowledge to a target task (e.g., TV
reviews). Each of these strategies can reduce the need to annotate large amounts of data,
resulting in cost and time savings.

Multiclass Classification

Some classification algorithms, such as support vector machines, are designed for binary
classification. How can we extend these algorithms to allow for multiclass classification
(i.e., classification involving more than two classes)?

A simple approach is one-versus-all (OVA). Given m classes, we train m binary clas-
sifiers, one for each class. Classifier j is trained using tuples of class j as the positive class,
and the remaining tuples as the negative class. It learns to return a positive value for class
7 and a negative value for the rest. To classify an unknown tuple, X, the set of classifiers
vote as an ensemble. For example, if classifier j predicts the positive class for X, then
class j gets one vote. If it predicts the negative class for X, then each of the classes except
j gets one vote. The class with the most votes is assigned to X.

All-versus-all (AVA) is an alternative approach that learns a classifier for each pair
of classes. Given m classes, we construct w binary classifiers. A classifier is trained

Example 9.3

Figure 9.16

9.7 Additional Topics Regarding Classification 431

using tuples of the two classes it should discriminate. To classify an unknown tuple,
each classifier votes. The tuple is assigned the class with the maximum number of votes.
All-versus-all tends to be superior to one-versus-all.

A problem with the previous schemes is that binary classifiers are sensitive to errors.
If any classifier makes an error, it can affect the vote count.

Error-correcting codes can be used to improve the accuracy of multiclass classifica-
tion, not just in the previous situations, but for classification in general. Error-correcting
codes were originally designed to correct errors during data transmission for commu-
nication tasks. For such tasks, the codes are used to add redundancy to the data being
transmitted so that, even if some errors occur due to noise in the channel, the data can
be correctly received at the other end. For multiclass classification, even if some of the
individual binary classifiers make a prediction error for a given unknown tuple, we may
still be able to correctly label the tuple.

An error-correcting code is assigned to each class, where each code is a bit vector.
Figure 9.16 show an example of 7-bit codewords assigned to classes Ci, C,, C3, and Cy.
We train one classifier for each bit position. Therefore, in our example we train seven
classifiers. If a classifier makes an error, there is a better chance that we may still be
able to predict the right class for a given unknown tuple because of the redundancy
gained by having additional bits. The technique uses a distance measurement called the
Hamming distance to guess the “closest” class in case of errors, and is illustrated in
Example 9.3.

Multiclass classification with error-correcting codes. Consider the 7-bit codewords
associated with classes C; to Cy in Figure 9.16. Suppose that, given an unknown tuple
to label, the seven trained binary classifiers collectively output the codeword 0001010,
which does not match a codeword for any of the four classes. A classification error has
obviously occurred, but can we figure out what the classification most likely should
be? We can try by using the Hamming distance, which is the number of different
bits between two codewords. The Hamming distance between the output codeword
and the codeword for C; is 5 because five bits—namely, the first, second, third, fifth,
and seventh—differ. Similarly, the Hamming distance between the output code and the
codewords for C, through Cy are 3, 3, and 1, respectively. Note that the output code-
word is closest to the codeword for Cy. That is, the smallest Hamming distance between
the output and a class codeword is for class Cy. Therefore, we assign Cy as the class label
of the given tuple. L]

Class Error-correcting codeword
C 1111111
G 0000111
G 0011001
Cy 0101010

Error-correcting codes for a multiclass classification problem involving four classes.

432

Chapter 9 Classification: Advanced Methods

9.1.2

Error-correcting codes can correct up to % 1-bit errors, where h is the minimum
Hamming distance between any two codewords. If we use one bit per class, such as for
4-bit codewords for classes C; through Cj, then this is equivalent to the one-versus-all
approach, and the codes are not sufficient to self-correct. (Try it as an exercise.) When
selecting error-correcting codes for multiclass classification, there must be good row-
wise and column-wise separation between the codewords. The greater the distance, the
more likely that errors will be corrected.

Semi-Supervised Classification

Semi-supervised classification uses labeled data and unlabeled data to build a classifier.
Let X; = {(x1,51),-..,x5,¥1)} be the set of labeled data and X,, = {x;1,...,x,} be the set
of unlabeled data. Here we describe a few examples of this approach for learning.

Self-training is the simplest form of semi-supervised classification. It first builds a
classifier using the labeled data. The classifier then tries to label the unlabeled data. The
tuple with the most confident label prediction is added to the set of labeled data, and the
process repeats (Figure 9.17). Although the method is easy to understand, a disadvantage
is that it may reinforce errors.

Cotraining is another form of semi-supervised classification, where two or more
classifiers teach each other. Each learner uses a different and ideally independent set
of features for each tuple. Consider web page data, for example, where attributes relat-
ing to the images on the page may be used as one set of features, while attributes relating
to the corresponding text constitute another set of features for the same data. Each set

Self-training
I. Select a learning method such as, say, Bayesian classification. Build the classifier using the labeled
data, Xj.

2. Use the classifier to label the unlabeled data, X,,.

3. Select the tuple x € X,, having the highest confidence (most confident prediction). Add it and its
predicted label to X;.

4. Repeat (i.e., retrain the classifier using the augmented set of labeled data).
Cotraining
I. Define two separate nonoverlapping feature sets for the labeled data, X;.

2. Train two classifiers, fi and f, on the labeled data, where f; is trained using one of the feature sets and
f is trained using the other.

3. Classify X, with f; and f, separately.

4. Add the most confident (x, fi (x)) to the set of labeled data used by f,, where x € X,,. Similarly, add the
most confident (x, f2(x)) to the set of labeled data used by f;.

5. Repeat.

Figure 9.17 Self-training and cotraining methods of semi-supervised classification.

9.7 Additional Topics Regarding Classification 433

of features should be sufficient to train a good classifier. Suppose we split the feature
set into two sets and train two classifiers, f; and f,, where each classifier is trained on a
different set. Then, f; and f, are used to predict the class labels for the unlabeled data,
X, Each classifier then teaches the other in that the tuple having the most confident
prediction from f; is added to the set of labeled data for f, (along with its label).

Similarly, the tuple having the most confident prediction from £, is added to the set of
labeled data for f;. The method is summarized in Figure 9.17. Cotraining is less sensitive
to errors than self-training. A difficulty is that the assumptions for its usage may not
hold true, that is, it may not be possible to split the features into mutually exclusive and
class-conditionally independent sets.

Alternate approaches to semi-supervised learning exist. For example, we can model
the joint probability distribution of the features and the labels. For the unlabeled data,
the labels can then be treated as missing data. The EM algorithm (Chapter 11) can be
used to maximize the likelihood of the model. Methods using support vector machines
have also been proposed.

9.1.3 Active Learning

Active learning is an iterative type of supervised learning that is suitable for situations
where data are abundant, yet the class labels are scarce or expensive to obtain. The learn-
ing algorithm is active in that it can purposefully query a user (e.g., a human oracle) for
labels. The number of tuples used to learn a concept this way is often much smaller than
the number required in typical supervised learning.

“How does active learning work to overcome the labeling bottleneck?” To keep costs
down, the active learner aims to achieve high accuracy using as few labeled instances
as possible. Let D be all of data under consideration. Various strategies exist for active
learning on D. Figure 9.18 illustrates a pool-based approach to active learning. Suppose
that a small subset of D is class-labeled. This set is denoted L. U is the set of unlabeled
data in D. It is also referred to as a pool of unlabeled data. An active learner begins with
L as the initial training set. It then uses a querying function to carefully select one or
more data samples from U and requests labels for them from an oracle (e.g., a human
annotator). The newly labeled samples are added to L, which the learner then uses in
a standard supervised way. The process repeats. The active learning goal is to achieve
high accuracy using as few labeled tuples as possible. Active learning algorithms are
typically evaluated with the use of learning curves, which plot accuracy as a function of
the number of instances queried.

Most of the active learning research focuses on how to choose the data tuples to
be queried. Several frameworks have been proposed. Uncertainty sampling is the most
common, where the active learner chooses to query the tuples which it is the least cer-
tain how to label. Other strategies work to reduce the version space, that is, the subset
of all hypotheses that are consistent with the observed training tuples. Alternatively,
we may follow a decision-theoretic approach that estimates expected error reduction.
This selects tuples that would result in the greatest reduction in the total number of

434

Chapter 9 Classification: Advanced Methods

Machine Learning

Labeled
training set

Unlabeled pool
U

Oracle (e.g., human annotator)

Figure 9.18 The pool-based active learning cycle. Source: From Settles [Set10], Burr Settles Computer

Sciences Technical Report 1648, University of Wisconsin—-Madison; used with permission.

incorrect predictions such as by reducing the expected entropy over U. This latter
approach tends to be more computationally expensive.

9.14 Transfer Learning

Suppose that AllElectronics has collected a number of customer reviews on a product
such as a brand of camera. The classification task is to automatically label the reviews
as either positive or negative. This task is known as sentiment classification. We could
examine each review and annotate it by adding a positive or negative class label. The
labeled reviews can then be used to train and test a classifier to label future reviews of
the product as either positive or negative. The manual effort involved in annotating the
review data can be expensive and time consuming.

Suppose that AllElectronics has customer reviews for other products as well such as
TVs. The distribution of review data for different types of products can vary greatly. We
cannot assume that the TV-review data will have the same distribution as the camera-
review data; thus we must build a separate classification model for the TV-review data.
Examining and labeling the TV-review data to form a training set will require a lot of
effort. In fact, we would need to label a large amount of the data to train the review-
classification models for each product. It would be nice if we could adapt an existing
classification model (e.g., the one we built for cameras) to help learn a classification
model for TVs. Such knowledge transfer would reduce the need to annotate a large
amount of data, resulting in cost and time savings. This is the essence behind transfer
learning.

9.7 Additional Topics Regarding Classification =~ 435

Different tasks

[Source tasks] [Target task]

o
o ©
o o
[Leaming system] [Leaming system] [Leaming system] Knowledge - Learning system

(a) Traditional learning (b) Transfer learning

Figure 9.19 Transfer learning versus traditional learning. (a) Traditional learning methods build a new
classifier from scratch for each classification task. (b) Transfer learning applies knowledge
from a source classifier to simplify the construction of a classifier for a new, target task.
Source: From Pan and Yang [PY10]; used with permission.

Transfer learning aims to extract the knowledge from one or more source tasks and
apply the knowledge to a target task. In our example, the source task is the classification
of camera reviews, and the target task is the classification of TV reviews. Figure 9.19
illustrates a comparison between traditional learning methods and transfer learning.
Traditional learning methods build a new classifier for each new classification task, based
on available class-labeled training and test data. Transfer learning algorithms apply
knowledge about source tasks when building a classifier for a new (target) task. Con-
struction of the resulting classifier requires fewer training data and less training time.
Traditional learning algorithms assume that the training data and test data are drawn
from the same distribution and the same feature space. Thus, if the distribution changes,
such methods need to rebuild the models from scratch.

Transfer learning allows the distributions, tasks, and even the data domains used in
training and testing to be different. Transfer learning is analogous to the way humans
may apply their knowledge of a task to facilitate the learning of another task. For exam-
ple, if we know how to play the recorder, we may apply our knowledge of note reading
and music to simplify the task of learning to play the piano. Similarly, knowing Spanish
may make it easier to learn Italian.

Transfer learning is useful for common applications where the data become outdated
or the distribution changes. Here we give two more examples. Consider web-document
classification, where we may have trained a classifier to label, say, articles from vari-
ous newsgroups according to predefined categories. The web data that were used to
train the classifier can easily become outdated because the topics on the Web change
frequently. Another application area for transfer learning is email spam filtering. We
could train a classifier to label email as either “spam” or “not spam,” using email from a
group of users. If new users come along, the distribution of their email can be different
from the original group, hence the need to adapt the learned model to incorporate the
new data.

436

Chapter 9 Classification: Advanced Methods

There are various approaches to transfer learning, the most common of which is
the instance-based transfer learning approach. This approach reweights some of the
data from the source task and uses it to learn the target task. The TrAdaBoost (Trans-
fer AdaBoost) algorithm exemplifies this approach. Consider our previous example of
web-document classification, where the distribution of the old data on which the clas-
sifier was trained (the source data) is different from the newer data (the target data).
TrAdaBoost assumes that the source and target domain data are each described by the
same set of attributes (i.e., they have the same “feature space”) and the same set of
class labels, but that the distribution of the data in the two domains is very different. It
extends the AdaBoost ensemble method described in Section 8.6.3. TrAdaBoost requires
the labeling of only a small amount of the target data. Rather than throwing out all the
old source data, TrAdaBoost assumes that a large amount of it can be useful in training
the new classification model. The idea is to filter out the influence of any old data that
are very different from the new data by automatically adjusting weights assigned to the
training tuples.

Recall that in boosting, an ensemble is created by learning a series of classifiers. To
begin, each tuple is assigned a weight. After a classifier M; is learned, the weights are
updated to allow the subsequent classifier, Mjy 1, to “pay more attention” to the training
tuples that were misclassified by M;. TrAdaBoost follows this strategy for the target data.
However, if a source data tuple is misclassified, TrAdaBoost reasons that the tuple is
probably very different from the target data. It therefore reduces the weight of such tuples
so that they will have less effect on the subsequent classifier. As a result, TrAdaBoost can
learn an accurate classification model using only a small amount of new data and a large
amount of old data, even when the new data alone are insufficient to train the model.
Hence, in this way TrAdaBoost allows knowledge to be transferred from the old classifier
to the new one.

A challenge with transfer learning is negative transfer, which occurs when the new
classifier performs worse than if there had been no transfer at all. Work on how to
avoid negative transfer is an area of future research. Heterogeneous transfer learning,
which involves transferring knowledge from different feature spaces and multiple source
domains, is another venue for further work. Much of the research on transfer learning to
date has been on small-scale applications. The use of transfer learning on larger appli-
cations, such as social network analysis and video classification, is an area for further
investigation.

Summary

Unlike naive Bayesian classification (which assumes class conditional independence),
Bayesian belief networks allow class conditional independencies to be defined
between subsets of variables. They provide a graphical model of causal relationships,
on which learning can be performed. Trained Bayesian belief networks can be used
for classification.

9.8 Summary 437

Backpropagation is a neural network algorithm for classification that employs a
method of gradient descent. It searches for a set of weights that can model the data
s0 as to minimize the mean-squared distance between the network’s class prediction
and the actual class label of data tuples. Rules may be extracted from trained neural
networks to help improve the interpretability of the learned network.

A support vector machine is an algorithm for the classification of both linear and
nonlinear data. It transforms the original data into a higher dimension, from where
it can find a hyperplane for data separation using essential training tuples called
support vectors.

Frequent patterns reflect strong associations between attribute—value pairs (or items)
in data and are used in classification based on frequent patterns. Approaches to this
methodology include associative classification and discriminant frequent pattern—
based classification. In associative classification, a classifier is built from association
rules generated from frequent patterns. In discriminative frequent pattern-based
classification, frequent patterns serve as combined features, which are considered in
addition to single features when building a classification model.

Decision tree classifiers, Bayesian classifiers, classification by backpropagation, sup-
port vector machines, and classification based on frequent patterns are all examples
of eager learners in that they use training tuples to construct a generalization model
and in this way are ready for classifying new tuples. This contrasts with lazy learners
or instance-based methods of classification, such as nearest-neighbor classifiers and
case-based reasoning classifiers, which store all of the training tuples in pattern space
and wait until presented with a test tuple before performing generalization. Hence,
lazy learners require efficient indexing techniques.

In genetic algorithms, populations of rules “evolve” via operations of crossover and
mutation until all rules within a population satisfy a specified threshold. Rough set
theory can be used to approximately define classes that are not distinguishable based
on the available attributes. Fuzzy set approaches replace “brittle” threshold cutoffs
for continuous-valued attributes with membership degree functions.

Binary classification schemes, such as support vector machines, can be adapted to
handle multiclass classification. This involves constructing an ensemble of binary
classifiers. Error-correcting codes can be used to increase the accuracy of the
ensemble.

Semi-supervised classification is useful when large amounts of unlabeled data
exist. It builds a classifier using both labeled and unlabeled data. Examples of
semi-supervised classification include self-training and cotraining.

Active learning is a form of supervised learning that is also suitable for situations
where data are abundant, yet the class labels are scarce or expensive to obtain. The
learning algorithm can actively query a user (e.g., a human oracle) for labels. To keep
costs down, the active learner aims to achieve high accuracy using as few labeled
instances as possible.

438

Chapter 9 Classification: Advanced Methods

Transfer learning aims to extract the knowledge from one or more source tasks and
apply the knowledge to a target task. TrAdaBoost is an example of the instance-based
approach to transfer learning, which reweights some of the data from the source task
and uses it to learn the target task, thereby requiring fewer labeled target-task tuples.

Exercises

9.1 The following table consists of training data from an employee database. The data have
been generalized. For example, “31 ... 35” for age represents the age range of 31 to 35.
For a given row entry, count represents the number of data tuples having the values for
department, status, age, and salary given in that row.

department status age salary count
sales senior 31 ... 35 46K ... 50K 30
sales junior 26 ... 30 26K ... 30K 40
sales junior 31 ... 35 31K ... 35K 40
systems junior 21 ... 25 46K ... 50K 20
systems senior 31 ... 35 66K... 70K 5
systems junior 26 ... 30 46K ... 50K 3
systems senior 41 ... 45 66K ... 70K 3
marketing senior 36 ... 40 46K ... 50K 10
marketing junior 31 ... 35 4IK... 45K 4
secretary senior 46 ... 50 36K ... 40K 4
secretary junior 26 ... 30 26K ... 30K

Let status be the class-label attribute.

(a) Design a multilayer feed-forward neural network for the given data. Label the nodes
in the input and output layers.

(b) Using the multilayer feed-forward neural network obtained in (a), show the weight
values after one iteration of the backpropagation algorithm, given the training
instance “(sales, senior, 31 ...35, 46K... 50K)”. Indicate your initial weight values and

biases and the learning rate used.

9.2 The support vector machine is a highly accurate classification method. However, SVM
classifiers suffer from slow processing when training with a large set of data tuples. Dis-
cuss how to overcome this difficulty and develop a scalable SVM algorithm for efficient
SVM classification in large data sets.

9.3 Compare and contrast associative classification and discriminative frequent pattern—based
classification. Why is classification based on frequent patterns able to achieve higher
classification accuracy in many cases than a classic decision tree method?

9.4

9.5

9.6

9.7

9.8

9.10 Bibliographic Notes 439

Compare the advantages and disadvantages of eager classification (e.g., decision tree,
Bayesian, neural network) versus lazy classification (e.g., k-nearest neighbor, case-based
reasoning).

Write an algorithm for k-nearest-neighbor classification given k, the nearest number of
neighbors, and #n, the number of attributes describing each tuple.

Briefly describe the classification processes using (a) genetic algorithms, (b) rough sets,
and (c) fuzzy sets.

Example 9.3 showed a use of error-correcting codes for a multiclass classification
problem having four classes.

(a) Suppose that, given an unknown tuple to label, the seven trained binary classifiers
collectively output the codeword 0101110, which does not match a codeword for
any of the four classes. Using error correction, what class label should be assigned to
the tuple?

(b) Explain why using a 4-bit vector for the codewords is insufficient for error
correction.

Semi-supervised classification, active learning, and transfer learning are useful for situa-
tions in which unlabeled data are abundant.

(a) Describe semi-supervised classification, active learning, and transfer learning. Elab-
orate on applications for which they are useful, as well as the challenges of these
approaches to classification.

(b) Research and describe an approach to semi-supervised classification other than self-
training and cotraining.

(c) Research and describe an approach to active learning other than pool-based
learning.

(d) Research and describe an alternative approach to instance-based transfer learning.

Bibliographic Notes

For an introduction to Bayesian belief networks, see Darwiche [Dar10] and Heckerman
[Hec96]. For a thorough presentation of probabilistic networks, see Pearl [Pea88]
and Koller and Friedman [KF09]. Solutions for learning the belief network structure
from training data given observable variables are proposed in Cooper and Herskovits
[CH92]; Buntine [Bun94]; and Heckerman, Geiger, and Chickering [HGC95]. Algo-
rithms for inference on belief networks can be found in Russell and Norvig [RN95] and
Jensen [Jen96]. The method of gradient descent, described in Section 9.1.2, for training
Bayesian belief networks, is given in Russell, Binder, Koller, and Kanazawa [RBKK95].
The example given in Figure 9.1 is adapted from Russell et al. [RBKK95].

Alternative strategies for learning belief networks with hidden variables include
application of Dempster, Laird, and Rubin’s [DLR77] EM (Expectation Maximization)
algorithm (Lauritzen [Lau95]) and methods based on the minimum description length

440 Chapter 9 Classification: Advanced Methods

principle (Lam [Lam98]). Cooper [Co090] showed that the general problem of infer-
ence in unconstrained belief networks is NP-hard. Limitations of belief networks, such
as their large computational complexity (Laskey and Mahoney [LM97]), have prompted
the exploration of hierarchical and composable Bayesian models (Pfeffer, Koller, Milch,
and Takusagawa [PKMT99] and Xiang, Olesen, and Jensen [XOJ00]). These follow an
object-oriented approach to knowledge representation. Fishelson and Geiger [FG02]
present a Bayesian network for genetic linkage analysis.

The perceptron is a simple neural network, proposed in 1958 by Rosenblatt [Ros58],
which became a landmark in early machine learning history. Its input units are ran-
domly connected to a single layer of output linear threshold units. In 1969, Minsky
and Papert [MP69] showed that perceptrons are incapable of learning concepts that
are linearly inseparable. This limitation, as well as limitations on hardware at the time,
dampened enthusiasm for research in computational neuronal modeling for nearly
20 years. Renewed interest was sparked following the presentation of the backpropaga-
tion algorithm in 1986 by Rumelhart, Hinton, and Williams [RHW86], as this algorithm
can learn concepts that are linearly inseparable.

Since then, many variations of backpropagation have been proposed, involving, for
example, alternative error functions (Hanson and Burr [HB87]); dynamic adjustment
of the network topology (Mézard and Nadal [MN89]; Fahlman and Lebiere [FL90]; Le
Cun, Denker, and Solla [LDS90]; and Harp, Samad, and Guha [HSG90]); and dynamic
adjustment of the learning rate and momentum parameters (Jacobs [Jac88]). Other
variations are discussed in Chauvin and Rumelhart [CR95]. Books on neural networks
include Rumelhart and McClelland [RM86]; Hecht-Nielsen [HN90]; Hertz, Krogh, and
Palmer [HKP91]; Chauvin and Rumelhart [CR95]; Bishop [Bis95]; Ripley [Rip96]; and
Haykin [Hay99]. Many books on machine learning, such as Mitchell [Mit97] and Russell
and Norvig [RN95], also contain good explanations of the backpropagation algorithm.

There are several techniques for extracting rules from neural networks, such as those
found in these papers: [SN88, Gal93, TS93, Avn95, LSL95, CS96, LGT97]. The method
of rule extraction described in Section 9.2.4 is based on Lu, Setiono, and Liu [LSL95].
Critiques of techniques for rule extraction from neural networks can be found in Craven
and Shavlik [CS97]. Roy [Roy00] proposes that the theoretical foundations of neural
networks are flawed with respect to assumptions made regarding how connectionist
learning models the brain. An extensive survey of applications of neural networks in
industry, business, and science is provided in Widrow, Rumelhart, and Lehr [WRL94].

Support Vector Machines (SVMs) grew out of early work by Vapnik and
Chervonenkis on statistical learning theory [VC71]. The first paper on SVMs was
presented by Boser, Guyon, and Vapnik [BGV92]. More detailed accounts can be
found in books by Vapnik [Vap95, Vap98]. Good starting points include the tuto-
rial on SVMs by Burges [Bur98], as well as textbook coverage by Haykin [Hay08],
Kecman [Kec01], and Cristianini and Shawe-Taylor [CS-T00]. For methods for solving
optimization problems, see Fletcher [Fle87] and Nocedal and Wright [NW99]. These
references give additional details alluded to as “fancy math tricks” in our text, such
as transformation of the problem to a Lagrangian formulation and subsequent solving
using Karush-Kuhn-Tucker (KKT) conditions.

9.10 Bibliographic Notes 441

For the application of SVMs to regression, see Scholkopf, Bartlett, Smola, and
Williamson [SBSW99] and Drucker, Burges, Kaufman, Smola, and Vapnik [DBK*97].
Approaches to SVM for large data include the sequential minimal optimization algo-
rithm by Platt [Pla98], decomposition approaches such as in Osuna, Freund, and Girosi
[OFG97], and CB-SVM, a microclustering-based SVM algorithm for large data sets,
by Yu, Yang, and Han [YYHO03]. A library of software for support vector machines
is provided by Chang and Lin at www.csie.ntu.edu.tw/~cjlin/libsvm/, which supports
multiclass classification.

Many algorithms have been proposed that adapt frequent pattern mining to the task
of classification. Early studies on associative classification include the CBA algorithm,
proposed in Liu, Hsu, and Ma [LHM98]. A classifier that uses emerging patterns (item-
sets with support that varies significantly from one data set to another) is proposed
in Dong and Li [DL99] and Li, Dong, and Ramamohanarao [LDR00]. CMAR is pre-
sented in Li, Han, and Pei [LHPO1]. CPAR is presented in Yin and Han [YHO03b]. Cong,
Tan, Tung, and Xu describe RCBT, a method for mining top-k covering rule groups for
classifying high-dimensional gene expression data with high accuracy [CTTX05].

Wang and Karypis [WKO05] present HARMONY (Highest confidence classificAtion
Rule Mining fOr iNstance-centric classifYing), which directly mines the final classifi-
cation rule set with the aid of pruning strategies. Lent, Swami, and Widom [LSW97]
propose the ARCS system regarding mining multidimensional association rules. It com-
bines ideas from association rule mining, clustering, and image processing, and applies
them to classification. Meretakis and Wiithrich [MW99] propose constructing a naive
Bayesian classifier by mining long itemsets. Veloso, Meira, and Zaki [VMZ06] propose
an association rule-based classification method based on a lazy (noneager) learning
approach, in which the computation is performed on a demand-driven basis.

Studies on discriminative frequent pattern—based classification were conducted by
Cheng, Yan, Han, and Hsu [CYHHO07] and Cheng, Yan, Han, and Yu [CYHY08]. The
former work establishes a theoretical upper bound on the discriminative power of fre-
quent patterns (based on either information gain [Qui86] or Fisher score [DHS01]),
which can be used as a strategy for setting minimum support. The latter work describes
the DDPMine algorithm, which is a direct approach to mining discriminative frequent
patterns for classification in that it avoids generating the complete frequent pattern set.
H. Kim, S. Kim, Weninger, et al. proposed an NDPMine algorithm that performs fre-
quent and discriminative pattern—based classification by taking repetitive features into
consideration [KKWT10].

Nearest-neighbor classifiers were introduced in 1951 by Fix and Hodges [FH51]. A
comprehensive collection of articles on nearest-neighbor classification can be found
in Dasarathy [Das91]. Additional references can be found in many texts on classifica-
tion, such as Duda, Hart, and Stork [DHS01] and James [Jam85], as well as articles by
Cover and Hart [CH67] and Fukunaga and Hummels [FH87]. Their integration with
attribute weighting and the pruning of noisy instances is described in Aha [Aha92].
The use of search trees to improve nearest-neighbor classification time is detailed in
Friedman, Bentley, and Finkel [FBF77]. The partial distance method was proposed by
researchers in vector quantization and compression. It is outlined in Gersho and Gray

http://www.csie.ntu.edu.tw/~cjlin/libsvm/

442

Chapter 9 Classification: Advanced Methods

[GG92]. The editing method for removing “useless” training tuples was first proposed
by Hart [Har68].

The computational complexity of nearest-neighbor classifiers is described in
Preparata and Shamos [PS85]. References on case-based reasoning include the texts
by Riesbeck and Schank [RS89] and Kolodner [Kol93], as well as Leake [Lea96] and
Aamodt and Plazas [AP94]. For a list of business applications, see Allen [All94]. Exam-
ples in medicine include CASEY by Koton [Kot88] and PROTOS by Bareiss, Porter, and
Weir [BPW88], while Rissland and Ashley [RA87] is an example of CBR for law. CBR is
available in several commercial software products. For texts on genetic algorithms, see
Goldberg [Gol89], Michalewicz [Mic92], and Mitchell [Mit96].

Rough sets were introduced in Pawlak [Paw91]. Concise summaries of rough set the-
ory in data mining include Ziarko [Zia91] and Cios, Pedrycz, and Swiniarski [CPS98].
Rough sets have been used for feature reduction and expert system design in many
applications, including Ziarko [Zia91], Lenarcik and Piasta [LP97], and Swiniarski
[Swi98]. Algorithms to reduce the computation intensity in finding reducts have been
proposed in Skowron and Rauszer [SR92]. Fuzzy set theory was proposed by Zadeh
[Zad65, Zad83]. Additional descriptions can be found in Yager and Zadeh [YZ94] and
Kecman [Kec01].

Work on multiclass classification is described in Hastie and Tibshirani [HT98], Tax
and Duin [TDO02], and Allwein, Shapire, and Singer [ASS00]. Zhu [Zhu05] presents
a comprehensive survey on semi-supervised classification. For additional references, see
the book edited by Chapelle, Scholkopf, and Zien [CSZ06]. Dietterich and Bakiri [DB95]
propose the use of error-correcting codes for multiclass classification. For a survey on
active learning, see Settles [Set10]. Pan and Yang present a survey on transfer learning
[PY10]. The TrAdaBoost boosting algorithm for transfer learning is given in Dai, Yang,
Xue, and Yu [DYXYO07].

	Classification: Advanced Methods
	Bayesian Belief Networks
	Concepts and Mechanisms
	Training Bayesian Belief Networks

	Classification by Backpropagation
	A Multilayer Feed-Forward Neural Network
	Defining a Network Topology
	Backpropagation
	Inside the Black Box: Backpropagation and Interpretability

	Support Vector Machines
	The Case When the Data Are Linearly Separable
	The Case When the Data Are Linearly Inseparable

	Classification Using Frequent Patterns
	Associative Classification
	Discriminative Frequent Pattern–Based Classification

	Lazy Learners (or Learning from Your Neighbors)
	k-Nearest-Neighbor Classifiers
	Case-Based Reasoning

	Other Classification Methods
	Genetic Algorithms
	Rough Set Approach
	Fuzzy Set Approaches

	Additional Topics Regarding Classification
	Multiclass Classification
	Semi-Supervised Classification
	Active Learning
	Transfer Learning

	Summary
	Exercises
	Bibliographic Notes

	ctip Field 1:
	ctip Field 2:
	ctip Field 3:
	ctip Field 4:
	ctip Field 5:
	ctip Field 6:
	ctip Field 7:
	ctip Field 8:
	ctip Field 9:
	ctip Field 10:
	ctip Field 11:
	ctip Field 12:
	ctip Field 13:
	ctip Field 14:
	ctip Field 15:
	ctip Field 16:

