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Intelligent Predictive Maintenance for Fault Diagnosis and Prognosis in 

Machine Centers — Industry 4.0 Scenario 

Zhe Li1 · Yi Wang2 · Kesheng Wang 1

Abstract Fault diagnosis and prognosis in mechanical 

systems have been researched and developed in the last 

few decades at a very rapid rate. However, owing to the 

high complexity of machine centers, research on 

improving the accuracy and reliability of fault diagnosis 

and prognosis via data mining remains a prominent issue 

in this field. This study investigates fault diagnosis and 

prognosis in machine centers based on data mining 

approaches to formulate a systematic approach and 

obtain knowledge for predictive maintenance in Industry 

4.0 era. We introduce a system framework based on 

Industry 4.0 concepts, which includes the process of fault 

analysis and treatment for predictive maintenance in 

machine centers. The framework includes five modules: 

sensor selection and data acquisition module, data 

preprocessing module, data mining module, decision 

support module, and maintenance implementation 

module. Furthermore, a case study is presented to 

illustrate the application of the data mining methods for 

fault diagnosis and prognosis in machine centers as an 

Industry 4.0 scenario. 

Keywords Data Mining · Machine Centers · Predictive 

Maintenance · Industry 4.0 

 

Zhe Li 

zhe.li@ntnu.no 

Wang Yi 

yi.wang-2@manchester.ac.uk 

*Kesheng Wang 

kesheng.wang@ntnu.no 

1 Department of Production and Quality Engineering (IPK), Norwegian 

University of Science and Technology (NTNU), Trondheim, Norway 

2 School of Materials, University of Manchester, Manchester, UK 

1 Introduction 

In recent years, with the increasing demand for 

machining quality and manufacturing complexity, the 

complexity and integration of industrial equipment has 

been increasing drastically [1]. On the one hand, an 

unexpected failure can result in a devastating accident 

and financial losses for the company owing to the 

interaction behaviors among industrial equipment. On the 

other hand, early detection and prediction of a fault can 

prevent it from growing and eventually turning into 

critical problems [2]. Hence, increasing attention has 

been paid to condition monitoring, fault diagnosis, and 

prognosis in modern industry [3].  

Simultaneously, machine centers have grown rapidly 

in automotive, aerospace, die making, and other 

industries in recent times [4]. As one of the most 

important and active research areas in Knowledge 

Discovery in Databases (KDD) over the last few decades, 

data mining (DM) and related techniques have been 

widely researched and applied for fault diagnosis and 

prognosis in machine centers. 

It is well known that machine faults can result in 

consequences that may range from a simple replacement 

of a cheap bearing to an accident that will cost millions 

in lost production, injuries, or pollution [5]. It may also 

bother maintenance engineers to capture the trade-off 

between improving the system reliability and reducing 

the total maintenance cost simultaneously. 

Accordingly, significant attention has been paid to 

condition-based maintenance in the literature during the 

last few decades and to predictive maintenance more 

recently [6]. A thorough literature overview of both 

condition-based and predictive maintenance policies has 

been presented by Jardine et al. [7]. The goal of predictive 



 

 

 

maintenance is to reduce the downtime and cost of 

maintenance under the premise of zero failure 

manufacturing by monitoring the working condition of 

equipment and predicting when equipment failure might 

occur. The prediction of a future potential fault enables 

the planning of maintenance before the fault happens [8]. 

Considerable progress has been made in fault 

interpretation, detection, and prediction for machine 

centers based on DM during the last few decades, 

especially in specific core components or performance, 

such as gearbox [9], thermal error [10], and rolling 

element bearings [11]. However, most of these studies 

only focused on their own parts or concentration. There 

remains a lack of systematic application or framework of 

DM for diagnosis and prognosis in machine centers. 

Moreover, it is difficult to realize all the advantages of 

predictive maintenance without the foundation of 

correlation techniques such as big data and cloud 

computing. Many manufacturing systems are still not 

ready to manage big data owing to the high demands on 

the access and quality of data. Furthermore, the extraction 

of relevant information from multiple data sources still 

remains a challenge in many situations [12]. 

Today, Industry 4.0 is a buzzword in academia. It is 

widely discussed among practitioners and theorists, and 

facilitates the creation of a smart factory [13]. It was 

introduced at Hanover fair in 2011 in Germany to present 

a new trend toward the networking of traditional 

industries [14]. Subsequently, many similar projects and 

programs have demonstrated the concepts of Industry 4.0 

such as “intelligent manufacturing system” and “smart 

manufacturing.” This study aims to formulate a 

systematic approach and obtain knowledge for fault 

detection, interpretation, and prediction based on 

Industry 4.0 concepts. 

The remaining part of the paper is organized as 

follows. Section 2 briefly presents the background of 

machine centers and classifies fault analysis according to 

the observed components, monitoring methods, or 

specific purposes. Section 3 discusses the concepts of 

Industry 4.0 including its development, components, and 

definition. Section 4 provides a system framework that 

includes the entire process of fault analysis and treatment 

for predictive maintenance in machine centers based on 

DM and Industry 4.0 concepts. Section 5 presents an 

Industry 4.0 scenario about backlash error interpretation 

and prediction to illustrate the realization of predictive 

maintenance in machine centers. The conclusions and 

future research are summarized in the last section.  

2 Fault Analysis Techniques in Machine Centers 

The term “machine center” can be used to describe any 

computer numerical control (CNC) milling and drilling 

machine that includes an automatic tool changer and a 

table that clamps the workpiece in place. According to the 

orientation of the spindles, they can be divided into two 

types: vertical and horizontal. Vertical machining centers 

generally have good precision, whereas horizontal 

machining centers favor production. The spindle of a 

vertical machine center is vertically oriented. Generally, 

a vertical machine center includes several sub-systems 

that should be monitored. As shown in Fig. 1, it may 

include a server motor system, ball screw system, guide 

systems, spindle system, tool magazine, hydraulic system, 

lubrication system, and cooling system [15, 16]. All these 

systems have unique functions, and failures occurring at 

any one of them may cause faults in the entire machine 

center. 

 

 

 

Fig. 1 Components of a machine center 



 

 

 

 

In order to achieve fault diagnosis and prognosis in 

machine centers, many contributions have been made in 

this area. Normally, research in this field can be divided 

into seven groups: geometric measurement analysis, 

vibration analysis, oil analysis, cutting fluid analysis, 

energy consumption analysis, temperature analysis, and 

acoustic emission analysis, according to the observed 

components, monitoring method, or specific purpose [15-

21]. However, the integration of all these techniques and 

information to form comprehensive, high-efficiency, and 

intelligent maintenance strategies still remains a 

challenge till the breakthrough of Industry 4.0.  

3 Industry 4.0  

Industrial production has continued to progress since its 

very beginning. Sometimes, the changes were so potent 

and significant that the term “industrial revolution” had 

to be coined. Further, the term Industry 4.0 is used to 

recognize the three previous industrial revolutions. 

Today, we are witnessing the fourth industrial 

revolution, which is also known as Industry 4.0. It 

combines the strengths of optimized industrial 

manufacturing with Internet technologies and changes 

the manufacturing process, maintenance management, 

and maintenance strategies significantly. 

Industry 4.0 is closely related to other technological 

concepts such as machine-to-machine communication 

[22], radio frequency identification (RFID) technology 

[23], cyber-physical systems (CPS) [24], the Internet of 

Things (IoT), the Internet of Services (IoS), cloud 

computing [25], computational intelligence (CI), DM, 

and decision-making/supporting system. 

3.1 Components of Industry 4.0 

Industry 4.0 is the superposition of several technological 

developments related to CPS, IoT, IoS, and DM. CPS 

refers to a new generation of systems with integrated 

computational and physical capabilities that can interact 

with humans using many new modalities. The key is the 

ability to interact with, and expand the capabilities of, the 

physical world via computation, communication, and 

control [26]. Furthermore, Industry 4.0 facilitates the 

development of intelligent and flexible production 

control systems, which apply information and 

communication technologies to facilitate machines to 

intercommunicate and interact. Typically, Industry 4.0 

consists of the following four components.  

1. CPS  

2. IoT 

3. Big data (BD) & DM 

4. IoS 

3.2 Cyber-Physical Systems 

As an important component of Industry 4.0, CPS refers 

to a new generation of systems with integrated 

computational and physical capabilities that can interact 

with humans using many new modalities. The key is the 

ability to interact with, and expand the capabilities of, the 

physical world via computation, communication, and 

control [26]. CPS has the ability to transfer the physical 

world into the virtual one and can be understood as a 

basic unit. The development and application of 

identification approaches such as RFID have become the 

foundation to achieve unique identification of objects. 

CPS applies multiple sensors using information and 

communication technologies to collect, store, and parse 

data. 

3.3 Internet of Things 

The IoT is defined as the ubiquitous access to entities on 

the Internet for the extension of the physical world using 

a variety of sensing, detection, identification, location 

tracking, and monitoring equipment [27]. It allows 

“things or objects” to interact with each other and 

cooperate with their “smart” components to achieve 

common aims. The IoT can be considered as a network 

where CPSs cooperate with each other via unique 

addressing schemes. 

3.4 Data Mining 



 

 

 

DM can be defined as the process of discovering 

interesting (non-trivial, implicit, previously unknown, 

and potentially useful) patterns and knowledge from 

large amounts of data [28]. It can also be considered as a 

result of the natural evolution of information technology. 

The evolution is an essential process, where intelligent 

methods are applied to extract data patterns and discover 

knowledge from data [29]. The data sources may include 

databases, data warehouses, the Web, other information 

repositories, or data that are streamed into a system 

dynamically [30]. In other words, DM is the process of 

answering questions by searching a database for rules, 

relationships, and patterns not obtained by conventional 

query tools.  

Real-time big data is not just a process of storing a 

huge amount of data in a database or warehouse. DM 

enables us to analyze and discover patterns, rules, and 

knowledge from big data collected from multiple sources. 

Therefore, we can make the right decision at the right 

time and right place according to the result of analysis 

using real-time data. 

3.5 Internet of Services  

The IoS pursues a similar approach as IoT, but with 

services instead of physical entities. The integration of 

these developments promotes the cooperation among all 

the partners in the entire system. It enables service 

vendors to offer their services via the Internet. The IoS 

consists of business models, infrastructure for services, 

the services themselves, and participants. Services are 

offered and combined into value-added services by 

various suppliers. They are communicated to users and 

consumers, who access them via various channels. 

3.6 Definition of Industry 4.0 

Based on the literature review, Industry 4.0 can be 

summarized as a collective term for the technologies and 

concepts of value chain organizations. Within the smart 

factories of Industry 4.0, CPSs monitor physical 

processes, create a virtual copy of the physical world, and 

thereby make decentralized decisions. Using the IoT, 

CPSs communicate and cooperate with each other and 

humans in real time. DM discovers knowledge to support 

the decision-making process. Using the IoS, both internal 

and cross-organizational services are offered and utilized 

by participants of the value chain [14].  

4 System Framework based on Industry 4.0 Concepts 

As discussed above, monitoring systems in machine 

centers may require DM methods for fault diagnosis and 

prognosis according to different monitoring purposes or 

components. Therefore, a systematic framework based on 

DM to achieve fault diagnosis and prognosis for machine 

centers is imperative [31]. As shown in Fig. 2, a system 

framework is formulated for predictive maintenance in 

machine centers based on Industry 4.0 concepts. DM and 

CI have been applied to discover failure information and 

optimize the solutions, respectively. This system can 

monitor plant floor assets, link the production and 

maintenance operations systems, obtain data, collect 

feedback from a remote customer site, and integrate it 

into upper-level enterprise applications, discovery hidden 

information about impending failures, and generate 

maintenance knowledge. It can also monitor the state of 

manufacturing processes and predict the condition of the 

equipment.  

The system can make a maintenance decision to 

prevent the occurrence and development of failures 

effectively, ensure equipment and personal safety, and 

reduce the economic loss caused by failures. It can use 

fault diagnosis, performance assessment of the degrading 

level, and fault prognosis models to achieve near-zero-

breakdown performance and improve the productivity of 

a company. The framework includes five main modules: 

sensor selection and data acquisition module, data 

preprocessing module, DM module, decision support 

module, and maintenance implementation module. All 

these modules have clear ordinal relation and specific 

functions in the system. The framework is based on many 

key techniques of Industry 4.0 concepts, such as CPS, IoT, 

IoS, CI, DM, and swarm intelligence (SI), and should be 

researched and developed for satisfying the industry 

requirements.



 

 

 

Fig. 2 The framework of fault diagnosis and prognosis in machine centers 

(a) Sensor selection and data acquisition module 

(b) Data preprocessing module 

(c) Data mining module 

(d) Decision support module 

(e) Maintenance implementation module 

 

4.1 Sensor Selection and Data Acquisition Module 

This is the first step to implement diagnosis and prognosis 

based on DM in machine centers. The task of this module 

is to select a suitable sensor and optimal data collection 

strategy to extend the physical world using a variety of 

sensing, detection, and identification techniques, and 

connect the objects or enable them to interact with each 

other. It can be considered as the implementation of IoT. 

The data acquisition process transforms the sensor 

signals into domains that have the most information to 

represent the condition of the equipment or a fusion of 

several domains. Various sensors such as micro-sensors, 

ultrasonic sensors, vibration sensors, and acoustic 

emission sensors can be designed to collect different data. 

The selection of sensors determines the representation of 

the machine health by the collected data, considering both 

the specifications and cost-effectiveness. Moreover, with 

the increase in the complexity of the machine system, the 

sensor network is considered as a feasible solution for the 

diagnosis and prognosis system in machine centers, 

which may include different kinds of sensors. Sensor 

fusion achieves significance under this condition. 

Therefore, obtaining smart sensors is also a prominent 

research field in condition monitoring [32]. The selection 

of suitable sensors is the key for the effectiveness of 

condition monitoring, and a complete data acquisition 

system can improve the correction and efficiency of 

diagnosis and prognosis directly.  

4.2 Data Preprocessing Module 



 

 

 

After the data acquisition module, all the collected data 

will be stored in the data warehouse for diagnosis and 

prognosis. However, during the process of knowledge 

discovery, if there is too much irrelevant and redundant 

information, such as noise or unreliable data, the training 

phase will be more challenging. Therefore, it is necessary 

to preprocess the data before the subsequent step. This 

challenge is also called as BD in the industry. 

Generally, the major steps involved in data 

preprocessing include data cleaning, data integration, 

data reduction, and data transformation. Data cleaning is 

the process of detecting and correcting corrupt or 

inaccurate records from the database by filling in missing 

values, smoothing noisy data, identifying or removing 

outliers, and resolving inconsistencies. Data integration 

is the process of merging data from multiple data stores. 

Careful integration can help reduce and avoid 

redundancies and inconsistencies in the resulting data set. 

Data reduction provides a reduced representation of the 

data set that is much smaller in volume and can produce 

the same (or almost the same) analytical results. There are 

many dimensionality reduction methods. Among them, a 

straightforward approach is to apply feature extraction 

methods to the data set, which extract features that are the 

characteristics of an incipient failure or fault from 

preprocessed signals. Generally, the features can be 

extracted from three domains: time domain, frequency 

domain, and time-frequency domain. In data 

transformation, the data are transformed or consolidated 

into forms appropriate for DM, such that the DM process 

may be more efficient, and the patterns obtained may be 

easier to understand [30].  

The development of storage media and computation 

ability results in massive data during the data acquisition 

process. Data preprocessing can effectively clean the raw 

data, reduce the dimension of the data, and store it back 

in the warehouse for knowledge discovery. Therefore, 

massive data can be converted to features or statistical 

values as the input variables of the DM process. 

4.3 Data Mining Module 

DM has the capability to discover hidden links, recognize 

unknown patterns, and predict future trends by digging 

through and analyzing enormous sets of data [33]. The 

functions or models of DM can be categorized according 

to the task performed [34], such as clustering, 

classification, decision trees, predication, regression, and 

association. Generally, the analysis methods of DM can 

be categorized into three groups: statistics, machine 

learning, and artificial intelligence (AI) [35].  

As the research field of collection, analysis, 

interpretation, and presentation of data, statistics has an 

inherent connection with DM. A statistical model is a set 

of mathematical functions that describe the behavior of 

objects in a target class in terms of random variables and 

their associated probability distributions [30]. Hence, it is 

widely used to model data and data classes during the 

process of DM. Examples of statistics include regression 

analysis, cluster analysis, and discriminate analysis. 

As a subfield of computer science, machine learning 

investigates the method by which computers can study 

and make predictions based on data [36]. Machine 

learning is employed in a range of computing tasks to 

learn to recognize complex patterns and make 

appropriate decisions automatically. Machine learning is 

usually divided into two main types: predictive or 

supervised learning, and descriptive or unsupervised 

learning [37]. In the predictive or supervised learning 

process, the goal is to form a mapping from inputs 𝑥 to 

outputs 𝑦, given a labeled set of input-output data 𝐷 =

{(𝑥𝑖|𝑦𝑖)} 𝑖 = 1,2,3 … 𝑁, where 𝐷 is the training set and 

𝑁 is the number of training examples. In descriptive or 

unsupervised learning, the learning process is 

unsupervised since there are no classes labeled in the 

input samples. In this process, only the inputs will be 

given,  𝐷 = {𝑥𝑖} 𝑖 = 1,2,3 … 𝑁,  and the goal is to 

determine interesting patterns and knowledge from large 

amounts of data. This is a much less well-defined 

problem, since we are not aware of the kind of patterns to 

search for, and there is no obvious error metric for 

evaluating the results.  

The third family root of DM is AI, which is built 

using a heuristic algorithm. It includes several techniques 



 

 

 

such as genetic algorithm (GA), artificial neural network 

(ANN), fuzzy logic systems (FLS), and case-based 

reasoning (CBR). The main idea is to apply human-

thought-like processing to statistical problems. It uses 

techniques for writing computer code to represent and 

manipulate knowledge, which is exactly apt for computer 

processing in modern business environment [35]. 

Currently, owing to the rapid development of deep 

learning approaches, they also provide feasible methods 

to deal with the issue of fault prediction, which was once 

considered as the most challenging problem in the 

research area of predictive maintenance. 

DM benefits from these technologies, but differs 

from the objective pursued: extracting patterns, 

describing trends, or predicting behaviors. It is applied in 

a wide range of domains where large amounts of data are 

available for the identification of unknown or hidden 

information [34]. As to the fault diagnosis and prognosis 

in machine centers, owing to the high complexity and 

coupling features among a wide range of faults, it is 

appropriate to apply DM methods in this field. 

The DM module in the framework mainly focuses on 

fault detection, classification, and prediction for 

predictive maintenance. Fault diagnosis and prognosis 

strategies have been developed and have achieved 

extensive utility in a wide range of application domains 

in recent years. Typically, they can be divided into two 

major categories: model based and data-driven [38]. A 

model-based technique depends on the accuracy of the 

dynamic system model. It utilizes the actual system and 

model to generate the difference between the two outputs, 

which is indicative of a potential fault condition. 

However, in many manufacturing systems, it is difficult 

to establish a high-accuracy dynamic system model. 

Data-driven techniques often address only the anticipated 

fault condition, where a fault model is a collection of 

constructs such as neural networks and expert systems, 

which must be trained first with known prototype fault 

patterns. Generally, if the historical data can be obtained 

easily, the data-driven technique is useful to identify the 

fault and evaluate the condition. When only a part of the 

historical data can be obtained, hybrid techniques that 

combine the data-driven techniques and model-based 

techniques can be used to evaluate the current condition 

of the manufacturing system or products. The semi-

supervised learning method can also be used to evaluate 

the condition and identify faults when only a part of the 

historical data is available and it is very effective.  

This study focuses on the data-driven techniques and 

hybrid techniques in the fault diagnosis and prognosis 

module. For example, a deep belief network can be used 

to identify fault types and recognize fault severity ranking 

in rolling element bearings [39]. Some common 

diagnosis and prognosis algorithms are listed in the 

framework. All these techniques have already 

demonstrated their ability to deal with certain issues. 

They are widely applied and can be selected according to 

the real manufacturing system analysis. 

4.4 Decision Support Module 

The main purpose of this module is to visualize the result 

of DM and provide an optimized strategy according to 

DM. It can also be considered as the application of IoS. 

Generally, a diagram of key performance indicator (KPI), 

also called a spider chart, can be used for presenting the 

situation of equipment. The conditions of equipment can 

be defined in several levels from zero to one. For example, 

zero indicates no faults and one indicates complete 

damage of equipment. In the framework, the KPI may be 

formed according to the outputs of the DM module. The 

diagram will enable operators or managers to evaluate the 

performance visually, and subsequently, an optimized 

maintenance schedule can be provided according to the 

result of evaluation. 

Maintenance planning and scheduling optimization is 

a kind of nondeterministic polynomial time (NP) problem 

and it is always difficult for the decision-makers to 

capture the trade-off. SI algorithms could be a very good 

technique to solve this kind of problem. Usually, one may 

apply GA, particle swarm optimization, ant colony 

optimization, and bee colony algorithm as decision 

support methods, and attempt to determine the optimal 

dynamic predictive maintenance scheduling. All these 

methods are selectable in the framework to solve 



 

 

 

maintenance scheduling optimization problems. 

Furthermore, this module may also include the function 

of failure identification and the evaluation of 

performance degradation according to the result of the 

DM module. 

4.5 Maintenance Implementation Module 

In this module, maintenance will be implemented after 

the decision-makers choose the strategy of maintenance. 

It can be considered as the purpose of CPS. The physical 

world is transferred into the virtual one for 

communication, computation, analysis, and decision-

making via the previous modules. In this module, we 

react to the physical world according to the result of those 

modules and implement maintenance to achieve a certain 

purpose, e.g., to minimize the cost of maintenance, 

realize zero-defect manufacturing, or reduce breakdown.  

Moreover, this module may also include the function 

of error correction, compensation, and feedback control 

based on the results from the maintenance decision 

support module to continue to run the equipment and 

process in a normal condition. Different techniques can 

be used to correct and compensate the errors. ANN has 

been widely used for the compensation of backlash errors 

in computer-controlled machine centers. However, the 

error correction and compensation process is mainly 

dependent on the types of machines and processes. The 

module should be integrated with control devices and the 

maintenance management system. 

5 Case Study: Backlash Error Prediction for Green 

Monitoring in Machine Centers 

This case study is from a project called Green Monitoring, 

which aims to decrease the cost of faults, defects, and 

maintenance during the manufacturing process via 

remote condition monitoring and DM. As shown in Fig. 

3, the data is obtained from a remote customer site and 

transported to a DM center for analysis. After a series of 

DM processes, the result and suggestion will be provided 

to the customers for maintenance optimization. 

In the case study, ANN is applied for fault prediction, 

and can be used to illustrate the use of DM methods for 

predictive maintenance in machine centers. The process 

can be divided into five steps: data acquisition, data 

preprocessing, DM, fault prediction, and decision support. 

The technique modifies a time-based behavior model 

using an ANN, which can map and predict the backlash 

error in machine centers for failure detection or 

prediction and maintenance decision support. This case 

only considers the backlash error as an instance to 

demonstrate the working of the system and illustrate an 

Industry 4.0 scenario.

 



 

 

 

 

Fig. 3 Green Monitoring System based on Industry 4.0 concepts 

5.1 Data Acquisition 

Usually, a machine center itself is equipped with many 

high-precision sensors such as grating, rotary encoder, 

linear scale, current sensor, and temperature sensor to 

guarantee accuracy using a closed or half-closed loop 

control. Therefore, many parameters such as machine 

temperature, position of the screw and table, torque, and 

current can be obtained directly from the control system. 

In this case, the backlash error is calculated according to 

the axis position of the table (spindle) and ball screw, 

which are already collected and stored using a rotary 

encoder and linear scale in the machine center. Therefore, 

new installation of specific sensors or diagnostic 

equipment is not required. The form of collected data is 

shown in Fig. 4. The vertical axis is the position of the 

table and screw, and the horizontal axis is the sampling 

units, which can be considered as time. 

 

Fig. 4 Axis position of table and screw 

5.2 Data Preprocessing 



 

 

 

As shown in Fig. 4, three blocks of backlash error can be 

recognized during a sampling process. Furthermore, the 

average backlash error during this test can be interpreted 

according to the change of difference between the 

position of the table and screw. The position of the screw 

can be represented as follows: 

 

𝑆𝑐𝑟𝑒𝑤(𝑡) = 𝑆𝑐𝑟𝑒𝑤 (0) + ∫ 𝑓𝑒𝑒𝑑(𝑡)
𝑡

0
𝑑𝑡 + ∫ 𝑏𝑎𝑐𝑘(𝑡)

𝑡

0
𝑑𝑡

+ ∫ 𝑏𝑎𝑐𝑘𝑙𝑎𝑠ℎ(𝑡)
𝑡

0
𝑑𝑡  

    = 𝑆𝑐𝑟𝑒𝑤 (0) − 𝑓𝑒𝑒𝑑1 + 𝑏𝑎𝑐𝑘𝑙𝑎𝑠ℎ1 +  𝑏𝑎𝑐𝑘1 −

                       𝑏𝑎𝑐𝑘𝑙𝑎𝑠ℎ2 − 𝑓𝑒𝑒𝑑2 + 𝑏𝑎𝑐𝑘𝑙𝑎𝑠ℎ3 + 𝑏𝑎𝑐𝑘2     (1) 

where 

𝑆𝑐𝑟𝑒𝑤(𝑡): Position of the screw in sample no. t 

𝑆𝑐𝑟𝑒𝑤(0): Initial position of the screw 

𝑏𝑎𝑐𝑘𝑙𝑎𝑠ℎ: Backlash error at the tth sample 

𝑓𝑒𝑒𝑑(𝑡): Feed rate at tth sample, which is equal to zero if 

not under feed movement 

𝑏𝑎𝑐𝑘(𝑡): Return rate at tth sample, which is equal to zero 

if not under return movement 

The position of the table can be represented as follows: 

𝑇𝑎𝑏𝑙𝑒(𝑡) = 𝑇𝑎𝑏𝑙𝑒 (0) + ∫ 𝑓𝑒𝑒𝑑(𝑡)
𝑡

0
𝑑𝑡 + ∫ 𝑏𝑎𝑐𝑘(𝑡)

𝑡

0
𝑑𝑡 

           = 𝑇𝑎𝑏𝑙𝑒 (0) − 𝑓𝑒𝑒𝑑1 + 𝑏𝑎𝑐𝑘1 − 𝑓𝑒𝑒𝑑2 

                                +𝑏𝑎𝑐𝑘2                                                            (2)  

where 

𝑇𝑎𝑏𝑙𝑒(𝑡): Position of the table in sample no. t 

𝑇𝑎𝑏𝑙𝑒(0): Initial position of the table 

Subsequently, the overall backlash error in t samples 

can be calculated as follows: 

∫ 𝑏𝑎𝑐𝑘𝑙𝑎𝑠ℎ(𝑡)
𝑡

0

𝑑𝑡 = [𝑆𝑐𝑟𝑒𝑤(𝑡) − 𝑆𝑐𝑟𝑒𝑤 (0)] 

                                        − [𝑇𝑎𝑏𝑙𝑒(𝑡) − 𝑇𝑎𝑏𝑙𝑒 (0)]                  (3) 

 

The backlash error extracted from the collected data is 

stored in the database, which will record the data of all 

the working days. A new data warehouse for training will 

be established to record the backlash error every week 

from the selection of the daily database. A median filter 

was applied to select the samples and exclude outliers for 

further DM. 

5.3 Data Mining 

During the DM process, historical data is leveraged to 

discover the hidden information or certain characteristics 

about specific faults. As shown in Fig. 5, we can divide 

the DM process into two processes: prognosis and 

diagnosis. The prognosis process is in charge of 

predicting the fault caused by natural wear and tear, while 

diagnosis process deals with the difference between 

current and normal parameters and evaluating the effect 

of working conditions under certain failures. 

Subsequently, predictive maintenance can be performed 

according to the result of prognosis and diagnosis 

individually or together based on some DM methods of 

decision support such as association rules and SI.  

 



 

 

 

 

Fig. 5 Data mining process for the diagnosis and prognosis of backlash error in machine centers 

 

This case study mainly focuses on the prognosis process 

for a backlash error in machine centers. In order to map 

and track the backlash error under normal working 

conditions, we applied an ANN, which is inspired by 

biological neural networks (the central nervous systems 

of animals, in particular the brain) and applied to estimate 

approximate functions using a large number of inputs 

[40]. The inputs in the prediction process are the backlash 

errors of the last three weeks and the output is the 

backlash error of the following week. This process 

includes two processes: training process and prediction 

process. The ANN was trained and established in the 

training process to obtain the characteristics of backlash 

error under ordinary wear and tear for the specific 

machine center, and the backlash error can be predicted 

in the prediction process. Subsequently, the maintenance 

decision can be made according to the prediction result. 

5.4 Fault Prediction 

After training the network, the data collected from the 

current condition can be applied as inputs to evaluate and 

predict the potential fault. In this case, we collected the 

data of a machine center that ran normally and steadily 

without any maintenance for 22 weeks until the backlash 

error exceed the permissible error. During the process of 

data collection, the equipment operated a series of 

rigorous procedures to ensure that all the samples are 

under the same working conditions. Subsequently, the 

backlash error was calculated from the data and used to 

train the ANN. The training process can be divided into 

two phases: network establishment and network testing. 

In the process of network establishment, 70% of the 

experiment data was applied to train and adjust the 

network using the difference between the target and 

output values. In the testing process, the remaining 30% 

of data was divided into two groups: validation data and 

testing data. The validation data was used to estimate the 

condition of the network’s generalization, which 

indicates that the training would cease when the 

generalization stops improving. Furthermore, since the 

testing data has no effect on the training process, an 

independent assessment can be performed according to 

the testing results. The maximal training error in this case 

is approximately 0.6 µm. The model trained in this 

process can be used as the reference to map the backlash 

error with time.  



 

 

 

Fig. 6 Prediction result of backlash error 

In the prediction results shown in Fig. 6, the backlash 

errors of the last three weeks can be used as inputs to 

predict the backlash error of the subsequent week in the 

ANN model. 

5.5 Decision Support 

After fault prediction, the result will be recorded and 

published on the online dashboard for remote condition 

monitoring and information sharing. All the data and 

analysis results will be stored in an online data warehouse 

for data exchange and transport. The recommended 

maintenance strategy will be formulated in the decision 

support system according to the prediction or evaluation 

result. Generally, relevant optimization and association 

theories are required to capture the trade-off between 

several factors such as maintenance cost, machining 

accuracy, and defective percentage, and make the optimal 

decision. For maintenance strategy, if the backlash error 

of the following week predicted in the network exceeds 

the tolerance interval or a certain degree, maintenance 

shall be implemented in advance. The target is to enable 

the operation team to utilize real-time data to optimize 

and prioritize maintenance scheduling.    

6. Conclusion  

DM will play a very important role in predictive 

maintenance in machine centers owing to their 

complexity and high machining precision. The 

theoretical contribution of this paper could be represented 

by the collection, classification, and induction of DM 

approaches applied for fault diagnosis and prognosis in 

machine centers. Furthermore, the definition of Industry 

4.0 provided herein clarifies the basic understanding of 

the term Industry 4.0 among practitioners. 

Moreover, this paper presented a framework to 

formulate a systematic approach and obtain knowledge 

based on Industry 4.0 concepts for predictive 

maintenance in machine centers based on the DM result 

in fault diagnosis and prognosis. The framework contains 

the entire process of fault analysis and treatment, which 

includes sensor and data acquisition, data preprocessing, 

fault diagnosis and prognosis, performance indicator 

analysis, and maintenance schedule optimization. DM is 

applied in the framework to achieve fault diagnosis and 

prognosis in machine centers. Moreover, a case study 

about backlash error interpretation and prediction in 

machine centers is reported and discussed to illustrate the 



 

 

 

operation of DM for fault diagnosis and prognosis, and it 

provides a maintenance strategy to machine centers.   

However, there still exist some challenges in the 

application of DM for fault diagnosis and prognosis in 

machine centers. The main benefits of ANN are fault 

tolerance, generalization, and adaptability. Nevertheless, 

the limitation is the lack of an explanation function, 

which indicates that it is difficult to determine the 

influence of various factors. GA is a robust, general-

purpose search procedure; it can quickly explore large 

search spaces and determine those regions that have 

above-average fitness. However, the convergence time to 

determine global optima will be very long. FLS can be 

applied where accurate mathematical models are 

unavailable or difficult to be established, but empirical 

knowledge of the problem is required to develop an 

accuracy model of the subsystem. Furthermore, most of 

the research reviewed in this paper is based on current 

working conditions or natural wear, which may be related 

and combined to achieve higher accuracy of fault 

diagnosis and prognosis. Therefore, a fault diagnosis and 

prognosis system based on DM in machine centers should 

be researched and developed further. 
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