
HAN 13-ch06-243-278-9780123814791 2011/6/2 3:04 Page 243 #1

6Mining Frequent Patterns,
Associations, and Correlations:

Basic Concepts and Methods

Imagine that you are a sales manager at AllElectronics, and you are talking to a customer who
recently bought a PC and a digital camera from the store. What should you recommend
to her next? Information about which products are frequently purchased by your cus-
tomers following their purchases of a PC and a digital camera in sequence would be
very helpful in making your recommendation. Frequent patterns and association rules
are the knowledge that you want to mine in such a scenario.

Frequent patterns are patterns (e.g., itemsets, subsequences, or substructures) that
appear frequently in a data set. For example, a set of items, such as milk and bread, that
appear frequently together in a transaction data set is a frequent itemset. A subsequence,
such as buying first a PC, then a digital camera, and then a memory card, if it occurs fre-
quently in a shopping history database, is a (frequent) sequential pattern. A substructure
can refer to different structural forms, such as subgraphs, subtrees, or sublattices, which
may be combined with itemsets or subsequences. If a substructure occurs frequently, it is
called a (frequent) structured pattern. Finding frequent patterns plays an essential role in
mining associations, correlations, and many other interesting relationships among data.
Moreover, it helps in data classification, clustering, and other data mining tasks. Thus,
frequent pattern mining has become an important data mining task and a focused theme
in data mining research.

In this chapter, we introduce the basic concepts of frequent patterns, associations, and
correlations (Section 6.1) and study how they can be mined efficiently (Section 6.2). We
also discuss how to judge whether the patterns found are interesting (Section 6.3). In
Chapter 7, we extend our discussion to advanced methods of frequent pattern mining,
which mine more complex forms of frequent patterns and consider user preferences or
constraints to speed up the mining process.

6.1 Basic Concepts

Frequent pattern mining searches for recurring relationships in a given data set. This
section introduces the basic concepts of frequent pattern mining for the discovery of

c© 2012 Elsevier Inc. All rights reserved.

Data Mining: Concepts and Techniques. DOI: 10.1016/B978-0-12-381479-1.00006-X 243

http://dx.doi.org/10.1016/B978-0-12-381479-1.00006-X

HAN 13-ch06-243-278-9780123814791 2011/6/2 3:04 Page 244 #2

244 Chapter 6 Mining Frequent Patterns, Associations, and Correlations

interesting associations and correlations between itemsets in transactional and relational
databases. We begin in Section 6.1.1 by presenting an example of market basket analysis,
the earliest form of frequent pattern mining for association rules. The basic concepts of
mining frequent patterns and associations are given in Section 6.1.2.

6.1.1 Market Basket Analysis: A Motivating Example

Frequent itemset mining leads to the discovery of associations and correlations among
items in large transactional or relational data sets. With massive amounts of data contin-
uously being collected and stored, many industries are becoming interested in mining
such patterns from their databases. The discovery of interesting correlation relation-
ships among huge amounts of business transaction records can help in many busi-
ness decision-making processes such as catalog design, cross-marketing, and customer
shopping behavior analysis.

A typical example of frequent itemset mining is market basket analysis. This process
analyzes customer buying habits by finding associations between the different items that
customers place in their “shopping baskets” (Figure 6.1). The discovery of these associa-
tions can help retailers develop marketing strategies by gaining insight into which items
are frequently purchased together by customers. For instance, if customers are buying
milk, how likely are they to also buy bread (and what kind of bread) on the same trip

Which items are frequently
purchased together by customers?

milk
cereal

bread milk bread

butter

milk bread
sugar eggs

Customer 1

Market Analyst

Customer 2

sugar
eggs

Customer n

Customer 3

Shopping Baskets

Figure 6.1 Market basket analysis.

HAN 13-ch06-243-278-9780123814791 2011/6/2 3:04 Page 245 #3

6.1 Basic Concepts 245

to the supermarket? This information can lead to increased sales by helping retailers do
selective marketing and plan their shelf space.

Let’s look at an example of how market basket analysis can be useful.

Example 6.1 Market basket analysis. Suppose, as manager of an AllElectronics branch, you would
like to learn more about the buying habits of your customers. Specifically, you wonder,
“Which groups or sets of items are customers likely to purchase on a given trip to the store?”
To answer your question, market basket analysis may be performed on the retail data of
customer transactions at your store. You can then use the results to plan marketing or
advertising strategies, or in the design of a new catalog. For instance, market basket anal-
ysis may help you design different store layouts. In one strategy, items that are frequently
purchased together can be placed in proximity to further encourage the combined sale
of such items. If customers who purchase computers also tend to buy antivirus software
at the same time, then placing the hardware display close to the software display may
help increase the sales of both items.

In an alternative strategy, placing hardware and software at opposite ends of the store
may entice customers who purchase such items to pick up other items along the way. For
instance, after deciding on an expensive computer, a customer may observe security sys-
tems for sale while heading toward the software display to purchase antivirus software,
and may decide to purchase a home security system as well. Market basket analysis can
also help retailers plan which items to put on sale at reduced prices. If customers tend to
purchase computers and printers together, then having a sale on printers may encourage
the sale of printers as well as computers.

If we think of the universe as the set of items available at the store, then each item has a
Boolean variable representing the presence or absence of that item. Each basket can then
be represented by a Boolean vector of values assigned to these variables. The Boolean
vectors can be analyzed for buying patterns that reflect items that are frequently associ-
ated or purchased together. These patterns can be represented in the form of association
rules. For example, the information that customers who purchase computers also tend
to buy antivirus software at the same time is represented in the following association
rule:

computer⇒ antivirus software [support= 2%, confidence= 60%]. (6.1)

Rule support and confidence are two measures of rule interestingness. They respec-
tively reflect the usefulness and certainty of discovered rules. A support of 2% for
Rule (6.1) means that 2% of all the transactions under analysis show that computer
and antivirus software are purchased together. A confidence of 60% means that 60% of
the customers who purchased a computer also bought the software. Typically, associa-
tion rules are considered interesting if they satisfy both a minimum support threshold
and a minimum confidence threshold. These thresholds can be a set by users or
domain experts. Additional analysis can be performed to discover interesting statistical
correlations between associated items.

HAN 13-ch06-243-278-9780123814791 2011/6/2 3:04 Page 246 #4

246 Chapter 6 Mining Frequent Patterns, Associations, and Correlations

6.1.2 Frequent Itemsets, Closed Itemsets,
and Association Rules

Let I = {I1, I2, . . . , Im} be an itemset. Let D, the task-relevant data, be a set of database
transactions where each transaction T is a nonempty itemset such that T ⊆ I . Each
transaction is associated with an identifier, called a TID. Let A be a set of items. A trans-
action T is said to contain A if A⊆ T . An association rule is an implication of the form
A⇒ B, where A⊂ I , B ⊂ I , A 6= ∅, B 6= ∅, and A∩B = φ. The rule A⇒ B holds in the
transaction set D with support s, where s is the percentage of transactions in D that
contain A∪B (i.e., the union of sets A and B say, or, both A and B). This is taken to be
the probability, P(A∪B).1 The rule A⇒ B has confidence c in the transaction set D,
where c is the percentage of transactions in D containing A that also contain B. This is
taken to be the conditional probability, P(B|A). That is,

support(A⇒B)=P(A∪B) (6.2)

confidence(A⇒B)=P(B|A). (6.3)

Rules that satisfy both a minimum support threshold (min sup) and a minimum con-
fidence threshold (min conf) are called strong. By convention, we write support and
confidence values so as to occur between 0% and 100%, rather than 0 to 1.0.

A set of items is referred to as an itemset.2 An itemset that contains k items is a
k-itemset. The set {computer, antivirus software} is a 2-itemset. The occurrence fre-
quency of an itemset is the number of transactions that contain the itemset. This is
also known, simply, as the frequency, support count, or count of the itemset. Note
that the itemset support defined in Eq. (6.2) is sometimes referred to as relative support,
whereas the occurrence frequency is called the absolute support. If the relative support
of an itemset I satisfies a prespecified minimum support threshold (i.e., the absolute
support of I satisfies the corresponding minimum support count threshold), then I is
a frequent itemset.3 The set of frequent k-itemsets is commonly denoted by Lk .4

From Eq. (6.3), we have

confidence(A⇒B)= P(B|A)=
support(A∪B)

support(A)
=

support count(A∪B)

support count(A)
. (6.4)

1Notice that the notation P(A∪B) indicates the probability that a transaction contains the union of sets
A and B (i.e., it contains every item in A and B). This should not be confused with P(A or B), which
indicates the probability that a transaction contains either A or B.
2In the data mining research literature, “itemset” is more commonly used than “item set.”
3In early work, itemsets satisfying minimum support were referred to as large. This term, however,
is somewhat confusing as it has connotations of the number of items in an itemset rather than the
frequency of occurrence of the set. Hence, we use the more recent term frequent.
4Although the term frequent is preferred over large, for historic reasons frequent k-itemsets are still
denoted as Lk .

HAN 13-ch06-243-278-9780123814791 2011/6/2 3:04 Page 247 #5

6.1 Basic Concepts 247

Equation (6.4) shows that the confidence of rule A⇒ B can be easily derived from the
support counts of A and A∪B. That is, once the support counts of A, B, and A∪B are
found, it is straightforward to derive the corresponding association rules A ⇒ B and
B ⇒ A and check whether they are strong. Thus, the problem of mining association
rules can be reduced to that of mining frequent itemsets.

In general, association rule mining can be viewed as a two-step process:

1. Find all frequent itemsets: By definition, each of these itemsets will occur at least as
frequently as a predetermined minimum support count, min sup.

2. Generate strong association rules from the frequent itemsets: By definition, these
rules must satisfy minimum support and minimum confidence.

Additional interestingness measures can be applied for the discovery of correlation
relationships between associated items, as will be discussed in Section 6.3. Because
the second step is much less costly than the first, the overall performance of mining
association rules is determined by the first step.

A major challenge in mining frequent itemsets from a large data set is the fact that
such mining often generates a huge number of itemsets satisfying the minimum support
(min sup) threshold, especially when min sup is set low. This is because if an itemset is
frequent, each of its subsets is frequent as well. A long itemset will contain a combinato-
rial number of shorter, frequent sub-itemsets. For example, a frequent itemset of length
100, such as {a1, a2, . . . , a100}, contains

(100
1

)
= 100 frequent 1-itemsets: {a1}, {a2}, . . . ,

{a100};
(100

2

)
frequent 2-itemsets: {a1, a2}, {a1, a3}, . . . , {a99, a100}; and so on. The total

number of frequent itemsets that it contains is thus(
100

1

)
+

(
100

2

)
+ ·· ·+

(
100

100

)
= 2100

− 1≈ 1.27× 1030. (6.5)

This is too huge a number of itemsets for any computer to compute or store. To over-
come this difficulty, we introduce the concepts of closed frequent itemset and maximal
frequent itemset.

An itemset X is closed in a data set D if there exists no proper super-itemset Y 5 such
that Y has the same support count as X in D. An itemset X is a closed frequent itemset in
set D if X is both closed and frequent in D. An itemset X is a maximal frequent itemset
(or max-itemset) in a data set D if X is frequent, and there exists no super-itemset Y
such that X ⊂ Y and Y is frequent in D.

Let C be the set of closed frequent itemsets for a data set D satisfying a minimum sup-
port threshold, min sup. LetM be the set of maximal frequent itemsets for D satisfying
min sup. Suppose that we have the support count of each itemset in C and M. Notice
that C and its count information can be used to derive the whole set of frequent itemsets.

5Y is a proper super-itemset of X if X is a proper sub-itemset of Y , that is, if X ⊂ Y . In other words,
every item of X is contained in Y but there is at least one item of Y that is not in X .

HAN 13-ch06-243-278-9780123814791 2011/6/2 3:04 Page 248 #6

248 Chapter 6 Mining Frequent Patterns, Associations, and Correlations

Thus, we say that C contains complete information regarding its corresponding frequent
itemsets. On the other hand, M registers only the support of the maximal itemsets. It
usually does not contain the complete support information regarding its corresponding
frequent itemsets. We illustrate these concepts with Example 6.2.

Example 6.2 Closed and maximal frequent itemsets. Suppose that a transaction database has only
two transactions: {〈a1, a2, . . . , a100〉; 〈a1, a2, . . . , a50〉}. Let the minimum support count
threshold be min sup= 1. We find two closed frequent itemsets and their support
counts, that is, C = {{a1, a2, . . . , a100} : 1; {a1, a2, . . . , a50} : 2}. There is only one max-
imal frequent itemset: M= {{a1, a2, . . . , a100} : 1}. Notice that we cannot include
{a1, a2, . . . , a50} as a maximal frequent itemset because it has a frequent superset,
{a1, a2, . . . , a100}. Compare this to the preceding where we determined that there are
2100
− 1 frequent itemsets, which are too many to be enumerated!

The set of closed frequent itemsets contains complete information regarding the fre-
quent itemsets. For example, from C, we can derive, say, (1) {a2, a45 : 2} since {a2, a45} is
a sub-itemset of the itemset {a1, a2, . . . , a50 : 2}; and (2) {a8, a55 : 1} since {a8, a55} is not
a sub-itemset of the previous itemset but of the itemset {a1, a2, . . . , a100 : 1}. However,
from the maximal frequent itemset, we can only assert that both itemsets ({a2, a45} and
{a8, a55}) are frequent, but we cannot assert their actual support counts.

6.2 Frequent Itemset Mining Methods

In this section, you will learn methods for mining the simplest form of frequent pat-
terns such as those discussed for market basket analysis in Section 6.1.1. We begin by
presenting Apriori, the basic algorithm for finding frequent itemsets (Section 6.2.1). In
Section 6.2.2, we look at how to generate strong association rules from frequent item-
sets. Section 6.2.3 describes several variations to the Apriori algorithm for improved
efficiency and scalability. Section 6.2.4 presents pattern-growth methods for mining
frequent itemsets that confine the subsequent search space to only the data sets contain-
ing the current frequent itemsets. Section 6.2.5 presents methods for mining frequent
itemsets that take advantage of the vertical data format.

6.2.1 Apriori Algorithm: Finding Frequent Itemsets
by Confined Candidate Generation

Apriori is a seminal algorithm proposed by R. Agrawal and R. Srikant in 1994 for min-
ing frequent itemsets for Boolean association rules [AS94b]. The name of the algorithm
is based on the fact that the algorithm uses prior knowledge of frequent itemset prop-
erties, as we shall see later. Apriori employs an iterative approach known as a level-wise
search, where k-itemsets are used to explore (k+ 1)-itemsets. First, the set of frequent
1-itemsets is found by scanning the database to accumulate the count for each item, and

HAN 13-ch06-243-278-9780123814791 2011/6/2 3:04 Page 249 #7

6.2 Frequent Itemset Mining Methods 249

collecting those items that satisfy minimum support. The resulting set is denoted by L1.
Next, L1 is used to find L2, the set of frequent 2-itemsets, which is used to find L3, and
so on, until no more frequent k-itemsets can be found. The finding of each Lk requires
one full scan of the database.

To improve the efficiency of the level-wise generation of frequent itemsets, an
important property called the Apriori property is used to reduce the search space.

Apriori property: All nonempty subsets of a frequent itemset must also be frequent.
The Apriori property is based on the following observation. By definition, if an item-

set I does not satisfy the minimum support threshold, min sup, then I is not frequent,
that is, P(I) <min sup. If an item A is added to the itemset I , then the resulting itemset
(i.e., I ∪A) cannot occur more frequently than I . Therefore, I ∪A is not frequent either,
that is, P(I ∪A) <min sup.

This property belongs to a special category of properties called antimonotonicity in
the sense that if a set cannot pass a test, all of its supersets will fail the same test as well. It
is called antimonotonicity because the property is monotonic in the context of failing a
test.6

“How is the Apriori property used in the algorithm?” To understand this, let us look at
how Lk−1 is used to find Lk for k ≥ 2. A two-step process is followed, consisting of join
and prune actions.

1. The join step: To find Lk , a set of candidate k-itemsets is generated by joining
Lk−1 with itself. This set of candidates is denoted Ck . Let l1 and l2 be itemsets
in Lk−1. The notation li[j] refers to the jth item in li (e.g., l1[k− 2] refers to
the second to the last item in l1). For efficient implementation, Apriori assumes
that items within a transaction or itemset are sorted in lexicographic order. For
the (k− 1)-itemset, li , this means that the items are sorted such that li[1]< li[2]
< · · ·< li[k− 1]. The join, Lk−1 1 Lk−1, is performed, where members of Lk−1 are
joinable if their first (k− 2) items are in common. That is, members l1 and l2
of Lk−1 are joined if (l1[1]= l2[1])∧ (l1[2]= l2[2])∧ ·· · ∧ (l1[k− 2]= l2[k− 2])
∧(l1[k− 1]< l2[k− 1]). The condition l1[k− 1]< l2[k− 1] simply ensures that
no duplicates are generated. The resulting itemset formed by joining l1 and l2 is
{l1[1], l1[2], . . . , l1[k− 2], l1[k− 1], l2[k− 1]}.

2. The prune step: Ck is a superset of Lk , that is, its members may or may not be
frequent, but all of the frequent k-itemsets are included in Ck . A database scan to
determine the count of each candidate in Ck would result in the determination of
Lk (i.e., all candidates having a count no less than the minimum support count are
frequent by definition, and therefore belong to Lk). Ck , however, can be huge, and so
this could involve heavy computation. To reduce the size of Ck , the Apriori property

6The Apriori property has many applications. For example, it can also be used to prune search during
data cube computation (Chapter 5).

HAN 13-ch06-243-278-9780123814791 2011/6/2 3:04 Page 250 #8

250 Chapter 6 Mining Frequent Patterns, Associations, and Correlations

is used as follows. Any (k− 1)-itemset that is not frequent cannot be a subset of a
frequent k-itemset. Hence, if any (k− 1)-subset of a candidate k-itemset is not in
Lk−1, then the candidate cannot be frequent either and so can be removed from Ck .
This subset testing can be done quickly by maintaining a hash tree of all frequent
itemsets.

Example 6.3 Apriori. Let’s look at a concrete example, based on the AllElectronics transaction
database, D, of Table 6.1. There are nine transactions in this database, that is, |D| = 9.
We use Figure 6.2 to illustrate the Apriori algorithm for finding frequent itemsets in D.

1. In the first iteration of the algorithm, each item is a member of the set of candidate
1-itemsets, C1. The algorithm simply scans all of the transactions to count the
number of occurrences of each item.

2. Suppose that the minimum support count required is 2, that is, min sup= 2. (Here,
we are referring to absolute support because we are using a support count. The corre-
sponding relative support is 2/9= 22%.) The set of frequent 1-itemsets, L1, can then
be determined. It consists of the candidate 1-itemsets satisfying minimum support.
In our example, all of the candidates in C1 satisfy minimum support.

3. To discover the set of frequent 2-itemsets, L2, the algorithm uses the join L1 1 L1 to
generate a candidate set of 2-itemsets, C2.7 C2 consists of

(
|L1|

2

)
2-itemsets. Note that

no candidates are removed from C2 during the prune step because each subset of the
candidates is also frequent.

Table 6.1 Transactional Data for an AllElectronics
Branch

TID List of item IDs

T100 I1, I2, I5

T200 I2, I4

T300 I2, I3

T400 I1, I2, I4

T500 I1, I3

T600 I2, I3

T700 I1, I3

T800 I1, I2, I3, I5

T900 I1, I2, I3

7L1 1 L1 is equivalent to L1× L1, since the definition of Lk 1 Lk requires the two joining itemsets to
share k− 1= 0 items.

HAN 13-ch06-243-278-9780123814791 2011/6/2 3:04 Page 251 #9

6.2 Frequent Itemset Mining Methods 251

Figure 6.2 Generation of the candidate itemsets and frequent itemsets, where the minimum support
count is 2.

4. Next, the transactions in D are scanned and the support count of each candidate
itemset in C2 is accumulated, as shown in the middle table of the second row in
Figure 6.2.

5. The set of frequent 2-itemsets, L2, is then determined, consisting of those candidate
2-itemsets in C2 having minimum support.

6. The generation of the set of the candidate 3-itemsets, C3, is detailed in Figure 6.3.
From the join step, we first get C3 = L2 1 L2 = {{I1, I2, I3}, {I1, I2, I5}, {I1, I3, I5},
{I2, I3, I4}, {I2, I3, I5}, {I2, I4, I5}}. Based on the Apriori property that all subsets
of a frequent itemset must also be frequent, we can determine that the four latter
candidates cannot possibly be frequent. We therefore remove them from C3, thereby
saving the effort of unnecessarily obtaining their counts during the subsequent scan
of D to determine L3. Note that when given a candidate k-itemset, we only need to
check if its (k− 1)-subsets are frequent since the Apriori algorithm uses a level-wise

HAN 13-ch06-243-278-9780123814791 2011/6/2 3:04 Page 252 #10

252 Chapter 6 Mining Frequent Patterns, Associations, and Correlations

(a) Join: C3 = L2 1 L2 = {{I1, I2}, {I1, I3}, {I1, I5}, {I2, I3}, {I2, I4}, {I2, I5}}
1{{I1, I2}, {I1, I3}, {I1, I5}, {I2, I3}, {I2, I4}, {I2, I5}}
= {{I1, I2, I3}, {I1, I2, I5}, {I1, I3, I5}, {I2, I3, I4}, {I2, I3, I5}, {I2, I4, I5}}.

(b) Prune using the Apriori property: All nonempty subsets of a frequent itemset must also be
frequent. Do any of the candidates have a subset that is not frequent?

The 2-item subsets of {I1, I2, I3} are {I1, I2}, {I1, I3}, and {I2, I3}. All 2-item subsets
of {I1, I2, I3} are members of L2. Therefore, keep {I1, I2, I3} in C3.

The 2-item subsets of {I1, I2, I5} are {I1, I2}, {I1, I5}, and {I2, I5}. All 2-item subsets of
{I1, I2, I5} are members of L2. Therefore, keep {I1, I2, I5} in C3.

The 2-item subsets of {I1, I3, I5} are {I1, I3}, {I1, I5}, and {I3, I5}. {I3, I5} is not
a member of L2, and so it is not frequent. Therefore, remove {I1, I3, I5} from C3.

The 2-item subsets of {I2, I3, I4} are {I2, I3}, {I2, I4}, and {I3, I4}. {I3, I4} is not a
member of L2, and so it is not frequent. Therefore, remove {I2, I3, I4} from C3.

The 2-item subsets of {I2, I3, I5} are {I2, I3}, {I2, I5}, and {I3, I5}. {I3, I5} is not
a member of L2, and so it is not frequent. Therefore, remove {I2, I3, I5} from C3.

The 2-item subsets of {I2, I4, I5} are {I2, I4}, {I2, I5}, and {I4, I5}. {I4, I5} is not a
member of L2, and so it is not frequent. Therefore, remove {I2, I4, I5} from C3.

(c) Therefore, C3 = {{I1, I2, I3}, {I1, I2, I5}} after pruning.

Figure 6.3 Generation and pruning of candidate 3-itemsets, C3, from L2 using the Apriori property.

search strategy. The resulting pruned version of C3 is shown in the first table of the
bottom row of Figure 6.2.

7. The transactions in D are scanned to determine L3, consisting of those candidate
3-itemsets in C3 having minimum support (Figure 6.2).

8. The algorithm uses L3 1 L3 to generate a candidate set of 4-itemsets, C4. Although
the join results in {{I1, I2, I3, I5}}, itemset {I1, I2, I3, I5} is pruned because its subset
{I2, I3, I5} is not frequent. Thus, C4 = φ, and the algorithm terminates, having found
all of the frequent itemsets.

Figure 6.4 shows pseudocode for the Apriori algorithm and its related procedures.
Step 1 of Apriori finds the frequent 1-itemsets, L1. In steps 2 through 10, Lk−1 is used
to generate candidates Ck to find Lk for k ≥ 2. The apriori gen procedure generates the
candidates and then uses the Apriori property to eliminate those having a subset that is
not frequent (step 3). This procedure is described later. Once all of the candidates have
been generated, the database is scanned (step 4). For each transaction, a subset function
is used to find all subsets of the transaction that are candidates (step 5), and the count
for each of these candidates is accumulated (steps 6 and 7). Finally, all the candidates
satisfying the minimum support (step 9) form the set of frequent itemsets, L (step 11).

HAN 13-ch06-243-278-9780123814791 2011/6/2 3:04 Page 253 #11

6.2 Frequent Itemset Mining Methods 253

Algorithm: Apriori. Find frequent itemsets using an iterative level-wise approach based
on candidate generation.

Input:

D, a database of transactions;

min sup, the minimum support count threshold.

Output: L, frequent itemsets in D.

Method:

(1) L1 = find frequent 1-itemsets(D);
(2) for (k = 2;Lk−1 6= φ;k++) {
(3) Ck = apriori gen(Lk−1);
(4) for each transaction t ∈ D { // scan D for counts
(5) Ct = subset(Ck , t); // get the subsets of t that are candidates
(6) for each candidate c ∈ Ct
(7) c.count++;
(8) }

(9) Lk = {c ∈ Ck|c.count ≥min sup}
(10) }

(11) return L = ∪kLk ;

procedure apriori gen(Lk−1:frequent (k− 1)-itemsets)
(1) for each itemset l1 ∈ Lk−1
(2) for each itemset l2 ∈ Lk−1
(3) if (l1[1]= l2[1])∧ (l1[2]= l2[2])

∧...∧ (l1[k− 2]= l2[k− 2])∧ (l1[k− 1]< l2[k− 1]) then {
(4) c = l1 1 l2; // join step: generate candidates
(5) if has infrequent subset(c, Lk−1) then
(6) delete c; // prune step: remove unfruitful candidate
(7) else add c to Ck ;
(8) }

(9) return Ck ;

procedure has infrequent subset(c: candidate k-itemset;
Lk−1: frequent (k− 1)-itemsets); // use prior knowledge

(1) for each (k− 1)-subset s of c
(2) if s 6∈ Lk−1 then
(3) return TRUE;
(4) return FALSE;

Figure 6.4 Apriori algorithm for discovering frequent itemsets for mining Boolean association rules.

A procedure can then be called to generate association rules from the frequent itemsets.
Such a procedure is described in Section 6.2.2.

The apriori gen procedure performs two kinds of actions, namely, join and prune, as
described before. In the join component, Lk−1 is joined with Lk−1 to generate potential
candidates (steps 1–4). The prune component (steps 5–7) employs the Apriori property
to remove candidates that have a subset that is not frequent. The test for infrequent
subsets is shown in procedure has infrequent subset.

HAN 13-ch06-243-278-9780123814791 2011/6/2 3:04 Page 254 #12

254 Chapter 6 Mining Frequent Patterns, Associations, and Correlations

6.2.2 Generating Association Rules from Frequent Itemsets

Once the frequent itemsets from transactions in a database D have been found, it is
straightforward to generate strong association rules from them (where strong associa-
tion rules satisfy both minimum support and minimum confidence). This can be done
using Eq. (6.4) for confidence, which we show again here for completeness:

confidence(A⇒ B)= P(B|A)=
support count(A∪B)

support count(A)
.

The conditional probability is expressed in terms of itemset support count, where
support count(A∪B) is the number of transactions containing the itemsets A∪B, and
support count(A) is the number of transactions containing the itemset A. Based on this
equation, association rules can be generated as follows:

For each frequent itemset l, generate all nonempty subsets of l.

For every nonempty subset s of l, output the rule “s⇒ (l− s)” if support count(l)
support count(s) ≥

min conf, where min conf is the minimum confidence threshold.

Because the rules are generated from frequent itemsets, each one automatically satis-
fies the minimum support. Frequent itemsets can be stored ahead of time in hash tables
along with their counts so that they can be accessed quickly.

Example 6.4 Generating association rules. Let’s try an example based on the transactional data for
AllElectronics shown before in Table 6.1. The data contain frequent itemset X = {I1, I2,
I5}. What are the association rules that can be generated from X? The nonempty subsets
of X are {I1, I2}, {I1, I5}, {I2, I5}, {I1}, {I2}, and {I5}. The resulting association rules are
as shown below, each listed with its confidence:

{I1, I2} ⇒ I5, confidence= 2/4= 50%
{I1, I5} ⇒ I2, confidence= 2/2= 100%
{I2, I5} ⇒ I1, confidence= 2/2= 100%
I1⇒ {I2, I5}, confidence= 2/6= 33%
I2⇒ {I1, I5}, confidence= 2/7= 29%
I5⇒ {I1, I2}, confidence= 2/2= 100%

If the minimum confidence threshold is, say, 70%, then only the second, third, and
last rules are output, because these are the only ones generated that are strong. Note
that, unlike conventional classification rules, association rules can contain more than
one conjunct in the right side of the rule.

6.2.3 Improving the Efficiency of Apriori

“How can we further improve the efficiency of Apriori-based mining?” Many variations of
the Apriori algorithm have been proposed that focus on improving the efficiency of the
original algorithm. Several of these variations are summarized as follows:

HAN 13-ch06-243-278-9780123814791 2011/6/2 3:04 Page 255 #13

6.2 Frequent Itemset Mining Methods 255

0

2

{I1, I4}
{I3, I5}

1

2

{I1, I5}
{I1, I5}

2

4

{I2, I3}
{I2, I3}
{I2, I3}
{I2, I3}

3

2

{I2, I4}
{I2, I4}

4

2

{I2, I5}
{I2, I5}

5

4

{I1, I2}
{I1, I2}
{I1, I2}
{I1, I2}

6

4

{I1, I3}
{I1, I3}
{I1, I3}
{I1, I3}

H2

bucket address

bucket count

bucket contents
Create hash table H2
using hash function

h(x, y)� ((order of x)�10
� (order of y)) mod 7

Figure 6.5 Hash table, H2, for candidate 2-itemsets. This hash table was generated by scanning
Table 6.1’s transactions while determining L1. If the minimum support count is, say, 3, then
the itemsets in buckets 0, 1, 3, and 4 cannot be frequent and so they should not be included
in C2.

Hash-based technique (hashing itemsets into corresponding buckets): A hash-based
technique can be used to reduce the size of the candidate k-itemsets, Ck , for k > 1.
For example, when scanning each transaction in the database to generate the frequent
1-itemsets, L1, we can generate all the 2-itemsets for each transaction, hash (i.e., map)
them into the different buckets of a hash table structure, and increase the correspond-
ing bucket counts (Figure 6.5). A 2-itemset with a corresponding bucket count in the
hash table that is below the support threshold cannot be frequent and thus should
be removed from the candidate set. Such a hash-based technique may substantially
reduce the number of candidate k-itemsets examined (especially when k = 2).

Transaction reduction (reducing the number of transactions scanned in future itera-
tions): A transaction that does not contain any frequent k-itemsets cannot contain any
frequent (k+ 1)-itemsets. Therefore, such a transaction can be marked or removed
from further consideration because subsequent database scans for j-itemsets, where
j > k, will not need to consider such a transaction.

Partitioning (partitioning the data to find candidate itemsets): A partitioning tech-
nique can be used that requires just two database scans to mine the frequent itemsets
(Figure 6.6). It consists of two phases. In phase I, the algorithm divides the trans-
actions of D into n nonoverlapping partitions. If the minimum relative support
threshold for transactions in D is min sup, then the minimum support count for a
partition is min sup × the number of transactions in that partition. For each partition,
all the local frequent itemsets (i.e., the itemsets frequent within the partition) are found.

A local frequent itemset may or may not be frequent with respect to the entire
database, D. However, any itemset that is potentially frequent with respect to D must
occur as a frequent itemset in at least one of the partitions.8 Therefore, all local frequent
itemsets are candidate itemsets with respect to D. The collection of frequent itemsets
from all partitions forms the global candidate itemsets with respect to D. In phase II,

8The proof of this property is left as an exercise (see Exercise 6.3d).

HAN 13-ch06-243-278-9780123814791 2011/6/2 3:04 Page 256 #14

256 Chapter 6 Mining Frequent Patterns, Associations, and Correlations

Transactions
in D

Frequent
itemsets

in D

Divide D
into n

partitions

Find the
frequent
itemsets

local to each
partition
(1 scan)

Combine
all local
frequent
itemsets
to form

candidate
itemset

Find global
frequent
itemsets
among

candidates
(1 scan)

Phase I

Phase II

Figure 6.6 Mining by partitioning the data.

a second scan of D is conducted in which the actual support of each candidate is
assessed to determine the global frequent itemsets. Partition size and the number of
partitions are set so that each partition can fit into main memory and therefore be
read only once in each phase.

Sampling (mining on a subset of the given data): The basic idea of the sampling
approach is to pick a random sample S of the given data D, and then search for
frequent itemsets in S instead of D. In this way, we trade off some degree of accuracy
against efficiency. The S sample size is such that the search for frequent itemsets in S
can be done in main memory, and so only one scan of the transactions in S is required
overall. Because we are searching for frequent itemsets in S rather than in D, it is
possible that we will miss some of the global frequent itemsets.

To reduce this possibility, we use a lower support threshold than minimum support
to find the frequent itemsets local to S (denoted LS). The rest of the database is
then used to compute the actual frequencies of each itemset in LS. A mechanism is
used to determine whether all the global frequent itemsets are included in LS. If LS

actually contains all the frequent itemsets in D, then only one scan of D is required.
Otherwise, a second pass can be done to find the frequent itemsets that were missed
in the first pass. The sampling approach is especially beneficial when efficiency is of
utmost importance such as in computationally intensive applications that must be
run frequently.

Dynamic itemset counting (adding candidate itemsets at different points during a
scan): A dynamic itemset counting technique was proposed in which the database
is partitioned into blocks marked by start points. In this variation, new candidate
itemsets can be added at any start point, unlike in Apriori, which determines new
candidate itemsets only immediately before each complete database scan. The tech-
nique uses the count-so-far as the lower bound of the actual count. If the count-so-far
passes the minimum support, the itemset is added into the frequent itemset collection
and can be used to generate longer candidates. This leads to fewer database scans than
with Apriori for finding all the frequent itemsets.

Other variations are discussed in the next chapter.

HAN 13-ch06-243-278-9780123814791 2011/6/2 3:04 Page 257 #15

6.2 Frequent Itemset Mining Methods 257

6.2.4 A Pattern-Growth Approach for Mining
Frequent Itemsets

As we have seen, in many cases the Apriori candidate generate-and-test method signifi-
cantly reduces the size of candidate sets, leading to good performance gain. However, it
can suffer from two nontrivial costs:

It may still need to generate a huge number of candidate sets. For example, if there are
104 frequent 1-itemsets, the Apriori algorithm will need to generate more than 107

candidate 2-itemsets.

It may need to repeatedly scan the whole database and check a large set of candidates by
pattern matching. It is costly to go over each transaction in the database to determine
the support of the candidate itemsets.

“Can we design a method that mines the complete set of frequent itemsets without such
a costly candidate generation process?” An interesting method in this attempt is called
frequent pattern growth, or simply FP-growth, which adopts a divide-and-conquer
strategy as follows. First, it compresses the database representing frequent items into a
frequent pattern tree, or FP-tree, which retains the itemset association information. It
then divides the compressed database into a set of conditional databases (a special kind of
projected database), each associated with one frequent item or “pattern fragment,” and
mines each database separately. For each “pattern fragment,” only its associated data sets
need to be examined. Therefore, this approach may substantially reduce the size of the
data sets to be searched, along with the “growth” of patterns being examined. You will
see how it works in Example 6.5.

Example 6.5 FP-growth (finding frequent itemsets without candidate generation). We reexamine
the mining of transaction database, D, of Table 6.1 in Example 6.3 using the frequent
pattern growth approach.

The first scan of the database is the same as Apriori, which derives the set of frequent
items (1-itemsets) and their support counts (frequencies). Let the minimum support
count be 2. The set of frequent items is sorted in the order of descending support count.
This resulting set or list is denoted by L. Thus, we have L ={{I2: 7}, {I1: 6}, {I3: 6},
{I4: 2}, {I5: 2}}.

An FP-tree is then constructed as follows. First, create the root of the tree, labeled
with “null.” Scan database D a second time. The items in each transaction are processed
in L order (i.e., sorted according to descending support count), and a branch is created
for each transaction. For example, the scan of the first transaction, “T100: I1, I2, I5,”
which contains three items (I2, I1, I5 in L order), leads to the construction of the first
branch of the tree with three nodes, 〈I2: 1〉, 〈I1: 1〉, and 〈I5: 1〉, where I2 is linked as a
child to the root, I1 is linked to I2, and I5 is linked to I1. The second transaction, T200,
contains the items I2 and I4 in L order, which would result in a branch where I2 is linked
to the root and I4 is linked to I2. However, this branch would share a common prefix,
I2, with the existing path for T100. Therefore, we instead increment the count of the I2
node by 1, and create a new node, 〈I4: 1〉, which is linked as a child to 〈I2: 2〉. In general,

HAN 13-ch06-243-278-9780123814791 2011/6/2 3:04 Page 258 #16

258 Chapter 6 Mining Frequent Patterns, Associations, and Correlations

I2
I1
I3
I4
I5

7
6
6
2
2

I1:2

I3:2
I4:1I3:2

I4:1

I5:1

I5:1

I1:4

I2:7

null{}

I3:2

Node-linkItem ID

Support
count

Figure 6.7 An FP-tree registers compressed, frequent pattern information.

when considering the branch to be added for a transaction, the count of each node along
a common prefix is incremented by 1, and nodes for the items following the prefix are
created and linked accordingly.

To facilitate tree traversal, an item header table is built so that each item points to its
occurrences in the tree via a chain of node-links. The tree obtained after scanning all
the transactions is shown in Figure 6.7 with the associated node-links. In this way, the
problem of mining frequent patterns in databases is transformed into that of mining the
FP-tree.

The FP-tree is mined as follows. Start from each frequent length-1 pattern (as an
initial suffix pattern), construct its conditional pattern base (a “sub-database,” which
consists of the set of prefix paths in the FP-tree co-occurring with the suffix pattern),
then construct its (conditional) FP-tree, and perform mining recursively on the tree. The
pattern growth is achieved by the concatenation of the suffix pattern with the frequent
patterns generated from a conditional FP-tree.

Mining of the FP-tree is summarized in Table 6.2 and detailed as follows. We first
consider I5, which is the last item in L, rather than the first. The reason for starting at
the end of the list will become apparent as we explain the FP-tree mining process. I5
occurs in two FP-tree branches of Figure 6.7. (The occurrences of I5 can easily be found
by following its chain of node-links.) The paths formed by these branches are 〈I2, I1,
I5: 1〉 and 〈I2, I1, I3, I5: 1〉. Therefore, considering I5 as a suffix, its corresponding two
prefix paths are 〈I2, I1: 1〉 and 〈I2, I1, I3: 1〉, which form its conditional pattern base.
Using this conditional pattern base as a transaction database, we build an I5-conditional
FP-tree, which contains only a single path, 〈I2: 2, I1: 2〉; I3 is not included because its
support count of 1 is less than the minimum support count. The single path generates
all the combinations of frequent patterns: {I2, I5: 2}, {I1, I5: 2}, {I2, I1, I5: 2}.

For I4, its two prefix paths form the conditional pattern base, {{I2 I1: 1}, {I2: 1}},
which generates a single-node conditional FP-tree, 〈I2: 2〉, and derives one frequent
pattern, {I2, I4: 2}.

HAN 13-ch06-243-278-9780123814791 2011/6/2 3:04 Page 259 #17

6.2 Frequent Itemset Mining Methods 259

Table 6.2 Mining the FP-Tree by Creating Conditional (Sub-)Pattern Bases

Item Conditional Pattern Base Conditional FP-tree Frequent Patterns Generated
I5 {{I2, I1: 1}, {I2, I1, I3: 1}} 〈I2: 2, I1: 2〉 {I2, I5: 2}, {I1, I5: 2}, {I2, I1, I5: 2}

I4 {{I2, I1: 1}, {I2: 1}} 〈I2: 2〉 {I2, I4: 2}

I3 {{I2, I1: 2}, {I2: 2}, {I1: 2}} 〈I2: 4, I1: 2〉, 〈I1: 2〉 {I2, I3: 4}, {I1, I3: 4}, {I2, I1, I3: 2}

I1 {{I2: 4}} 〈I2: 4〉 {I2, I1: 4}

I2 4 I2:4

I1:2

I1:2

Node-linkItem ID

Support
count null{}

I1 4

Figure 6.8 The conditional FP-tree associated with the conditional node I3.

Similar to the preceding analysis, I3’s conditional pattern base is {{I2, I1: 2}, {I2: 2},
{I1: 2}}. Its conditional FP-tree has two branches, 〈I2: 4, I1: 2〉 and 〈I1: 2〉, as shown
in Figure 6.8, which generates the set of patterns {{I2, I3: 4}, {I1, I3: 4}, {I2, I1, I3: 2}}.
Finally, I1’s conditional pattern base is {{I2: 4}}, with an FP-tree that contains only one
node, 〈I2: 4〉, which generates one frequent pattern, {I2, I1: 4}. This mining process is
summarized in Figure 6.9.

The FP-growth method transforms the problem of finding long frequent patterns
into searching for shorter ones in much smaller conditional databases recursively and
then concatenating the suffix. It uses the least frequent items as a suffix, offering good
selectivity. The method substantially reduces the search costs.

When the database is large, it is sometimes unrealistic to construct a main memory-
based FP-tree. An interesting alternative is to first partition the database into a set
of projected databases, and then construct an FP-tree and mine it in each projected
database. This process can be recursively applied to any projected database if its FP-tree
still cannot fit in main memory.

A study of the FP-growth method performance shows that it is efficient and scalable
for mining both long and short frequent patterns, and is about an order of magnitude
faster than the Apriori algorithm.

6.2.5 Mining Frequent Itemsets Using the Vertical Data Format

Both the Apriori and FP-growth methods mine frequent patterns from a set of trans-
actions in TID-itemset format (i.e., {TID : itemset}), where TID is a transaction ID
and itemset is the set of items bought in transaction TID. This is known as the
horizontal data format. Alternatively, data can be presented in item-TID set format

HAN 13-ch06-243-278-9780123814791 2011/6/2 3:04 Page 260 #18

260 Chapter 6 Mining Frequent Patterns, Associations, and Correlations

Algorithm: FP growth. Mine frequent itemsets using an FP-tree by pattern fragment growth.

Input:

D, a transaction database;

min sup, the minimum support count threshold.

Output: The complete set of frequent patterns.

Method:

1. The FP-tree is constructed in the following steps:

(a) Scan the transaction database D once. Collect F , the set of frequent items, and their
support counts. Sort F in support count descending order as L, the list of frequent items.

(b) Create the root of an FP-tree, and label it as “null.” For each transaction Trans in D do the
following.
Select and sort the frequent items in Trans according to the order of L. Let the sorted
frequent item list in Trans be [p|P], where p is the first element and P is the remaining
list. Call insert tree([p|P], T), which is performed as follows. If T has a child N such that
N.item-name= p.item-name, then increment N ’s count by 1; else create a new node N ,
and let its count be 1, its parent link be linked to T , and its node-link to the nodes with
the same item-name via the node-link structure. If P is nonempty, call insert tree(P, N)
recursively.

2. The FP-tree is mined by calling FP growth(FP tree, null), which is implemented as follows.

procedure FP growth(Tree, α)
(1) if Tree contains a single path P then
(2) for each combination (denoted as β) of the nodes in the path P
(3) generate pattern β ∪α with support count = minimum support count of nodes in β;
(4) else for each ai in the header of Tree {
(5) generate pattern β = ai ∪α with support count = ai .support count ;
(6) construct β’s conditional pattern base and then β’s conditional FP tree Treeβ ;
(7) if Treeβ 6= ∅ then
(8) call FP growth(Treeβ , β); }

Figure 6.9 FP-growth algorithm for discovering frequent itemsets without candidate generation.

(i.e., {item : TID set}), where item is an item name, and TID set is the set of transaction
identifiers containing the item. This is known as the vertical data format.

In this subsection, we look at how frequent itemsets can also be mined effi-
ciently using vertical data format, which is the essence of the Eclat (Equivalence Class
Transformation) algorithm.

Example 6.6 Mining frequent itemsets using the vertical data format. Consider the horizontal
data format of the transaction database, D, of Table 6.1 in Example 6.3. This can be
transformed into the vertical data format shown in Table 6.3 by scanning the data
set once.

Mining can be performed on this data set by intersecting the TID sets of every pair
of frequent single items. The minimum support count is 2. Because every single item is

HAN 13-ch06-243-278-9780123814791 2011/6/2 3:04 Page 261 #19

6.2 Frequent Itemset Mining Methods 261

Table 6.3 The Vertical Data Format of the Transaction Data
Set D of Table 6.1

itemset TID set
I1 {T100, T400, T500, T700, T800, T900}

I2 {T100, T200, T300, T400, T600, T800, T900}

I3 {T300, T500, T600, T700, T800, T900}

I4 {T200, T400}

I5 {T100, T800}

Table 6.4 2-Itemsets in Vertical Data Format

itemset TID set
{I1, I2} {T100, T400, T800, T900}

{I1, I3} {T500, T700, T800, T900}

{I1, I4} {T400}

{I1, I5} {T100, T800}

{I2, I3} {T300, T600, T800, T900}

{I2, I4} {T200, T400}

{I2, I5} {T100, T800}

{I3, I5} {T800}

Table 6.5 3-Itemsets in Vertical Data Format

itemset TID set
{I1, I2, I3} {T800, T900}

{I1, I2, I5} {T100, T800}

frequent in Table 6.3, there are 10 intersections performed in total, which lead to eight
nonempty 2-itemsets, as shown in Table 6.4. Notice that because the itemsets {I1, I4}
and {I3, I5} each contain only one transaction, they do not belong to the set of frequent
2-itemsets.

Based on the Apriori property, a given 3-itemset is a candidate 3-itemset only if every
one of its 2-itemset subsets is frequent. The candidate generation process here will gen-
erate only two 3-itemsets: {I1, I2, I3} and {I1, I2, I5}. By intersecting the TID sets of any
two corresponding 2-itemsets of these candidate 3-itemsets, it derives Table 6.5, where
there are only two frequent 3-itemsets: {I1, I2, I3: 2} and {I1, I2, I5: 2}.

Example 6.6 illustrates the process of mining frequent itemsets by exploring the
vertical data format. First, we transform the horizontally formatted data into the
vertical format by scanning the data set once. The support count of an itemset is simply
the length of the TID set of the itemset. Starting with k = 1, the frequent k-itemsets
can be used to construct the candidate (k+ 1)-itemsets based on the Apriori property.

HAN 13-ch06-243-278-9780123814791 2011/6/2 3:04 Page 262 #20

262 Chapter 6 Mining Frequent Patterns, Associations, and Correlations

The computation is done by intersection of the TID sets of the frequent k-itemsets to
compute the TID sets of the corresponding (k+ 1)-itemsets. This process repeats, with
k incremented by 1 each time, until no frequent itemsets or candidate itemsets can be
found.

Besides taking advantage of the Apriori property in the generation of candidate
(k+ 1)-itemset from frequent k-itemsets, another merit of this method is that there
is no need to scan the database to find the support of (k+ 1)-itemsets (for k ≥ 1).
This is because the TID set of each k-itemset carries the complete information required
for counting such support. However, the TID sets can be quite long, taking substantial
memory space as well as computation time for intersecting the long sets.

To further reduce the cost of registering long TID sets, as well as the subsequent
costs of intersections, we can use a technique called diffset, which keeps track of only
the differences of the TID sets of a (k+ 1)-itemset and a corresponding k-itemset. For
instance, in Example 6.6 we have {I1} = {T100, T400, T500, T700, T800, T900} and {I1,
I2} = {T100, T400, T800, T900}. The diffset between the two is diffset({I1, I2}, {I1}) =
{T500, T700}. Thus, rather than recording the four TIDs that make up the intersection of
{I1} and {I2}, we can instead use diffset to record just two TIDs, indicating the difference
between {I1} and {I1, I2}. Experiments show that in certain situations, such as when the
data set contains many dense and long patterns, this technique can substantially reduce
the total cost of vertical format mining of frequent itemsets.

6.2.6 Mining Closed and Max Patterns

In Section 6.1.2 we saw how frequent itemset mining may generate a huge number of
frequent itemsets, especially when the min sup threshold is set low or when there exist
long patterns in the data set. Example 6.2 showed that closed frequent itemsets9 can
substantially reduce the number of patterns generated in frequent itemset mining while
preserving the complete information regarding the set of frequent itemsets. That is, from
the set of closed frequent itemsets, we can easily derive the set of frequent itemsets and
their support. Thus, in practice, it is more desirable to mine the set of closed frequent
itemsets rather than the set of all frequent itemsets in most cases.

“How can we mine closed frequent itemsets?” A naïve approach would be to first mine
the complete set of frequent itemsets and then remove every frequent itemset that is a
proper subset of, and carries the same support as, an existing frequent itemset. However,
this is quite costly. As shown in Example 6.2, this method would have to first derive
2100
− 1 frequent itemsets to obtain a length-100 frequent itemset, all before it could

begin to eliminate redundant itemsets. This is prohibitively expensive. In fact, there exist
only a very small number of closed frequent itemsets in Example 6.2’s data set.

A recommended methodology is to search for closed frequent itemsets directly dur-
ing the mining process. This requires us to prune the search space as soon as we

9Remember that X is a closed frequent itemset in a data set S if there exists no proper super-itemset Y
such that Y has the same support count as X in S, and X satisfies minimum support.

HAN 13-ch06-243-278-9780123814791 2011/6/2 3:04 Page 263 #21

6.2 Frequent Itemset Mining Methods 263

can identify the case of closed itemsets during mining. Pruning strategies include the
following:

Item merging: If every transaction containing a frequent itemset X also contains an itemset
Y but not any proper superset of Y , then X ∪Y forms a frequent closed itemset and there
is no need to search for any itemset containing X but no Y .

For example, in Table 6.2 of Example 6.5, the projected conditional database for
prefix itemset {I5:2} is {{I2, I1}, {I2, I1, I3}}, from which we can see that each of its
transactions contains itemset {I2, I1} but no proper superset of {I2, I1}. Itemset {I2,
I1} can be merged with {I5} to form the closed itemset, {I5, I2, I1: 2}, and we do not
need to mine for closed itemsets that contain I5 but not {I2, I1}.

Sub-itemset pruning: If a frequent itemset X is a proper subset of an already found fre-
quent closed itemset Y and support count(X)=support count(Y), then X and all of X’s
descendants in the set enumeration tree cannot be frequent closed itemsets and thus can
be pruned.

Similar to Example 6.2, suppose a transaction database has only two trans-
actions: {〈a1, a2, . . . , a100〉, 〈a1, a2, . . . , a50〉}, and the minimum support count is
min sup = 2. The projection on the first item, a1, derives the frequent itemset, {a1,
a2, . . . , a50 : 2}, based on the itemset merging optimization. Because support({a2}) =
support({a1, a2, . . . , a50}) = 2, and {a2} is a proper subset of {a1, a2, . . . , a50}, there
is no need to examine a2 and its projected database. Similar pruning can be done
for a3, . . . , a50 as well. Thus, the mining of closed frequent itemsets in this data set
terminates after mining a1’s projected database.

Item skipping: In the depth-first mining of closed itemsets, at each level, there will be
a prefix itemset X associated with a header table and a projected database. If a local
frequent item p has the same support in several header tables at different levels, we can
safely prune p from the header tables at higher levels.

Consider, for example, the previous transaction database having only two trans-
actions: {〈a1, a2, . . . , a100〉, 〈a1, a2, . . . , a50〉}, where min sup= 2. Because a2 in a1’s
projected database has the same support as a2 in the global header table, a2 can be
pruned from the global header table. Similar pruning can be done for a3, . . . , a50.
There is no need to mine anything more after mining a1’s projected database.

Besides pruning the search space in the closed itemset mining process, another
important optimization is to perform efficient checking of each newly derived frequent
itemset to see whether it is closed. This is because the mining process cannot ensure that
every generated frequent itemset is closed.

When a new frequent itemset is derived, it is necessary to perform two kinds of
closure checking: (1) superset checking, which checks if this new frequent itemset is a
superset of some already found closed itemsets with the same support, and (2) subset
checking, which checks whether the newly found itemset is a subset of an already found
closed itemset with the same support.

If we adopt the item merging pruning method under a divide-and-conquer frame-
work, then the superset checking is actually built-in and there is no need to explicitly

HAN 13-ch06-243-278-9780123814791 2011/6/2 3:04 Page 264 #22

264 Chapter 6 Mining Frequent Patterns, Associations, and Correlations

perform superset checking. This is because if a frequent itemset X ∪Y is found later
than itemset X , and carries the same support as X , it must be in X ’s projected database
and must have been generated during itemset merging.

To assist in subset checking, a compressed pattern-tree can be constructed to main-
tain the set of closed itemsets mined so far. The pattern-tree is similar in structure to the
FP-tree except that all the closed itemsets found are stored explicitly in the correspond-
ing tree branches. For efficient subset checking, we can use the following property: If the
current itemset Sc can be subsumed by another already found closed itemset Sa, then (1) Sc

and Sa have the same support, (2) the length of Sc is smaller than that of Sa, and (3) all of
the items in Sc are contained in Sa.

Based on this property, a two-level hash index structure can be built for fast access-
ing of the pattern-tree: The first level uses the identifier of the last item in Sc as a hash key
(since this identifier must be within the branch of Sc), and the second level uses the sup-
port of Sc as a hash key (since Sc and Sa have the same support). This will substantially
speed up the subset checking process.

This discussion illustrates methods for efficient mining of closed frequent itemsets.
“Can we extend these methods for efficient mining of maximal frequent itemsets?” Because
maximal frequent itemsets share many similarities with closed frequent itemsets, many
of the optimization techniques developed here can be extended to mining maximal
frequent itemsets. However, we leave this method as an exercise for interested readers.

6.3 Which Patterns Are Interesting?—Pattern
Evaluation Methods

Most association rule mining algorithms employ a support–confidence framework.
Although minimum support and confidence thresholds help weed out or exclude the
exploration of a good number of uninteresting rules, many of the rules generated are
still not interesting to the users. Unfortunately, this is especially true when mining at
low support thresholds or mining for long patterns. This has been a major bottleneck for
successful application of association rule mining.

In this section, we first look at how even strong association rules can be uninteresting
and misleading (Section 6.3.1). We then discuss how the support–confidence frame-
work can be supplemented with additional interestingness measures based on correlation
analysis (Section 6.3.2). Section 6.3.3 presents additional pattern evaluation measures.
It then provides an overall comparison of all the measures discussed here. By the end,
you will learn which pattern evaluation measures are most effective for the discovery of
only interesting rules.

6.3.1 Strong Rules Are Not Necessarily Interesting

Whether or not a rule is interesting can be assessed either subjectively or objectively.
Ultimately, only the user can judge if a given rule is interesting, and this judgment, being

HAN 13-ch06-243-278-9780123814791 2011/6/2 3:04 Page 265 #23

6.3 Which Patterns Are Interesting?—Pattern Evaluation Methods 265

subjective, may differ from one user to another. However, objective interestingness mea-
sures, based on the statistics “behind” the data, can be used as one step toward the goal
of weeding out uninteresting rules that would otherwise be presented to the user.

“How can we tell which strong association rules are really interesting?” Let’s examine
the following example.

Example 6.7 A misleading “strong” association rule. Suppose we are interested in analyzing trans-
actions at AllElectronics with respect to the purchase of computer games and videos.
Let game refer to the transactions containing computer games, and video refer to those
containing videos. Of the 10,000 transactions analyzed, the data show that 6000 of the
customer transactions included computer games, while 7500 included videos, and 4000
included both computer games and videos. Suppose that a data mining program for
discovering association rules is run on the data, using a minimum support of, say, 30%
and a minimum confidence of 60%. The following association rule is discovered:

buys(X , “computer games”)⇒ buys(X , “videos”)

[support = 40%, confidence = 66%]. (6.6)

Rule (6.6) is a strong association rule and would therefore be reported, since its support
value of 4000

10,000 = 40% and confidence value of 4000
6000 = 66% satisfy the minimum support

and minimum confidence thresholds, respectively. However, Rule (6.6) is misleading
because the probability of purchasing videos is 75%, which is even larger than 66%. In
fact, computer games and videos are negatively associated because the purchase of one
of these items actually decreases the likelihood of purchasing the other. Without fully
understanding this phenomenon, we could easily make unwise business decisions based
on Rule (6.6).

Example 6.7 also illustrates that the confidence of a rule A⇒ B can be deceiving. It
does not measure the real strength (or lack of strength) of the correlation and implica-
tion between A and B. Hence, alternatives to the support–confidence framework can be
useful in mining interesting data relationships.

6.3.2 From Association Analysis to Correlation Analysis

As we have seen so far, the support and confidence measures are insufficient at filtering
out uninteresting association rules. To tackle this weakness, a correlation measure can
be used to augment the support–confidence framework for association rules. This leads
to correlation rules of the form

A⇒ B [support, confidence, correlation]. (6.7)

That is, a correlation rule is measured not only by its support and confidence but also
by the correlation between itemsets A and B. There are many different correlation mea-
sures from which to choose. In this subsection, we study several correlation measures to
determine which would be good for mining large data sets.

HAN 13-ch06-243-278-9780123814791 2011/6/2 3:04 Page 266 #24

266 Chapter 6 Mining Frequent Patterns, Associations, and Correlations

Lift is a simple correlation measure that is given as follows. The occurrence of itemset
A is independent of the occurrence of itemset B if P(A∪B)= P(A)P(B); otherwise,
itemsets A and B are dependent and correlated as events. This definition can easily be
extended to more than two itemsets. The lift between the occurrence of A and B can be
measured by computing

lift(A, B)=
P(A∪B)

P(A)P(B)
. (6.8)

If the resulting value of Eq. (6.8) is less than 1, then the occurrence of A is negatively
correlated with the occurrence of B, meaning that the occurrence of one likely leads to
the absence of the other one. If the resulting value is greater than 1, then A and B are
positively correlated, meaning that the occurrence of one implies the occurrence of the
other. If the resulting value is equal to 1, then A and B are independent and there is no
correlation between them.

Equation (6.8) is equivalent to P(B|A)/P(B), or conf(A⇒ B)/sup(B), which is also
referred to as the lift of the association (or correlation) rule A⇒ B. In other words, it
assesses the degree to which the occurrence of one “lifts” the occurrence of the other. For
example, if A corresponds to the sale of computer games and B corresponds to the sale
of videos, then given the current market conditions, the sale of games is said to increase
or “lift” the likelihood of the sale of videos by a factor of the value returned by Eq. (6.8).

Let’s go back to the computer game and video data of Example 6.7.

Example 6.8 Correlation analysis using lift. To help filter out misleading “strong” associations of
the form A⇒ B from the data of Example 6.7, we need to study how the two item-
sets, A and B, are correlated. Let game refer to the transactions of Example 6.7 that do
not contain computer games, and video refer to those that do not contain videos. The
transactions can be summarized in a contingency table, as shown in Table 6.6.

From the table, we can see that the probability of purchasing a computer game
is P({game})= 0.60, the probability of purchasing a video is P({video})= 0.75, and
the probability of purchasing both is P({game,video})= 0.40. By Eq. (6.8), the lift of
Rule (6.6) is P({game, video})/(P({game})× P({video}))= 0.40/(0.60× 0.75)= 0.89.
Because this value is less than 1, there is a negative correlation between the occur-
rence of {game} and {video}. The numerator is the likelihood of a customer purchasing
both, while the denominator is what the likelihood would have been if the two pur-
chases were completely independent. Such a negative correlation cannot be identified
by a support–confidence framework.

The second correlation measure that we study is the χ2 measure, which was intro-
duced in Chapter 3 (Eq. 3.1). To compute the χ2 value, we take the squared difference
between the observed and expected value for a slot (A and B pair) in the contin-
gency table, divided by the expected value. This amount is summed for all slots of the
contingency table. Let’s perform a χ2 analysis of Example 6.8.

HAN 13-ch06-243-278-9780123814791 2011/6/2 3:04 Page 267 #25

6.3 Which Patterns Are Interesting?—Pattern Evaluation Methods 267

Table 6.6 2× 2 Contingency Table Summarizing the
Transactions with Respect to Game and
Video Purchases

game game 6row

video 4000 3500 7500

video 2000 500 2500

6col 6000 4000 10,000

Table 6.7 Table 6.6 Contingency Table, Now with
the Expected Values

game game 6row

video 4000 (4500) 3500 (3000) 7500

video 2000 (1500) 500 (1000) 2500

6col 6000 4000 10,000

Example 6.9 Correlation analysis using χ2. To compute the correlation using χ2 analysis for nom-
inal data, we need the observed value and expected value (displayed in parenthesis) for
each slot of the contingency table, as shown in Table 6.7. From the table, we can compute
the χ2 value as follows:

χ2
=6

(observed− expected)2

expected
=
(4000− 4500)2

4500
+
(3500− 3000)2

3000

+
(2000− 1500)2

1500
+
(500− 1000)2

1000
= 555.6.

Because the χ2 value is greater than 1, and the observed value of the slot (game, video)=
4000, which is less than the expected value of 4500, buying game and buying video are
negatively correlated. This is consistent with the conclusion derived from the analysis of
the lift measure in Example 6.8.

6.3.3 A Comparison of Pattern Evaluation Measures

The above discussion shows that instead of using the simple support–confidence frame-
work to evaluate frequent patterns, other measures, such as lift and χ2, often disclose
more intrinsic pattern relationships. How effective are these measures? Should we also
consider other alternatives?

Researchers have studied many pattern evaluation measures even before the start of
in-depth research on scalable methods for mining frequent patterns. Recently, several
other pattern evaluation measures have attracted interest. In this subsection, we present

HAN 13-ch06-243-278-9780123814791 2011/6/2 3:04 Page 268 #26

268 Chapter 6 Mining Frequent Patterns, Associations, and Correlations

four such measures: all confidence, max confidence, Kulczynski, and cosine. We’ll then
compare their effectiveness with respect to one another and with respect to the lift and
χ2 measures.

Given two itemsets, A and B, the all confidence measure of A and B is defined as

all conf(A,B)=
sup(A∪B)

max {sup(A), sup(B)}
=min {P(A|B),P(B|A)}, (6.9)

where max{sup(A), sup(B)} is the maximum support of the itemsets A and B. Thus,
all conf(A,B) is also the minimum confidence of the two association rules related to
A and B, namely, “A⇒ B” and “B⇒ A.”

Given two itemsets, A and B, the max confidence measure of A and B is defined as

max conf(A, B)=max{P(A |B),P(B |A)}. (6.10)

The max conf measure is the maximum confidence of the two association rules,
“A⇒ B” and “B⇒ A.”

Given two itemsets, A and B, the Kulczynski measure of A and B (abbreviated as
Kulc) is defined as

Kulc(A, B)=
1

2
(P(A|B)+ P(B|A)). (6.11)

It was proposed in 1927 by Polish mathematician S. Kulczynski. It can be viewed as an
average of two confidence measures. That is, it is the average of two conditional prob-
abilities: the probability of itemset B given itemset A, and the probability of itemset A
given itemset B.

Finally, given two itemsets, A and B, the cosine measure of A and B is defined as

cosine(A, B)=
P(A∪B)

√
P(A)× P(B)

=
sup(A∪B)√

sup(A)× sup(B)

=

√
P(A|B)× P(B|A). (6.12)

The cosine measure can be viewed as a harmonized lift measure: The two formulae are
similar except that for cosine, the square root is taken on the product of the probabilities
of A and B. This is an important difference, however, because by taking the square root,
the cosine value is only influenced by the supports of A, B, and A∪B, and not by the
total number of transactions.

Each of these four measures defined has the following property: Its value is only
influenced by the supports of A, B, and A∪B, or more exactly, by the conditional prob-
abilities of P(A|B) and P(B|A), but not by the total number of transactions. Another
common property is that each measure ranges from 0 to 1, and the higher the value, the
closer the relationship between A and B.

Now, together with lift and χ2, we have introduced in total six pattern evaluation
measures. You may wonder, “Which is the best in assessing the discovered pattern rela-
tionships?” To answer this question, we examine their performance on some typical
data sets.

HAN 13-ch06-243-278-9780123814791 2011/6/2 3:04 Page 269 #27

6.3 Which Patterns Are Interesting?—Pattern Evaluation Methods 269

Table 6.8 2× 2 Contingency Table for Two Items

milk milk 6row

coffee mc mc c

coffee mc mc c

6col m m 6

Table 6.9 Comparison of Six Pattern Evaluation Measures Using Contingency Tables
for a Variety of Data Sets

Data
Set mc mc mc mc χ2 lift all conf. max conf. Kulc. cosine
D1 10,000 1000 1000 100,000 90557 9.26 0.91 0.91 0.91 0.91

D2 10,000 1000 1000 100 0 1 0.91 0.91 0.91 0.91

D3 100 1000 1000 100,000 670 8.44 0.09 0.09 0.09 0.09

D4 1000 1000 1000 100,000 24740 25.75 0.5 0.5 0.5 0.5

D5 1000 100 10,000 100,000 8173 9.18 0.09 0.91 0.5 0.29

D6 1000 10 100,000 100,000 965 1.97 0.01 0.99 0.5 0.10

Example 6.10 Comparison of six pattern evaluation measures on typical data sets. The relationships
between the purchases of two items, milk and coffee, can be examined by summarizing
their purchase history in Table 6.8, a 2× 2 contingency table, where an entry such as mc
represents the number of transactions containing both milk and coffee.

Table 6.9 shows a set of transactional data sets with their corresponding contin-
gency tables and the associated values for each of the six evaluation measures. Let’s
first examine the first four data sets, D1 through D4. From the table, we see that m
and c are positively associated in D1 and D2, negatively associated in D3, and neu-
tral in D4. For D1 and D2, m and c are positively associated because mc (10,000)
is considerably greater than mc (1000) and mc (1000). Intuitively, for people who
bought milk (m= 10,000 + 1000= 11,000), it is very likely that they also bought coffee
(mc/m= 10/11= 91%), and vice versa.

The results of the four newly introduced measures show that m and c are strongly
positively associated in both data sets by producing a measure value of 0.91. However,
lift and χ2 generate dramatically different measure values for D1 and D2 due to their
sensitivity to mc. In fact, in many real-world scenarios, mc is usually huge and unstable.
For example, in a market basket database, the total number of transactions could fluctu-
ate on a daily basis and overwhelmingly exceed the number of transactions containing
any particular itemset. Therefore, a good interestingness measure should not be affected
by transactions that do not contain the itemsets of interest; otherwise, it would generate
unstable results, as illustrated in D1 and D2.

HAN 13-ch06-243-278-9780123814791 2011/6/2 3:04 Page 270 #28

270 Chapter 6 Mining Frequent Patterns, Associations, and Correlations

Similarly, in D3, the four new measures correctly show that m and c are strongly
negatively associated because the m to c ratio equals the mc to m ratio, that is,
100/1100= 9.1%. However, lift and χ2 both contradict this in an incorrect way: Their
values for D2 are between those for D1 and D3.

For data set D4, both lift and χ2 indicate a highly positive association between
m and c, whereas the others indicate a “neutral” association because the ratio of mc to
mc equals the ratio of mc to mc, which is 1. This means that if a customer buys
coffee (or milk), the probability that he or she will also purchase milk (or coffee) is
exactly 50%.

“Why are lift and χ2 so poor at distinguishing pattern association relationships in
the previous transactional data sets?” To answer this, we have to consider the null-
transactions. A null-transaction is a transaction that does not contain any of the item-
sets being examined. In our example, mc represents the number of null-transactions.
Lift and χ2 have difficulty distinguishing interesting pattern association relationships
because they are both strongly influenced by mc. Typically, the number of null-
transactions can outweigh the number of individual purchases because, for example,
many people may buy neither milk nor coffee. On the other hand, the other four
measures are good indicators of interesting pattern associations because their defi-
nitions remove the influence of mc (i.e., they are not influenced by the number of
null-transactions).

This discussion shows that it is highly desirable to have a measure that has a value
that is independent of the number of null-transactions. A measure is null-invariant if
its value is free from the influence of null-transactions. Null-invariance is an impor-
tant property for measuring association patterns in large transaction databases. Among
the six discussed measures in this subsection, only lift and χ2 are not null-invariant
measures.

“Among the all confidence, max confidence, Kulczynski, and cosine measures, which
is best at indicating interesting pattern relationships?”

To answer this question, we introduce the imbalance ratio (IR), which assesses the
imbalance of two itemsets, A and B, in rule implications. It is defined as

IR(A,B)=
|sup(A)− sup(B)|

sup(A)+ sup(B)− sup(A∪B)
, (6.13)

where the numerator is the absolute value of the difference between the support of the
itemsets A and B, and the denominator is the number of transactions containing A or
B. If the two directional implications between A and B are the same, then IR(A,B) will
be zero. Otherwise, the larger the difference between the two, the larger the imbalance
ratio. This ratio is independent of the number of null-transactions and independent of
the total number of transactions.

Let’s continue examining the remaining data sets in Example 6.10.

Example 6.11 Comparing null-invariant measures in pattern evaluation. Although the four mea-
sures introduced in this section are null-invariant, they may present dramatically

HAN 13-ch06-243-278-9780123814791 2011/6/2 3:04 Page 271 #29

6.4 Summary 271

different values on some subtly different data sets. Let’s examine data sets D5 and D6,
shown earlier in Table 6.9, where the two events m and c have unbalanced conditional
probabilities. That is, the ratio of mc to c is greater than 0.9. This means that knowing
that c occurs should strongly suggest that m occurs also. The ratio of mc to m is less than
0.1, indicating that m implies that c is quite unlikely to occur. The all confidence and
cosine measures view both cases as negatively associated and the Kulc measure views
both as neutral. The max confidence measure claims strong positive associations for
these cases. The measures give very diverse results!

“Which measure intuitively reflects the true relationship between the purchase of milk
and coffee?” Due to the “balanced” skewness of the data, it is difficult to argue whether
the two data sets have positive or negative association. From one point of view, only
mc/(mc+mc)= 1000/(1000+ 10,000)= 9.09% of milk-related transactions contain
coffee in D5 and this percentage is 1000/(1000+ 100,000)= 0.99% in D6, both indi-
cating a negative association. On the other hand, 90.9% of transactions in D5 (i.e.,
mc/(mc+mc)= 1000/(1000+ 100)) and 9% in D6 (i.e., 1000/(1000+ 10)) contain-
ing coffee contain milk as well, which indicates a positive association between milk and
coffee. These draw very different conclusions.

For such “balanced” skewness, it could be fair to treat it as neutral, as Kulc does,
and in the meantime indicate its skewness using the imbalance ratio (IR). According to
Eq. (6.13), for D4 we have IR(m, c)= 0, a perfectly balanced case; for D5, IR(m, c)=
0.89, a rather imbalanced case; whereas for D6, IR(m, c)= 0.99, a very skewed case.
Therefore, the two measures, Kulc and IR, work together, presenting a clear picture for
all three data sets, D4 through D6.

In summary, the use of only support and confidence measures to mine associa-
tions may generate a large number of rules, many of which can be uninteresting to
users. Instead, we can augment the support–confidence framework with a pattern inter-
estingness measure, which helps focus the mining toward rules with strong pattern
relationships. The added measure substantially reduces the number of rules gener-
ated and leads to the discovery of more meaningful rules. Besides those introduced in
this section, many other interestingness measures have been studied in the literature.
Unfortunately, most of them do not have the null-invariance property. Because large
data sets typically have many null-transactions, it is important to consider the null-
invariance property when selecting appropriate interestingness measures for pattern
evaluation. Among the four null-invariant measures studied here, namely all confidence,
max confidence, Kulc, and cosine, we recommend using Kulc in conjunction with the
imbalance ratio.

6.4 Summary

The discovery of frequent patterns, associations, and correlation relationships among
huge amounts of data is useful in selective marketing, decision analysis, and business
management. A popular area of application is market basket analysis, which studies

HAN 13-ch06-243-278-9780123814791 2011/6/2 3:04 Page 272 #30

272 Chapter 6 Mining Frequent Patterns, Associations, and Correlations

customers’ buying habits by searching for itemsets that are frequently purchased
together (or in sequence).

Association rule mining consists of first finding frequent itemsets (sets of items,
such as A and B, satisfying a minimum support threshold, or percentage of the task-
relevant tuples), from which strong association rules in the form of A⇒ B are
generated. These rules also satisfy a minimum confidence threshold (a prespecified
probability of satisfying B under the condition that A is satisfied). Associations can be
further analyzed to uncover correlation rules, which convey statistical correlations
between itemsets A and B.

Many efficient and scalable algorithms have been developed for frequent itemset
mining, from which association and correlation rules can be derived. These algo-
rithms can be classified into three categories: (1) Apriori-like algorithms, (2) frequent
pattern growth–based algorithms such as FP-growth, and (3) algorithms that use the
vertical data format.

The Apriori algorithm is a seminal algorithm for mining frequent itemsets for
Boolean association rules. It explores the level-wise mining Apriori property that all
nonempty subsets of a frequent itemset must also be frequent. At the kth iteration (for
k ≥ 2), it forms frequent k-itemset candidates based on the frequent (k− 1)-itemsets,
and scans the database once to find the complete set of frequent k-itemsets, Lk .

Variations involving hashing and transaction reduction can be used to make the
procedure more efficient. Other variations include partitioning the data (mining on
each partition and then combining the results) and sampling the data (mining on
a data subset). These variations can reduce the number of data scans required to as
little as two or even one.

Frequent pattern growth is a method of mining frequent itemsets without candidate
generation. It constructs a highly compact data structure (an FP-tree) to compress the
original transaction database. Rather than employing the generate-and-test strategy of
Apriori-like methods, it focuses on frequent pattern (fragment) growth, which avoids
costly candidate generation, resulting in greater efficiency.

Mining frequent itemsets using the vertical data format (Eclat) is a method that
transforms a given data set of transactions in the horizontal data format of TID-
itemset into the vertical data format of item-TID set. It mines the transformed
data set by TID set intersections based on the Apriori property and additional
optimization techniques such as diffset.

Not all strong association rules are interesting. Therefore, the support–confidence
framework should be augmented with a pattern evaluation measure, which promotes
the mining of interesting rules. A measure is null-invariant if its value is free from
the influence of null-transactions (i.e., the transactions that do not contain any of
the itemsets being examined). Among many pattern evaluation measures, we exam-
ined lift, χ2, all confidence, max confidence, Kulczynski, and cosine, and showed

HAN 13-ch06-243-278-9780123814791 2011/6/2 3:04 Page 273 #31

6.5 Exercises 273

that only the latter four are null-invariant. We suggest using the Kulczynski measure,
together with the imbalance ratio, to present pattern relationships among itemsets.

6.5 Exercises

6.1 Suppose you have the set C of all frequent closed itemsets on a data set D, as well
as the support count for each frequent closed itemset. Describe an algorithm to
determine whether a given itemset X is frequent or not, and the support of X if it
is frequent.

6.2 An itemset X is called a generator on a data set D if there does not exist a proper
sub-itemset Y ⊂ X such that support(X)= support(Y). A generator X is a frequent
generator if support(X) passes the minimum support threshold. Let G be the set of
all frequent generators on a data set D.

(a) Can you determine whether an itemset A is frequent and the support of A, if it
is frequent, using only G and the support counts of all frequent generators? If
yes, present your algorithm. Otherwise, what other information is needed? Can
you give an algorithm assuming the information needed is available?

(b) What is the relationship between closed itemsets and generators?

6.3 The Apriori algorithm makes use of prior knowledge of subset support properties.

(a) Prove that all nonempty subsets of a frequent itemset must also be frequent.

(b) Prove that the support of any nonempty subset s′ of itemset s must be at least
as great as the support of s.

(c) Given frequent itemset l and subset s of l, prove that the confidence of the rule
“s′⇒ (l− s′)” cannot be more than the confidence of “s⇒ (l− s),” where s′ is
a subset of s.

(d) A partitioning variation of Apriori subdivides the transactions of a database D
into n nonoverlapping partitions. Prove that any itemset that is frequent in D
must be frequent in at least one partition of D.

6.4 Let c be a candidate itemset in Ck generated by the Apriori algorithm. How many
length-(k− 1) subsets do we need to check in the prune step? Per your previ-
ous answer, can you give an improved version of procedure has infrequent subset
in Figure 6.4?

6.5 Section 6.2.2 describes a method for generating association rules from frequent
itemsets. Propose a more efficient method. Explain why it is more efficient than
the one proposed there. (Hint: Consider incorporating the properties of Exercises
6.3(b), (c) into your design.)

6.6 A database has five transactions. Let min sup= 60% and min conf = 80%.

HAN 13-ch06-243-278-9780123814791 2011/6/2 3:04 Page 274 #32

274 Chapter 6 Mining Frequent Patterns, Associations, and Correlations

TID items bought

T100 {M, O, N, K, E, Y}

T200 {D, O, N, K, E, Y }

T300 {M, A, K, E}

T400 {M, U, C, K, Y}

T500 {C, O, O, K, I, E}

(a) Find all frequent itemsets using Apriori and FP-growth, respectively. Compare
the efficiency of the two mining processes.

(b) List all the strong association rules (with support s and confidence c) matching
the following metarule, where X is a variable representing customers, and itemi

denotes variables representing items (e.g., “A,” “B,”):

∀x ∈ transaction, buys(X , item1)∧ buys(X , item2)⇒ buys(X , item3) [s, c]

6.7 (Implementation project) Using a programming language that you are familiar
with, such as C++ or Java, implement three frequent itemset mining algorithms
introduced in this chapter: (1) Apriori [AS94b], (2) FP-growth [HPY00], and
(3) Eclat [Zak00] (mining using the vertical data format). Compare the perfor-
mance of each algorithm with various kinds of large data sets. Write a report to
analyze the situations (e.g., data size, data distribution, minimal support thresh-
old setting, and pattern density) where one algorithm may perform better than the
others, and state why.

6.8 A database has four transactions. Let min sup= 60% and min conf = 80%.

cust ID TID items bought (in the form of brand-item category)

01 T100 {King’s-Crab, Sunset-Milk, Dairyland-Cheese, Best-Bread}

02 T200 {Best-Cheese, Dairyland-Milk, Goldenfarm-Apple, Tasty-Pie, Wonder-Bread}

01 T300 {Westcoast-Apple, Dairyland-Milk, Wonder-Bread, Tasty-Pie}

03 T400 {Wonder-Bread, Sunset-Milk, Dairyland-Cheese}

(a) At the granularity of item category (e.g., itemi could be “Milk”), for the rule
template,

∀X ∈ transaction, buys(X , item1)∧ buys(X , item2)⇒ buys(X , item3) [s, c],

list the frequent k-itemset for the largest k, and all the strong association rules
(with their support s and confidence c) containing the frequent k-itemset for the
largest k.

(b) At the granularity of brand-item category (e.g., itemi could be “Sunset-Milk”),
for the rule template,

∀X ∈ customer, buys(X , item1)∧ buys(X , item2)⇒ buys(X , item3),

list the frequent k-itemset for the largest k (but do not print any rules).

HAN 13-ch06-243-278-9780123814791 2011/6/2 3:04 Page 275 #33

6.5 Exercises 275

6.9 Suppose that a large store has a transactional database that is distributed among
four locations. Transactions in each component database have the same for-
mat, namely Tj : {i1, . . . , im}, where Tj is a transaction identifier, and ik (1≤
k ≤m) is the identifier of an item purchased in the transaction. Propose an
efficient algorithm to mine global association rules. You may present your algo-
rithm in the form of an outline. Your algorithm should not require shipping
all the data to one site and should not cause excessive network communication
overhead.

6.10 Suppose that frequent itemsets are saved for a large transactional database, DB.
Discuss how to efficiently mine the (global) association rules under the same
minimum support threshold, if a set of new transactions, denoted as 1DB, is
(incrementally) added in?

6.11 Most frequent pattern mining algorithms consider only distinct items in a transac-
tion. However, multiple occurrences of an item in the same shopping basket, such
as four cakes and three jugs of milk, can be important in transactional data analysis.
How can one mine frequent itemsets efficiently considering multiple occurrences
of items? Propose modifications to the well-known algorithms, such as Apriori and
FP-growth, to adapt to such a situation.

6.12 (Implementation project) Many techniques have been proposed to further
improve the performance of frequent itemset mining algorithms. Taking FP-tree–
based frequent pattern growth algorithms (e.g., FP-growth) as an example, imple-
ment one of the following optimization techniques. Compare the performance of
your new implementation with the unoptimized version.

(a) The frequent pattern mining method of Section 6.2.4 uses an FP-tree to gen-
erate conditional pattern bases using a bottom-up projection technique (i.e.,
project onto the prefix path of an item p). However, one can develop a top-
down projection technique, that is, project onto the suffix path of an item p in
the generation of a conditional pattern base. Design and implement such a top-
down FP-tree mining method. Compare its performance with the bottom-up
projection method.

(b) Nodes and pointers are used uniformly in an FP-tree in the FP-growth algo-
rithm design. However, such a structure may consume a lot of space when
the data are sparse. One possible alternative design is to explore array- and
pointer-based hybrid implementation, where a node may store multiple items
when it contains no splitting point to multiple sub-branches. Develop such an
implementation and compare it with the original one.

(c) It is time and space consuming to generate numerous conditional pattern bases
during pattern-growth mining. An interesting alternative is to push right the
branches that have been mined for a particular item p, that is, to push them to
the remaining branch(es) of the FP-tree. This is done so that fewer conditional
pattern bases have to be generated and additional sharing can be explored when
mining the remaining FP-tree branches. Design and implement such a method
and conduct a performance study on it.

HAN 13-ch06-243-278-9780123814791 2011/6/2 3:04 Page 276 #34

276 Chapter 6 Mining Frequent Patterns, Associations, and Correlations

6.13 Give a short example to show that items in a strong association rule actually may
be negatively correlated.

6.14 The following contingency table summarizes supermarket transaction data, where
hot dogs refers to the transactions containing hot dogs, hot dogs refers to the
transactions that do not contain hot dogs, hamburgers refers to the transactions
containing hamburgers, and hamburgers refers to the transactions that do not
contain hamburgers.

hot dogs hot dogs 6row

hamburgers 2000 500 2500

hamburgers 1000 1500 2500

6col 3000 2000 5000

(a) Suppose that the association rule “hot dogs⇒ hamburgers” is mined. Given a
minimum support threshold of 25% and a minimum confidence threshold of
50%, is this association rule strong?

(b) Based on the given data, is the purchase of hot dogs independent of the purchase
of hamburgers? If not, what kind of correlation relationship exists between the
two?

(c) Compare the use of the all confidence, max confidence, Kulczynski, and cosine
measures with lift and correlation on the given data.

6.15 (Implementation project) The DBLP data set (www.informatik.uni-trier
.de/∼ley/db/) consists of over one million entries of research papers pub-
lished in computer science conferences and journals. Among these entries, there
are a good number of authors that have coauthor relationships.

(a) Propose a method to efficiently mine a set of coauthor relationships that are
closely correlated (e.g., often coauthoring papers together).

(b) Based on the mining results and the pattern evaluation measures discussed in
this chapter, discuss which measure may convincingly uncover close collabora-
tion patterns better than others.

(c) Based on the study in (a), develop a method that can roughly predict advi-
sor and advisee relationships and the approximate period for such advisory
supervision.

6.6 Bibliographic Notes

Association rule mining was first proposed by Agrawal, Imielinski, and Swami [AIS93].
The Apriori algorithm discussed in Section 6.2.1 for frequent itemset mining was pre-
sented in Agrawal and Srikant [AS94b]. A variation of the algorithm using a similar
pruning heuristic was developed independently by Mannila, Tiovonen, and Verkamo

http://www.informatik.uni-trier.de/~ley/db/
http://www.informatik.uni-trier.de/~ley/db/

HAN 13-ch06-243-278-9780123814791 2011/6/2 3:04 Page 277 #35

6.6 Bibliographic Notes 277

[MTV94]. A joint publication combining these works later appeared in Agrawal,
Mannila, Srikant et al. [AMS+96]. A method for generating association rules from
frequent itemsets is described in Agrawal and Srikant [AS94a].

References for the variations of Apriori described in Section 6.2.3 include the
following. The use of hash tables to improve association mining efficiency was stud-
ied by Park, Chen, and Yu [PCY95a]. The partitioning technique was proposed by
Savasere, Omiecinski, and Navathe [SON95]. The sampling approach is discussed in
Toivonen [Toi96]. A dynamic itemset counting approach is given in Brin, Motwani,
Ullman, and Tsur [BMUT97]. An efficient incremental updating of mined association
rules was proposed by Cheung, Han, Ng, and Wong [CHNW96]. Parallel and dis-
tributed association data mining under the Apriori framework was studied by Park,
Chen, and Yu [PCY95b]; Agrawal and Shafer [AS96]; and Cheung, Han, Ng, et al.
[CHN+96]. Another parallel association mining method, which explores itemset clus-
tering using a vertical database layout, was proposed in Zaki, Parthasarathy, Ogihara,
and Li [ZPOL97].

Other scalable frequent itemset mining methods have been proposed as alterna-
tives to the Apriori-based approach. FP-growth, a pattern-growth approach for mining
frequent itemsets without candidate generation, was proposed by Han, Pei, and Yin
[HPY00] (Section 6.2.4). An exploration of hyper structure mining of frequent patterns,
called H-Mine, was proposed by Pei, Han, Lu, et al. [PHL+01]. A method that integrates
top-down and bottom-up traversal of FP-trees in pattern-growth mining was proposed
by Liu, Pan, Wang, and Han [LPWH02]. An array-based implementation of prefix-
tree structure for efficient pattern growth mining was proposed by Grahne and Zhu
[GZ03b]. Eclat, an approach for mining frequent itemsets by exploring the vertical data
format, was proposed by Zaki [Zak00]. A depth-first generation of frequent itemsets by
a tree projection technique was proposed by Agarwal, Aggarwal, and Prasad [AAP01].
An integration of association mining with relational database systems was studied by
Sarawagi, Thomas, and Agrawal [STA98].

The mining of frequent closed itemsets was proposed in Pasquier, Bastide, Taouil,
and Lakhal [PBTL99], where an Apriori-based algorithm called A-Close for such min-
ing was presented. CLOSET, an efficient closed itemset mining algorithm based on
the frequent pattern growth method, was proposed by Pei, Han, and Mao [PHM00].
CHARM by Zaki and Hsiao [ZH02] developed a compact vertical TID list structure
called diffset, which records only the difference in the TID list of a candidate pattern
from its prefix pattern. A fast hash-based approach is also used in CHARM to prune
nonclosed patterns. CLOSET+ by Wang, Han, and Pei [WHP03] integrates previously
proposed effective strategies as well as newly developed techniques such as hybrid tree-
projection and item skipping. AFOPT, a method that explores a right push operation on
FP-trees during the mining process, was proposed by Liu, Lu, Lou, and Yu [LLLY03].
Grahne and Zhu [GZ03b] proposed a prefix-tree–based algorithm integrated with
array representation, called FPClose, for mining closed itemsets using a pattern-growth
approach.

Pan, Cong, Tung, et al. [PCT+03] proposed CARPENTER, a method for finding
closed patterns in long biological data sets, which integrates the advantages of vertical

HAN 13-ch06-243-278-9780123814791 2011/6/2 3:04 Page 278 #36

278 Chapter 6 Mining Frequent Patterns, Associations, and Correlations

data formats and pattern growth methods. Mining max-patterns was first studied by
Bayardo [Bay98], where MaxMiner, an Apriori-based, level-wise, breadth-first search
method, was proposed to find max-itemset by performing superset frequency pruning
and subset infrequency pruning for search space reduction. Another efficient method,
MAFIA, developed by Burdick, Calimlim, and Gehrke [BCG01], uses vertical bitmaps
to compress TID lists, thus improving the counting efficiency. A FIMI (Frequent Itemset
Mining Implementation) workshop dedicated to implementation methods for frequent
itemset mining was reported by Goethals and Zaki [GZ03a].

The problem of mining interesting rules has been studied by many researchers.
The statistical independence of rules in data mining was studied by Piatetski-Shapiro
[P-S91]. The interestingness problem of strong association rules is discussed in Chen,
Han, and Yu [CHY96]; Brin, Motwani, and Silverstein [BMS97]; and Aggarwal and
Yu [AY99], which cover several interestingness measures, including lift. An efficient
method for generalizing associations to correlations is given in Brin, Motwani, and
Silverstein [BMS97]. Other alternatives to the support–confidence framework for assess-
ing the interestingness of association rules are proposed in Brin, Motwani, Ullman, and
Tsur [BMUT97] and Ahmed, El-Makky, and Taha [AEMT00].

A method for mining strong gradient relationships among itemsets was proposed
by Imielinski, Khachiyan, and Abdulghani [IKA02]. Silverstein, Brin, Motwani, and
Ullman [SBMU98] studied the problem of mining causal structures over transaction
databases. Some comparative studies of different interestingness measures were done by
Hilderman and Hamilton [HH01]. The notion of null transaction invariance was intro-
duced, together with a comparative analysis of interestingness measures, by Tan, Kumar,
and Srivastava [TKS02]. The use of all confidence as a correlation measure for generating
interesting association rules was studied by Omiecinski [Omi03] and by Lee, Kim, Cai,
and Han [LKCH03]. Wu, Chen, and Han [WCH10] introduced the Kulczynski measure
for associative patterns and performed a comparative analysis of a set of measures for
pattern evaluation.

	Mining Frequent Patterns, Associations, and Correlations: Basic Concepts and Methods
	Basic Concepts
	Market Basket Analysis: A Motivating Example
	Frequent Itemsets, Closed Itemsets, and Association Rules

	Frequent Itemset Mining Methods
	Apriori Algorithm: Finding Frequent Itemsets by Confined Candidate Generation
	Generating Association Rules from Frequent Itemsets
	Improving the Efficiency of Apriori
	A Pattern-Growth Approach for Mining Frequent Itemsets
	Mining Frequent Itemsets Using the Vertical Data Format
	Mining Closed and Max Patterns

	Which Patterns Are Interesting?—Pattern Evaluation Methods
	Strong Rules Are Not Necessarily Interesting
	From Association Analysis to Correlation Analysis
	A Comparison of Pattern Evaluation Measures

	Summary
	Exercises
	Bibliographic Notes

	ctip Field 1:
	ctip Field 2:
	ctip Field 3:
	ctip Field 4:
	ctip Field 5:
	ctip Field 6:

